
Simulating the Fredkin Gate

with Energy–Based P Systems

Alberto LEPORATI, Claudio ZANDRON, Giancarlo MAURI

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
E-mail: leporati/zandron/mauri@disco.unimib.it

Abstract. Reversibility plays a fundamental role when the possibility to per-
form computations with minimal energy dissipation is considered. Many pa-
pers on reversible computation have appeared in literature: the most famous
are certainly the work of Bennett on (universal) reversible Turing machines and
the work of Fredkin and Toffoli on conservative logic. The latter is based upon
the Fredkin gate, a reversible and “conservative” (according to a definition
given by Fredkin and Toffoli) three–input/three–output boolean gate.

In this paper we introduce energy–based P systems as a parallel and distributed
model of computation in which the amount of energy manipulated and/or
consumed during computations is taken into account. Moreover, we show
how energy–based P systems can be used to simulate the Fredkin gate. The
proposed P systems that perform the simulation turn out to be themselves
reversible and conservative.

1 Introduction

Considerations of thermodynamics of computing started in the early fifties of the twentieth
century, when the possibility to perform computations with minimal energy dissipation
was first considered. As a result some bounds on the amount of dissipated energy during
transmission and computation were established [18, 4, 2, 19], and some quantum theoretic
models of computation were proposed [3, 8]. As shown in [18], erasing a bit necessarily
dissipates kT ln 2 Joule in a computer operating at temperature T , and generates a corre-
sponding amount of entropy. Here k is Boltzmann’s constant and T the absolute temper-
ature in degrees Kelvin, so that kT ≈ 3× 10−21 Joule at room temperature. However, in
[18] Landauer also demonstrated that only logically irreversible operations necessarily dis-
sipate energy when performed by a physical computer. (An operation is logically reversible
if its inputs can always be deduced from its outputs.) This result gave substance to the
idea that logically reversible computations could be performed with zero internal energy
dissipation. Indeed, since the appearance of [18] many authors have concentrated their
attention on reversible computations. The importance of reversibility has grown further
with the development of quantum computing, where the dynamical behavior of quantum

292

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51399077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

systems is usually described by means of unitary operators, which are inherently logically
reversible. Let us note, however, that computing in a logically reversible way says nothing
about whether or not the computation dissipates energy: it merely means that the laws
of physics do not require that such a dissipation occurs.

Many papers on reversible computation have appeared in literature; the most famous
are certainly the work of Bennett on (universal) reversible Turing machines [4], and the
work of Fredkin and Toffoli on conservative logic [11]. In particular, conservative logic has
been introduced as a mathematical model that allows one to describe computations which
reflect some properties of microdynamical laws of physics, such as reversibility and conser-
vation of the internal energy of the physical system used to perform the computations. In
this model, computations are performed by reversible circuits composed by Fredkin gates.

In this paper we introduce energy–based P systems as a parallel and distributed model
of computation in which the amount of energy manipulated and/or consumed during
computations is taken into account. In the most general version, a given amount of energy
is associated to each object, membrane and rule of the system. Some energy units are
provided from the external environment and are used to build, transform or move objects.
When an object is transformed into another object as the effect of the application of a
rule, the required (resp., exceeding) energy is taken from (resp., released to) the region
where the rule is applied. The application of each rule consumes a given amount of energy.
Membranes can be thought of as energy reservoirs which are able to accumulate a (possibly
bounded) amount of energy and subsequently release part of it. A special case of energy–
based P systems are conservative P systems, where the amount of energy entering the
system with the input values is completely returned with the output values at the end of
the computation.

We show how the Fredkin gate can be simulated with energy–based P systems. The
proposed P systems that perform the simulation turn out to be themselves reversible and
conservative. The simulation of reversible Fredkin circuits is currently under examination
and is proposed here as a direction for future work.

This is by no means the first time that energy is considered when dealing with P
systems. We recall in particular [1, 12, 29, 13, 14, 15]. The last two papers were inspired
by [16]. Moreover, this is not even the first paper which deals with the simulation of
boolean gates and circuits by biologically inspired models of computation: for instance, in
[23] a model for simulating boolean circuits (composed by and, or and not gates) with
DNA algorithms is proposed, in [10] the same goal is reached using finite splicing, and in
[9] some P systems that simulate boolean circuits are presented. In [32], the ideas found
in [9] are applied to tissue P systems. Finally we also mention [17], where a biomolecular
implantation of logically reversible computation using short strands of DNA as input and
output lines of a Fredkin gate is demonstrated, and a method to connect Fredkin gates in
order to create more complicated genetic networks is described.

The paper is organized as follows. In section 2 we recall some basic notions on conserva-
tive logic and the Fredkin gate. In section 3 we introduce the basic version of energy–based
P systems, where energy is only associated to symbol objects with the requirement that
for each rule the amount of energy occurring on the left side is the same as the amount of
energy occurring on the right side. Conservative energy–based P systems are also intro-
duced. In section 4 we show how the Fredkin gate can be simulated using this kind of P
systems. In section 5 we propose some extensions to our model together with some open
problems. Section 6 concludes the paper with further directions for future research.

293

2 Conservative Logic and the Fredkin Gate

Conservative logic is a mathematical model of computation based upon the so called
Fredkin gate, a three–input/three–output boolean gate originally introduced by Petri in
[31] whose input/output map fg : {0, 1}3 → {0, 1}3 associates any input triple (x1, x2, x3)
with its corresponding output triple (y1, y2, y3) as follows:

y1 = x1

y2 = (¬x1 ∧ x2) ∨ (x1 ∧ x3)
y3 = (x1 ∧ x2) ∨ (¬x1 ∧ x3)

(1)

Table 1 shows the truth table of the Fredkin gate. A useful point of view is that the Fredkin

x1 x2 x3 7→ y1 y2 y3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Table 1: Truth table of the Fredkin gate

gate behaves as a conditional switch (see Figure 1): that is, FG(1, x2, x3) = (1, x3, x2) and
FG(0, x2, x3) = (0, x2, x3) for every x2, x3 ∈ {0, 1}. In other words, x1 can be considered
as a control input whose value determines whether the input values x2 and x3 have to be
exchanged or not.

1

a

b

1

EXC
b

a

0

a

b

0

Id
a

b

Figure 1: The Fredkin gate as a conditional switch

The Fredkin gate is functionally complete for Boolean logic: in fact, by fixing x3 = 0
we get y3 = x1 ∧ x2, whereas by fixing x2 = 1 and x3 = 0 we get y2 = ¬x1.

The Fredkin gate is also reversible, that is, it computes a bijective map on {0, 1}3. As
we can see in Table 1, for every input/output pair the number of 1’s in the input triple is
the same as the number of 1’s in the output triple. In other words, the output triple is
obtained by applying an appropriate permutation to the input triple. Let us note that the
applied permutation is input–dependent: namely, if x1 = 1 then the applied permutation
is (2 3), whereas if x1 = 0 then the applied permutation is the identity. Indeed, fg
seems to be the most elementary input–dependent permutation which can be conceived.
In [11] Fredkin and Toffoli interpret the conservation of the number of 1’s between input

294

and output triples as the conservation of the amount of energy associated to the input
triple, thus assuming that two different triples having the same number of 0’s and 1’s
require the same amount of energy to be realized in a physical system. Let us note that
conservativeness is defined (both here and in [11]) as a mathematical notion; namely, it is
not required that the entire energy used to perform the computation is preserved, or that
the computing device be a conservative physical system (an ideal but unrealistic situation).
In particular, we do not consider the energy needed to actually perform the computation,
that is, to transform the input values into output values.

Basing upon these observations, Fredkin and Toffoli introduce a computational model
for reversible and conservative computations. Computations are performed by reversible
Fredkin circuits having the same number n of input and output lines. Under this con-
straint, the conservativeness requirement (preservation of the number of 1’s) is again
equivalent to the requirement that the output n-tuple is obtained by applying an appro-
priate (input–dependent) permutation to the input n-tuple. Here we just mention the fact
that every permutation can be written in a unique way (up to the order of factors) as a
composition of transpositions. This means not only that the Fredkin gate can be used to
build an appropriate circuit to perform any given conservative computation (and thus it
is universal also in this sense with respect to conservative computations), but also that
it is the most elementary conceivable operation that can be used to describe conservative
computations.

It is important to note that reversibility and conservativeness are two independent no-
tions: a function (computed by a gate or circuit) may be only reversible, only conservative,
both or none of them. However, for any function f : {0, 1}n → {0, 1}m it is possible to
build a new function fR : {0, 1}n+m → {0, 1}n+m such that fR is a bijection on the set
{0, 1}n+m and moreover:

∀x ∈ {0, 1}n fR(x, 0m) = (x, f(x)),

where 0m is the m-tuple consisting of all 0’s. The function fR is simply defined as follows:

∀x ∈ {0, 1}n, ∀ y ∈ {0, 1}m fR(x, y) = (x, y ⊕ f(x)),

where ⊕ denotes the bitwise xor operation. Hence, given a circuit that computes the
function f it is always possible to build a reversible circuit that, using some additional
input and output lines, is able to compute the values assumed by f on its last m output
lines.

Analogously, for any function f : {0, 1}n → {0, 1}m it is possible to build a conservative
function fC that computes the values assumed by f in its first m output bits. Precisely,
let us define the following quantities:

Of = max
{

0, max
x∈{0,1}n

{Em(f(x))−En(x)}
}

,

Zf = max
{

0, max
x∈{0,1}n

{En(x)− Em(f(x))}
}

.

Informally, Of (resp., Zf) is the maximum number of 1’s (resp., 0’s) in the output pattern
that should be converted to 0 (resp., 1) in order to make the function conservative. We
can thus define fC as an (n + Of + Zf)–input/(m + Of + Zf)–output function such that:

∀x ∈ {0, 1}n fC(x, 1Of
, 0Zf

) = (f(x), 1w(x), 0z(x)),

295

where 1k (resp., 0k) is the k–tuple consisting of all 1’s (resp., 0’s), and the pair
(1w(x), 0z(x)) ∈ {0, 1}Of+Zf is such that w(x) = Of + En(x)−Em(f(x)) and z(x) =
Zf − En(x) + Em(f(x)). Hence, we use some additional inputs (resp., outputs) in or-
der to provide (resp., remove) the required (resp., exceeding) energy that allows fC to
compute f in a conservative way.

It is also possible, for any given function f : {0, 1}n → {0, 1}m, to extend the reversible
function fR built above to a reversible and conservative function fRC by adding some
additional input and output bits. For the proof we refer the reader to [7].

In [6, 7, 22] conservativeness has been extended to reversible and non reversible gates
whose input and output lines may assume a finite number d of truth values. Some many–
valued extensions of the Fredkin gate have also been presented. By associating equispaced
energy levels to the truth values, the authors have shown that their notion of conserva-
tiveness corresponds to the energy conservation principle applied to the data which are
manipulated during the computation. In the same papers the notion of conservative com-
putation has been introduced, under the reasonable assumption that a gate may store, or
accumulate, some energy in its internal machinery. Moreover, a new NP–complete decision
problem concerning conservative computations has been defined. Some constant factor
approximation algorithms for an associated NP–hard optimization problem are currently
under examination.

3 Energy–Based P Systems

P systems (also called membrane systems) were introduced in [24] as a new class of dis-
tributed and parallel computing devices, inspired by the structure and functioning of cells.
The basic model consists of a hierarchical structure composed by several membranes, em-
bedded into a main membrane called the skin. Membranes divide the Euclidean space
into regions, that contain some objects (represented by symbols of an alphabet) and evo-
lution rules. Using these rules, the objects may evolve and/or move from a region to a
neighboring one. The rules are applied in a nondeterministic and maximally parallel way:
all the objects that may evolve are forced to evolve. A computation starts from an initial
configuration of the system and terminates when no evolution rule can be applied. The
result of a computation is the multiset of objects contained into an output membrane or
emitted from the skin of the system.

In what follows we assume that the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see [27]. The latest information
about P systems can be found on the Web page http://psystems.disco.unimib.it/.

In order to take into account the amount of energy used during computations, we
define a new model which we call energy–based P system. In this model, we consider a
special symbol e which denotes a free energy unit floating into regions; moreover, the rules
are defined accordingly to conservativeness considerations. We will show how this model
can be used to simulate the Fredkin gate.

Formally, an energy–based P system (of degree m ≥ 1) is a construct

Π = (A, ε, µ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout),

where:

• A is an alphabet; its elements are called objects;

296

• ε : A → R+ is a linear mapping that associates to each object a ∈ A the real
value ε(a) (also denoted by εa), which can be thought of as the “energy value of
a”. Precisely, if A = {a1, a2, . . . , ad} then for all i ∈ {1, 2, . . . , d} it holds ε(ai) =
ε(a1) + (i − 1)δ for an appropriate real value δ > 0. Hence, the energy values
considered in the system are equispaced by the quantity δ. Through an appropriate
rescaling, we can always assume that all energy values are positive integer values,
and that δ = 1;

• µ is a hierarchical membrane structure consisting of m membranes. For the sake
of clarity, we will label membranes with mnemonic identifiers which recall their
function;

• e 6∈ A is a special symbol that denotes one free energy unit, that is, one unit of
energy which is not embedded into any object;

• wi, for all i ∈ {1, . . . , m}, specify the multisets (over A ∪ {e}) of objects initially
present in region i;

• Ri, for all i ∈ {1, . . . ,m}, is a finite set of evolution rules over A associated with
region i. Only rules of the following types are allowed:

aek → (b, p) , a → (b, p)ek , e → (e, p),

where a, b ∈ A, p ∈ {here, in(name), out} and k is a non negative integer;

• iin is an integer between 1 and m and specifies the input membrane of Π;

• iout is an integer between 0 and m and specifies the output membrane of Π. If
iout = 0, then the environment is used for the output, that is, the output value is
the multiset of objects (over A) emitted from the skin.

A special attention is due to the definition of rules. The meaning of rule aek → (b, p),
with a, b ∈ A, p ∈ {here, in(name), out}, and k a positive integer number, is the following:
the object a, in presence of k free energy units, is allowed to be transformed into object b.
If p = here then the new object b remains in the same region; if p = out then b exits from
the current membrane. Finally, if p = in(name) then b enters into the membrane labelled
with name, which must be a child of the current membrane in the membrane hierarchy.

The meaning of rule a → (b, p)ek, when k is a positive integer number, is analogous.
The object a is allowed to be transformed into object b by releasing k units of free energy.
As above, the new object b may optionally move one level up or down into the membrane
hierarchy. The k free energy units can now be used by another rule to produce “more
energetic” objects from “less energetic” ones.

When k = 0 the rule aek → (b, p) is written as a → (a, p), and simply moves (if p 6=
here) the object a upward or downward into the membrane hierarchy, without acquiring
nor releasing any free energy unit. Analogously, rules e → (e, p) simply move (if p 6= here)
one unit of free energy upward or downward into the membrane hierarchy.

A further constraint for the definition of rules is that each rule must be “conservative”,
in the sense that the amount of energy occurring on the left side of the rule must be the
same as the amount of energy which occurs on the right side.

With a little abuse of notation, when the pair (x, p), with x ∈ A ∪ {e} and p ∈
{here, in(name), out}, appears into a rule we will write xp. Also, if p = in(name) and no

297

confusion arises we will usually write just the name of the membrane. Moreover, instead
of writing ek we will sometimes explicitly write k instances of e. It is also understood that
the position of ek (that is, on the left or on the right of the symbol of A) either into the
left or into the right side of a rule is uninfluent. Finally, when the position p of an object
which occurs in the right side of a rule is “here” we will omit to write it.

Example 3.1 Let us assume A = {a, b, c, d}, where the objects have energy values εa = 1,
εb = 2, εc = 3 and εd = 4. Then the rule be2 → (d, out) (also written as bee → dout)
transforms an instance of the object b into an instance of the object d, provided that two
free energy units are available, and makes the new object d leave the current membrane.

On the other hand, the rule c → (a, here)e2 (also written as c → aee) transforms an
instance of the object c into an instance of the object a and releases two free energy units
into the region in which the rule is defined.

A configuration of Π is the collection {M1, . . . , Mm} of multisets (over A ∪ {e})
of objects contained in each region of the system. {w1, . . . , wm} is called the ini-
tial configuration. For two configurations {M1, . . . , Mm}, {M ′

1, . . . , M
′
m} of Π we

write {M1, . . . , Mm} ⇒ {M ′
1, . . . , M

′
m} to denote a transition from {M1, . . . , Mm} to

{M ′
1, . . . , M

′
m}, that is, the parallel application of one or more rules of the system. The

reflexive and transitive closure of ⇒ is denoted by ⇒∗. A final configuration is a configu-
ration where no rule can be applied.

A computation is a sequence of transitions between configurations of Π, starting from
the initial configuration. A computation is successful if and only if it reaches a final
configuration or, in other words, it halts. It is understood that the multiset (over A, that
is, not considering free energy units) of objects which occur in wiin are the input values for
the computation. Analogously, the multiset (over A) of objects occurring in the output
membrane (or emitted from the skin if iout = 0) in the final configuration is the output of
the computation. A non–halting computation produces no output.

Since energy is an additive quantity, it is natural to define the energy of a multiset as
the sum of the amounts of energy associated to each instance of the objects which occur
into the multiset. Analogously, the energy of a configuration is the sum of the amounts
of energy associated to each multiset which occurs into the configuration. A conservative
computation is a computation where each configuration has the same amount of energy.
A conservative energy–based P system is an energy–based P system that performs only
conservative computations.

4 Simulating the Fredkin Gate with Energy–Based
P Systems

In this section we show how P systems, and specifically the energy–based variant intro-
duced in the previous section, can be used to simulate a Fredkin gate.

When trying to simulate a Fredkin gate with a P system, perhaps the simplest idea
is to associate a symbol to each possible input/output triple as shown in the table on
the left side of Figure 2. Then, the gate is trivially simulated as shown on the right
side of the same figure: when a symbol corresponding to the input triple is injected into
the skin of the P system, in one step the symbol corresponding to the output triple is
expelled into the environment. However, this method is not suitable to simulate circuits
composed by Fredkin gates. In fact, consider for instance the circuit in Figure 3. The

298

Triple Symbol
(0, 0, 0) a
(0, 0, 1) b
(0, 1, 0) c
(0, 1, 1) d
(1, 0, 0) e
(1, 0, 1) f
(1, 1, 0) g
(1, 1, 1) h

FG

a a out

b out

c out

d out

e e out

f g out

g f out

h h out

b

c

d

Figure 2: A trivial simulation of the Fredkin gate with a P system. To each possible
input/output triple of the gate is associated a symbol of the alphabet

x

x

x

x

x

2

3

4

5

6

1

2

3

x1 y1

y2

y3

y4

y5

y6

Figure 3: A 6–input/6–output Fredkin circuit composed by three gates

symbol corresponding to the input triple of gate number 3 depends upon the symbols
corresponding to the output triples of both gates 1 and 2. It is immediately seen that the
output symbols of a layer of a Fredkin circuit cannot be immediately used as an input to
the next layer: instead, a non trivial transformation is required.

An alternative approach, that solves the previous problem, is to use an energy–based
P system as defined in the previous section. The system has 18 objects, with integer
energies going from 1 to 18. However, we actually use only 12 objects: precisely, those
having energies from 1 to 10 and those having energies 17 and 18. The objects having
energies from 11 to 16 never appear into the system. These choices are made in order
to have objects with distinct energies and to guarantee conservativeness. For the sake of
clarity, we denote the 12 objects used into the system by [b, j] and [b′, j], with b, b′ ∈ {0, 1}
and j ∈ {1, 2, 3}. Intuitively, [b, j] and [b′, j] indicate the boolean value which occurs in
the j-th line of the Fredkin gate. It will be clear from the simulation that we need two
different symbols to represent each of these boolean values. The energies are associated to
the objects as illustrated in Table 2. In Figure 4 the energy–based P system that simulates
the Fredkin gate is depicted.

The simulation proceeds as follows. The input values [x1, 1], [x2, 2], [x3, 3], with
x1, x2, x3 ∈ {0, 1}, are injected into the skin. If x1 = 0 then the object [0, 1] enters
into membrane id, where it is transformed to the object [0′, 1] by releasing 8 units of en-
ergy. The object [0′, 1] leaves membrane id and waits for 8 energy units to transform back

299

Object Energy
[0, 1] 17
[1, 1] 18
[0, 2] 1
[1, 2] 2
[0, 3] 3
[1, 3] 4

Object Energy
[0′, 1] 9
[1′, 1] 10
[0′, 2] 5
[1′, 2] 6
[0′, 3] 7
[1′, 3] 8

Table 2: Association between objects and energies in the energy–based P system that
simulates a Fredkin gate

FG

[0,1]
ID

ID
[b,2] [b,2]

[0,1]

ID

EXC

[b,3] [b,3]

[b,3] [b,3]

[b’,1]ee [b,1] out

[b’,2] e[b,2] out

oute[b,3][b’,3]

[1,1] [1,1]
EXC

EXC
[b,2] [b,2]

EXC

ID

[b,2]e
out

[b’,3]

[b,3]e
out

[b’,2]

[b,2] [b,2]
out

out
[b,3] [b,3]

[1,1]
out

[1’,1] ee

[b,2]e
out

[b,3]e
out

[b,2] [b,2]
out

out
[b,3] [b,3]

out
[0,1] [0’,1] ee

[b’,2]

[b’,3]

Figure 4: Simulation of the Fredkin gate with an energy–based P system

to [0, 1] and leave the system. The objects [x2, 2] and [x3, 3], with x2, x3 ∈ {0, 1}, may
enter nondeterministically either into membrane id or into membrane exc; however, if
they enter into exc they cannot be transformed to [x′2, 3] and [x′3, 2] since in exc there are
no free energy units. Thus the only possibility for objects [x2, 2] and [x3, 3] is to leave exc
and choose again between membranes id and exc in a nondeterministic way. Eventually,
after some time they enter (one at the time or simultaneously) into membrane id. Here
they have the possibility to transform to [x′2, 2] and [x′3, 3] respectively, using the 8 units
of free energy which occur into the region enclosed by id (alternatively, they have the
possibility to leave id and choose nondeterministically between membranes id and exc
once again). When the objects [x′2, 2] and [x′3, 3] are produced they immediately leave id,
and are only allowed to transform back to [x2, 2] and [x3, 3] respectively, releasing 8 units
of energy. The objects [x2, 2] and [x3, 3] just produced leave the system, and the 8 units
of energy can only be used to transform [0′, 1] back to [0, 1] and expel it from the skin.

On the other hand, if x1 = 1 then the object [1, 1] enters into membrane exc where
it is transformed into the object [1′, 1] by releasing 8 units of energy. The object [1′, 1]
leaves the membrane exc and waits for 8 energy units to transform back to [1, 1] and leave
the system. Once again the objects [x2, 2] and [x3, 3], with x2, x3 ∈ {0, 1}, may choose

300

nondeterministically to enter either into membrane id or into membrane exc. If they
enter into id they can only exit again since in id there are no free energy units. When
they enter into exc they can be transformed to [x′2, 3] and [x′3, 2] respectively, using the
8 free energy units which occur into the region, and leave exc. Now objects [x′2, 3] and
[x′3, 2] can only transform to [x2, 3] and [x3, 2] respectively, and leave the system. During
this transformation 8 free energy units are produced; these can only be used to transform
[1′, 1] back to [1, 1], which leaves the system.

Since we have explicitly indicated the position of each boolean value in the input and
output triples, it is easy to rearrange the values produced as the output of a given layer
of a circuit in order to produce the input values for the next layer. Such transformations
can be made by a P system which uses very simple rules.

Let us note that the proposed P system is conservative: the amount of energy present
into the system remains constant during each computation. Precisely, the number of
energy units present into the system (both free and embedded into objects) during a
computation is 21 plus the number of 1’s contained into the input triple of the simulated
Fredkin gate. Notice also that the energy of every possible output triple is the same
as the energy of the input triple that generated it. The system is also reversible: it
is immediately seen that if we inject into the skin the output triple just produced as
the result of a computation, the system will expel the corresponding input triple. This
behavior is trivially due to the fact that the Fredkin gate is self–reversible, meaning that
fg ◦ fg = id3 (equivalently, fg = fg−1), where id3 is the identity function on {0, 1}3.
Notice that, in general, this property does not hold for the functions f : {0, 1}n → {0, 1}n

computed by n–input/n–output Fredkin circuits. Indeed, f is self–reversible if and only if
the permutation it applies on the set {0, 1}n can be expressed as a composition of pairwise
disjoint transpositions. This means that in general the P system that simulates a given
Fredkin circuit must be appropriately designed in order to be itself reversible.

If we drop the assumption that different objects in the system must possess different
amounts of energy, we can reduce the number of different objects in the system that
simulates the Fredkin gate. In the new system, depicted in Figure 5, there are 12 objects.
Every object of the kind [b, j], with b ∈ {0, 1} and j ∈ {1, 2, 3}, has energy equal to 3,
whereas the objects [b′, 1] have energy equal to 1 and the objects [b′, 2] and [b′, 3] (with
b′ ∈ {0, 1}) have energy equal to 4.

Also this system is reversible and conservative. Precisely, when the gate doesn’t per-
form any computation the total amount of energy into the system is zero, whereas during
computations the system contains the 9 energy units which have been injected with the
input values. At the end of the computation, all these energy units are embedded into the
output values. This last simulation is the base upon which we plan to build energy based
P systems which simulate Fredkin circuits. This work is still in progress; the results will
be published in the near future.

We conclude this section with an observation concerning the use of the special symbol
e. In [9] it is shown how P systems can be used to simulate boolean circuits composed
by the gates and, or and not. The simplest simulation uses context–free (cooperative)
rules. In order to avoid context–free rules mobile catalysts are introduced, with or without
the use of promoters and of weak priorities between rules. Here we note that the use of
free energy units, as we have done to simulate the Fredkin gate, seems to be equivalent to
the assumption that e is the only symbol that may cooperate with all the other symbols.
In other words, we do not allow generic cooperative rules but only those with the special
symbol e 6∈ A cooperating with any symbol of A. On the other hand, it seems that

301

FG

[0,1]
ID

ID
[b,2] [b,2]

[0,1]

ID

EXC

[b,3] [b,3]

[b,3] [b,3]

[b,1] out

[b’,2]

e [b,3][b’,3]

[1,1] [1,1]
EXC

EXC
[b,2] [b,2]

EXC

ID

[b,2]e

[b,3]e

[b,2] [b,2]
out

out
[b,3] [b,3]

[1,1]
out

[1’,1] e

[b,2]e

[b,3]e

[b,2] [b,2]
out

out
[b,3] [b,3]

out
[0,1] [0’,1] e

[b’,1]e8

e [b,2] out

out

4

4

8

out

out

[b’,3]

[b’,2]

6

2

8

out

out

[b’,2]

[b’,3]4

4

Figure 5: Another simulation of the Fredkin gate with an energy–based P system. Here we
drop the assumption that different objects in the system must possess different amounts
of energy

cooperation is necessary to simulate the Fredkin gate, since the value of the second and
third output lines of the gate depend upon all three input values. Cooperation is also
necessary for the and and or gates, although the fact that their output value only depends
upon the number of 1’s given in input would seem an evidence of the contrary. For if this
were not true, then we could easily build a Fredkin gate using and, or and not gates,
according to equations (1), and realize a cooperative behavior without using cooperation.

Let us note also that in case of necessity (for example, during proofs) we can safely
assume that for each rule at most one instance of e cooperates with a symbol of the alpha-
bet. In fact, any rule of the kind a → (b, p)ek, with a, b ∈ A and p ∈ {here, in(name), out},
involving k instances of e, can be decomposed as follows:

a → (b1, here)e
b1 → (b2, here)e

...
bk−2 → (bk−1, here)e
bk−1 → (b, p)e

by introducing into the alphabet the new symbols b1, . . . , bk−1. An analogous observation
holds for rules of the kind aek → b.

5 Some Possible Extensions of the Model,
and Corresponding Open Problems

The model of energy–based P system introduced in section 3 can be extended in many
ways. All the features mentioned below can be introduced independently of each other. Of

302

course, for each possible extension we advocate the study of the computational capabilities
of the resulting model of computation, as well as of the algebraic and language–theoretic
properties of the generated multiset languages.

As a first extension, we can assume that every membrane and every rule possesses a
given amount of energy. The only use of membrane energy we are able to imagine is that
membranes may act as energy reservoirs. This means that membranes can incorporate
free energy units in their internal structure and subsequently release them. We can also
assume that a membrane must possess a positive amount of energy in order to exist;
in other words, we can assume that when the energy of a membrane becomes zero the
membrane dissolves. In the case an output membrane is used (that is, when iout 6= 0) it
seems reasonable to assume that such a membrane cannot dissolve, that is, that it cannot
release all its internal energy. Moreover, an interesting constraint could be putting a fixed
upper bound on the energy that a membrane can embed. A further constraint could
be to divide objects and membranes into types, for example based upon morphological
characteristics, and to allow the system to exchange energy only between objects (and/or
membranes) of the same type. As for the energy associated to rules, we can assume that
every rule is defined together with a fixed threshold value. If the energy of the rule does
not reach this value then the rule is inactive. This means that even if all the objects
mentioned in the left side of the rule are available, the rule cannot be applied until enough
free energy units become available to allow the threshold to be reached.

Two open problems concerning energy associated to membranes and/or to rules are
the following: are this kind of energy–based P systems able to simulate in an efficient way
P systems which use priorities in their rules? Is it possible to give an efficient simulation
of P systems whose membranes have an associated thickness or polarization, as defined in
[35, 34]?

Another possible extension of the model could be allowing the use of constructor and
destructor rules. A constructor rule is a rule of the kind ek → (a, p), where a ∈ A, εa = k,
p ∈ {here, in(name), out} and k is a positive integer. Informally, a constructor rule for
an object a ∈ A is a rule which uses εa free energy units to build the object a. In other
words, we allow transformations from “pure” energy to system objects. Analogously, a
destructor rule is a rule of the kind a → ek, where a ∈ A and εa = k (a positive integer).
Hence, a destructor rule for an object a ∈ A is a rule which transforms the object a into
εa units of free energy.

We can define the total energy of an energy–based P system as follows. As in the basic
version, the energy of a multiset is simply the sum of the amounts of energy associated to
each instance of the objects which occur into the multiset. The total energy of a membrane
is the sum of the energies associated to the multisets contained into the region enclosed
by the membrane, plus the energies associated to the rules of the region, plus the amount
of energy embedded into the membrane itself. It is understood that the total energy of a
membrane i comprises the sum of total energies of the membranes contained in i in the
hierarchy µ. The total energy of a P system can thus be defined as the total energy of the
skin.

Where does the energy come from? We assume that there is an external (with respect
to the skin) reservoir of energy that injects free energy units into the skin at a constant
rate. The computation halts when there is no rule which can be applied, even in presence
of additional free energy. A natural question is whether this last additional constraint is
necessary. In other words, are systems defined with and without this additional condition
equivalent with respect to generated multiset languages? Stated otherwise: for any given

303

system which does not satisfy this condition, can we build a system which satisfies it and
yet generates the same multiset language? Notice that if the above halting condition should
prove too bothersome to deal with, we can alternatively assume that a computation halts
when a given condition is verified, for example, when an object enters an acknowledgment
membrane, as it happens in conformon–P systems [13].

An interesting situation arises when we associate a clock to the external energy reser-
voir, so that one energy unit is injected into the system at each clock tick. In this situation
objects and membranes are usually quiescent, that is they do not evolve, because they do
not have enough energy to do it. The unit of energy coming from the reservoir allows
to apply at most one evolution rule at the time. This fact leads us to define “serial” P
systems, as opposed to the usual parallel models. An interesting issue could be the com-
parison between the computational properties of serial and parallel P systems. Can they
always be simulated each other?

A further aspect of controlling the amount of energy injected into the system by the
external reservoir is the following. By assuming that at each clock tick a fixed number
of energy units is injected into the system, we are somehow imposing a constraint on the
level of parallelism of the system. However, this assumption should be considered with
care since the application of rules may free some energy units that move into the system
and temporarily rise the level of parallelism. As a consequence, the computational power
of this kind of systems could become really hard to explore.

Due to the number of constraints and parameters we have introduced into our model,
it could be difficult to study their computational behavior and/or deduce interesting prop-
erties. Hence we propose to start to study energy–based P systems basing upon a simpler
model, namely P systems with symport/antiport rules. In these systems the objects can-
not be modified but only moved between regions. Moreover, we can first assume that the
application of rules does not consume energy, and that there is no energy embedded into
the internal structure of membranes. Subsequently, we could study how the introduction
of these features alter the computational behavior of the corresponding systems.

As for the computational power of energy–based P systems we propose the introduction
of languages which can be generated using a bounded (fixed, logarithmic, polynomial, etc.)
amount of energy, and the subsequent investigation of the properties of these languages. A
second proposal concerns the introduction of conservative energy–based P systems and the
study of their computational properties. A natural measure of the energy used by a system
is the amount of energy which is injected into the system by the external reservoir. Notice
that in the case of P systems with symport/antiport rules with just one symbol into the
alphabet, this complexity measure is the same as the number of objects which enter into
the system. The measure becomes less trivial even for P systems with symport/antiport
rules having at least two kinds of objects. Eventually, some free energy units remain into
the system at the end of the computation: can this situation be avoided? It is not clear
to the authors whether this amount of energy should be considered as “consumed” energy
or whether it can be expelled from the skin and thus “recovered”. In the latter situation,
we could define conservative energy–based P systems as systems that, at the end of the
computation, have emitted the same quantity of energy that entered the system during
the computation.

A different approach to study the computational power of energy–based P systems is to
define families {Pn}n∈N of energy–based P systems, where Pn uses n units of energy. Then,
we can define the language generated by {Pn}n∈N as

⋃
n∈N Ln, where Ln is the language

generated by Pn. This approach is reminiscent of circuit complexity [33]. Moreover, having

304

defined both an input and an output membrane, we can view energy–based P systems as
devices which map multisets into multisets. With respect to this point of view, instead
of asking what multisets can be generated by the system we can ask what mappings can
be realized by imposing different bounds on the amount of resources that the system is
allowed to use.

A powerful approach to study the properties of any computational model is to look at
the amount of resources which are needed to simulate it using another model of computa-
tion. In particular, it seems that simulations with counter machines are a powerful tool to
study P systems. We think that counter machines should be the reference model also for
energy–based P systems. In particular, it seems natural to think that the energy levels of
objects, rules and membranes can be simulated by values contained into counters. Does
this mean that energy bounded computations correspond to computations performed by
counter machines with bounds on the values of their counters?

Finally, we propose to compare the properties of our model with the properties of
conformon–P systems introduced by Frisco [13] (see also [14] and [15]). Notice that our
approach in the use of energy is slightly different from the one followed in [13]: in that
paper, energy is a feature of objects (named conformons) whereas in our model the amount
of energy embedded into an object determines the type of the object, since there is a
bijective correspondence between objects and the amounts of energy they embed.

6 Conclusions and Directions for Future Work

In this paper we have defined a basic version of energy–based P systems, that is, P systems
in which the amount of energy manipulated during computations is taken into account.
We have also defined the notion of conservative energy–based P system.

Two simulations of the Fredkin gate have been presented using this new model of com-
putation. The P systems that perform the simulation turn out to be themselves reversible
and conservative as the Fredkin gate. Subsequently we have proposed some possible ex-
tensions to the model, with a number of open problems concerning their computational
power.

The next logical step in our work is to simulate reversible Fredkin circuits using our
basic version of energy–based P systems. Our guess is that the simulating P system can
be made both reversible and conservative. Here reversible means that, if the output values
of the Fredkin circuit are given, the same system is able to compute the corresponding
input values.

Acknowledgments. The present paper has been inspired by [9] and by a question
posed by Fernando Sancho Caparrini during the Second Brainstorming Week held in Seville
from the 1st to the 7th of February 2004.

We are also indebted with Pierluigi Frisco for stimulating discussion about energy–
based P systems, conformons, and reversibility.

References

[1] G. Alford. Membrane systems with heat control. In Pre–Proceedings of the Workshop
on Membrane Computing, Curtea de Arges, Romania, August 2002. Available at:
http://psystems.disco.unimib.it/

305

[2] J.D. Bekenstein. Energy cost of information transfer. Physical Review Letters,
46(10):623–626, 1981.

[3] P. Benioff. Quantum mechanical models of Turing machines that dissipate no energy.
Physical Review Letters, 48(23):1581–1585, 1982.

[4] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17:525–532, November 1973.

[5] J. Castellanos, G. Păun, A. Rodriguez–Paton. P systems with work objects. In IEEE
7th International Conference on String Processing and Information Retrieval, SPIRE
2000, La Coruna, Spain, 2000, pp. 64–74. See also CDMTCS Technical Report 123,
University of Auckland, 2000. Available at: http://www.cs.auckland.ac.nz/CDMTCS

[6] G. Cattaneo, G. Della Vedova, A. Leporati, R. Leporini. Towards a theory of conser-
vative computing. Accepted on International Journal of Theoretical Physics. Preprint
available at http://arxiv.org/abs/quant-ph/0211085, November 2002.

[7] G. Cattaneo, A. Leporati, R. Leporini. Fredkin gates for finite–valued reversible and
conservative logics. Journal of Physics A: Mathematical and General, 35:9755–9785,
November 2002.

[8] G. Cattaneo, A. Leporati, R. Leporini. Quantum conservative gates for finite–valued
logics. Accepted on International Journal of Theoretical Physics, 2001.

[9] R. Ceterchi, D. Sburlan. Simulating Boolean circuits with P systems. In Mem-
brane Computing, Proceedings of the International Workshop WMC 2003, Tarrag-
ona, Spain, July 2003, Lecture Notes in Computer Science 2933, Springer, 2003, pp.
104–122.

[10] K. Erk. Simulating Boolean circuits by finite splicing. In Proceedings of the Congress
on Evolutionary Computation, 2(6-9):1279–1285, IEEE Press, 1999.

[11] E. Fredkin, T. Toffoli. Conservative logic. International Journal of Theoretical
Physics, 21(3-4):219–253, 1982.

[12] R. Freund. Energy–controlled P systems. In Membrane Computing, Proceedings of
the International Workshop WMC–CdeA 2002, Curtea de Arges, Romania, August
2002, Lecture Notes in Computer Science 2597, Springer, 2002, pp. 247–260.

[13] P. Frisco. The conformon–P system: a molecular and cell biology–inspired com-
putability model. Theoretical Computer Science, 312:295–319, 2004.

[14] P. Frisco, S. Ji. Info–energy P systems. In Proceedings of DNA 8, Eighth International
Meeting on DNA Based Computers, Hokkaido University, Japan, June 2002.

[15] P. Frisco, S. Ji. Towards a hierarchy of conformons–P systems. In Membrane Comput-
ing, Proceedings of the International Workshop WMC–CdeA 2002, Curtea de Arges,
Romania, August 2002, Lecture Notes in Computer Science 2597, Springer, 2002, pp.
302–318.

306

[16] S. Ji. The Bhopalator: An information/energy dual model of the living cell. In Pre–
Proceedings of the Workshop on Membrane Computing, Curtea de Arges, Romania,
August 2001, Technical Report 17/01 of Research Group on Mathematical Linguistics,
Rovira i Virgili University, Tarragona, Spain, 2001, pp. 123-142 and Fundamenta
Informaticae, 49(1-3):147–165, 2002.

[17] J.P. Klein, T.H. Leete, H. Rubin. A biomolecular implementation of logically re-
versible computation with minimal energy dissipation. Biosystems 52:15–23, 1999.

[18] R. Landauer. Irreversibility and heat generation in the computing process. IBM Jour-
nal of Research and Development, 5:183–191, 1961.

[19] R. Landauer. Uncertainty principle and minimal energy dissipation in the computer.
International Journal of Theoretical Physics, 21(3-4):283–297, 1982.

[20] M. Madhu, K. Krithivasan. P systems with membrane creation: Universality and ef-
ficiency. In M. Margenstern, Y. Rogozhin (Eds.), Machines, Computations, and Uni-
versality, Proceedings of the Third International Conference, MCU 2001, Chisinau,
Moldavia, May 2001, Lecture Notes in Computer Science 2055, Springer, 2001, pp.
276–287.

[21] C. Martin–Vide, V. Mitrana. P Systems with valuations. In I. Antoniou, C. S. Calude,
M. J. Dinneen (Eds.), Unconventional Models of Computation, UMC’2K, Solvay In-
stitutes, Brussels, December 2000, DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science, Springer, 2000, pp. 154–166.

[22] G. Mauri, A. Leporati. On the computational complexity of conservative computing.
In Proceedings of the 28th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2003), Lecture Notes in Computer Science 2747, Springer–
Verlag Heidelberg, 2003, pp. 92–112.

[23] M. Ogihara, A. Ray. Simulating Boolean circuits on a DNA computer. Technical
Report 631, 1996. Available at: http://citeseer.nj.nec.com/ogihara96simulating.html

[24] G. Păun. Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143, 2000. See also Turku Centre for Computer Science — TUCS Report
No. 208, 1998. Available at: http://www.tucs.fi/Publications/techreports/TR208.php

[25] G. Păun. Computing with membranes. An introduction. Bulletin of the EATCS,
67:139–152, February 1999.

[26] G. Păun. Computing with membranes. A variant: P systems with polarized mem-
branes. International Journal on Foundations of Computer Science, 11(1):167–182,
2000. See also CDMTCS Technical Report 098, University of Auckland, 1999. Avail-
able at: http://www.cs.auckland.ac.nz/CDMTCS

[27] G. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.

[28] G. Păun, G. Rozenberg. A guide to membrane computing. Theoretical Computer
Science, 287(1):73–100, 2002.

[29] G. Păun, Y. Suzuki, H. Tanaka. P Systems with energy accounting. International
Journal Computer Math., 78(3):343–364, 2001.

307

[30] G. Păun, T. Yokomori. Membrane computing based on splicing. In E. Winfree,
D. K. Gifford (Eds.), Proceedings of the 5th DIMACS Workshop on DNA Based
Computers, Massachusetts Institute of Technology, Cambridge, MA, USA, June 1999,
American Mathematical Society, 1999, pp. 213–227.

[31] C. A. Petri. Gründsatzliches zur Beschreibung diskreter Prozesse. In Proceedings
of the 3 rd Colloquium über Automatentheorie (Hannover, 1965), Birkhäuser Verlag,
Basel, 1967, pp. 121–140. English translation: Fundamentals of the Representation
of Discrete Processes, ISF Report 82.04, 1982.

[32] V. J. Prakash, K. Krithivasan. Simulating Boolean circuits with tissue P systems.
Manuscript, 2004.

[33] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer–
Verlag, 1999.

[34] C. Zandron, C. Ferretti, G. Mauri. Using membrane features in P systems. Romanian
Journal of Information Science and Technology, 4(1-2):241–257, 2001.

[35] C. Zandron, G. Mauri, C. Ferretti. Universality and normal forms on membrane sys-
tems. In R. Freund, A. Kelemenova (Eds.), Proceedings of the International Workshop
on Grammar Systems, July 2000, Bad Ischl, Austria, 2000, pp. 61–74.

308

