
Deductive Databases and P Systems

Miguel Angel GUTIÉRREZ-NARANJO

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: magutier@us.es

Vladimir ROGOZHIN

The State University of Moldova
60 Mateevich str., MD-2009

Chişinău, Moldova E-mail: rv@math.md

Abstract. In computational processes based on backwards chaining, a rule
of the type A ← B1, . . . , Bn is seen as a procedure which points that the
problem A can be split into the problems B1, . . . , Bn. In classical devices,
the subproblems B1, . . . , Bn are solved sequentially. In this paper we present
some questions that circulated during the Second Brainstorming Week related
to the application of the parallelism of P systems to computation based on
backwards chaining, and we illustrate them with the example of inferential
deductive process.

1 Introduction

In computational processes based on backwards chaining, a rule of the type A ←
B1, . . . , Bn is usually seen as a procedure which points that the problem A can be split
into the problems B1, . . . , Bn with the hope that B1, . . . , Bn are simpler than A. In the
case of getting B1, . . . , Bn solved, we also have a solution for A via this rule.

This is the case of pure Prolog [2, 10] where A ← B1, . . . , Bn is a definite clause and
A, B1, . . . , Bn are positive literals. Prolog uses SLD resolution to find an answer to the goal
A, with SLD coming from Linear resolution for Definite clauses with Selection function.
This selection function considers sequentially the list of current subgoals B1, . . . , Bn and
chooses one of them (in standard Prolog the selection function always takes the leftmost
literal). The process of finding an answer for the chosen subgoals generates new subgoals,
hopefully simpler than the previous one. The computation ends when trivial subgoals are
reached.

The selection mapping is necessary because classic computational devices work sequen-
tially, so we need to fix an order between the tasks.

In this paper we present some questions that circulated during the Second Brainstorm-
ing Week related to the application of the parallelism of P systems to the computation
based on backwards chaining.

258

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51399062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Logic Programming

Although the computation based on backwards chaining is a general procedure in computer
science, we focus our attention on Deductive Databases and Logic Programming.

The way of representing information in Logic Programming (see, e.g., [1, 3, 6, 8, 4]) is
via a set of clauses. These sets of clauses are logic programs. Roughly speaking, a clause
is a first-order rule, where both sides of the rule consists of atoms, i.e., a predicate applied
to some arguments. Formally, a clause is a formula

∀x1 . . .∀xsA1 ∨ . . . Ak ∨ ¬B1 ∨ · · · ∨ ¬Bn,

where x1, . . . , xs are all the variables that occur in the atoms A1, . . . , Ak, B1, . . . , Bn. A
clause 1 is a Horn clause if it contains at most one positive literal (atom) and it is a definite
clause if it contains exactly one positive literal. For example

∀X∀Y daughter(X, Y) ∨ ¬female(X) ∨ ¬mother(Y, X)

is a definite clause. This universally quantified formula is usually written as

daughter(X,Y) ← female(X),mother(Y, X).

The positive literal, i.e. the conclusion of the implication is usually called the head of the
clause. The rest of the literals, the premises, is known as the body or the tail of the clause.
Definite clauses can consist on a single positive literal. They can be considered as rules
with no tail or no conditional sentences, such as

female(anne) ←
mother(mary, anne) ←

These clauses are facts. A substitution θ = {V1/t1, . . . , Vn/tn} is an assignment of terms ti
to variables Vi. If a substitution is applied to a clause, then we get an instantiated clause,
where all occurrences of the variable Vi is replaced by the term ti. For example, if the
substitution θ = {X/anne} is applied to the clause C:

daughter(X,Y) ← female(X),mother(Y, X),

then we get the clause Cθ:

daughter(anne, Y) ← female(anne), mother(Y, anne).

A substitution θ is a unifier of the atoms A and B if Aθ = Bθ.
Logic programs compute through a combination of two mechanisms: unification and

resolution. From any two clauses with complementary literals A and ¬A the inference rule
of resolution derives a new clause as consequence. For example, from

daughter(anne, Y) ← female(anne),mother(Y, anne)
female(anne) ←

we obtain the clause daughter(anne, Y) ← mother(Y, anne). The deduction process is
goal driven in the following way. If we have the program

daughter(X, Y) ← female(X),mother(Y,X)
female(anne) ←
mother(mary, anne) ←

1The basic difference between program clauses and database clauses is the use of types.

259

and we want to know if daughter(anne,mary) is true, first we build the goal

← daughter(anne,mary),

i.e., the one-literal clause ¬daughter(anne,mary). The atoms daughter(anne,mary) and
daughter(X, Y) unifies with the substitution θ = {X/anne, Y/mary}. By using resolution
with the first clause of the program and the unifier θ we get the new goal

← female(anne),mother(mary, anne).

As we saw before, this step can be seen in a procedural mode. The problem of de-
ciding if daughter(anne,mary) is true has been split into two subproblems: Decide if
female(anne) and mother(mary, anne) are true or not. But they are true because they
are claimed by our program, so daughter(anne, mary) is true.

When the reasoning system solves the goal Q it gives us an answer. There are two
types of outputs given by the system with respect to the type of the goal Q:

1. If the goal does not contain variables, then we have a decision problem, and the
possible answers are Yes or No. In this case the system decides if the goal can be or
not derived form the program.

2. If the goal contains variables, then the system outputs the unifier θ such that the
instantiated goal Qθ can be derived from the problem. This unifier represents the
answer to the question, and obviously several unifications θ that make the goal Qθ
true can exist.

In our example, we deal with a decision problem. After the first step the subgoals
female(anne) and mother(mary, anne) have to be solved. This is done sequentially in
classical devices with only one processor. We wonder whether it is possible to use P systems
for these problems. We think that it would be very interesting to use the parallelism of P
systems to solve all subgoals in a parallel manner.

3 P Systems

Now we are going to give some hints about a general representation of a set of typed
definite clauses (Deductive Database) and of the inferential deductive process in the frame
of hierarchical P systems [9] with active membranes [5].

Let us consider a Deductive Database (DDB)

Q1 ← P11, P12, . . . , P1m

Q2 ← P21, P22, . . . , P2m

.
Qn ← Pn1, Pn2, . . . , Pnm

We assume for simplicity that we have the same set of parameters {x1, . . . , xs} ∈ Ds from
the same domain D for all literals Qi, i ∈ {1, . . . , n}, Pij , i ∈ {1, . . . , n}, j ∈ {1, . . . , m},
and the same order of parameters (x1, . . . , xs) for the heads of all rules. The literals from
tails are allowed to have any order of parameters.

We can ask goals presented as literals with constant terms and/or variables in the set of
parameters to the inferential deductive machine. The constants will be denoted by ci and

260

variables will be denoted by vi. We assume that goal have the same order of parameters
(x1, . . . , xs) as the heads of DDB clauses.

Now we will give the general model of logic inferential deductive machine and some
ideas how it can be represented in the framework of P systems. Consider the DDB
described above and the goal Q. The logic inferential deduction process will be performed
recursively according to the following steps:

ALGORITHM: SOLVE
INPUT: Q

PART 1: From the goal to the axioms:

Step 1 Head unification: Unification of Q with all heads Qi from DDB in parallel.
As a result, every head Qi for which the unification process succeeded will get the set of
unifiers θi.

Step 2 Body unification: For every head Qi for which step 1 succeeded and the tail
is not empty, body unification process will be performed with all subgoals Pij in parallel,
that is, the algorithm SOLV E will be launched in parallel for every subgoal Pij with
input Pijθi. In the case of facts (rules with empty tail), the system returns the unifier θi

of the head Qi.

PART 2: From the axioms to the goal

Step 3 Atom unification: For every rule for which step 2 succeeded, the unification of
results of all subgoals is performed.

Step 4 Union of the results: Since every particular rule from the DDB gives us some
set of unifiers (solutions), one should consider the union of all these sets as a solution of Q.

OUTPUT: There are possible two cases:

1. The result to be the set of all unifiers Θ = {θ|DDB ` Qθ}. In other words, the
result will be the set of all unifiers θ for which Qθ could be derived from DDB

2. The result to be Yes in the case Θ = {θ}, Q = Qθ and No in the case Θ = ∅
In this way we have got two types of parallelism here:

1. For each head Qi a process which unifies it with Q and which unifies results of
subgoals Pij is created;

2. For each subgoal Pij of Qi the solving process is created.

In Figure 1 the general scheme of the deduction process and of the parallel processes
interactions is presented. For each process from the scheme a membrane is created. In
this way one can treat the tree of the processes interaction as a hierarchy of membranes
of the P system solving the problem.

One can define two general types of membranes:

1. Membranes which stay for goals and subgoals representation. Membranes of this
type perform steps 1 and 4. In Step 1 they create submembranes which stay for the
heads of the clauses. In Step 4 it collects results of the inferential rules execution.

261

Figure 1: The general scheme of the deduction process and of the processes interaction

2. Membranes which stay for clause’s heads representation. They perform steps 2 and
3. For this type of membranes there are possible two cases:

The tail is not empty: the membranes complete the term unification of the head
and goal, create submembranes which stay for the subgoals, and perform term
unification with all subgoals.

The tail is empty: the membranes complete the term unification.

All these ideas need to be specified, formalized, and developed, and we hope to return
to this topic in a forthcoming research.

4 Final Remarks

In this work-in-progress paper we describe some preliminary ideas born from discussions
about this topic during the Second Brainstorming Week. This is only the beginning and
a lot of work have to be done. A first step is to fix the backwards chaining formalism
that we want to study in P systems. Function-free clauses, i.e., clauses which contains
only variables as terms can be a good starting points, but to handle relevant information
Datalog [11] clauses can be more suitable. Datalog clauses are definite clauses that contains

262

no functions symbols of non-zero arity. As we have mentioned, we have a long path to
walk.

Acknowledgment. Miguel A. Gutiérrez Naranjo is partially supported by the project
TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by
FEDER funds, while Vladimir Rogozhin is supported by ”MolCoNet” project IST-2001-
32008.

References

[1] Apt, K.R.: Logic Programming, Handbook of Theoretical Computer Science. Elsevier
Science Publishers B.V., 1990

[2] Bratko, I.: PROLOG Programming for Artificial Intelligence, Third edition. Addison-
Wesley, 2001.

[3] Doets K.: From Logic to Logic Programming. The MIT Press, 1994.

[4] Dzeroski, S., Lavrac N.: An Introduction to Inductive Logic Programming in Rela-
tional Data Mining, Springer, Berlin 2001. pp.:48-73

[5] Krishna S.N., Rama R.: A Variant of P Systems with Active Membranes: Solving
NP-Complete Problems. Romanian Journal of Information Science and Technology,
2, 4 (1999), 357–367.

[6] Lloyd J.W.: Foundations of Logic Programming. (2nd ed.) Springer, Berlin, 1987

[7] Metakides G., Nerode A.: Principles of Logic and Logic Programming, Studies in
Computer Science nd Artificial Intelligence, 1996.

[8] Nienhuys-Cheng S.H., de Wolf R.: Foundations of Inductive Logic Programming,
LNAI 1228. Springer 1997.

[9] Păun, Gh.: Computing with Membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

[10] Logic Programming: http://www.afm.sbu.ac.uk/logic-prog/

[11] Deductive Databases: The DATALOG Approach:
http://goanna.cs.rmit.edu.au/ zahirt/Teaching/subj-datalog.html

263

