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Sevilla, 24-28 septiembre 2007
(pp. 1–8)

Qualitative features of Hamiltonian systems through

averaging and reduction

H. S. Dumas1, K. Meyer1, J. Palacián2, P. Yanguas2

1 Dpt. of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025, USA. E-mails:
scott.dumas@uc.edu, ken.meyer@uc.edu.
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Abstract

In this work we analyze the existence and stability of periodic solutions to a Hamil-
tonian vector field which is a small perturbation of a vector field tangent to the fibers
of a circle bundle. By averaging the perturbation over the fibers of the circle bundle
one obtains a Hamiltonian system on the reduced (orbit) space of the circle bundle.
First we state results which have hypotheses on the reduced system and have con-
clusions about the full system. The second part is devoted to the application of the
general results to the spatial lunar problem of celestial mechanics, i.e. the restricted
three-body problem where the infinitesimal is close to one of the primaries. After
scaling, the lunar problem is a perturbation of the Kepler problem, which after regu-
larization is a circle bundle flow. We prove the existence of four families of periodic
solutions for any small regular perturbation of the spatial Kepler problem: we find the
classical near circular periodic solutions and the near rectilinear periodic solutions for
all values of the small parameter. Finally we compute their approximate multipliers.

1 Introduction

In this work we present some of the results obtained in [12]. In the early 1950s two ground
breaking papers by Reeb [9] and Seifert [10] investigated the existence of periodic solutions
to a vector field which is a small perturbation of a vector field tangent to the fibers of a
circle bundle. Seifert considers perturbations of the Hopf foliation of the three sphere and
uses an index theory argument. Reeb considers the general perturbation of a circle bundle
field and pays particular attention to Hamiltonian flows. By averaging the perturbation
over the fibers of the circle bundle Reeb obtains a vector field on the base (reduced) space.
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If the original system is Hamiltonian then so is the system on the base space. He is able to
give necessary conditions for the existence of periodic solutions by looking at the system
on the base alone.

Since then there has been a multitude of papers which analyze a system by looking at
the reduced system only, see [12] for some references. One starts with a small parameter
which is a measure of the perturbation of an integrable system where all the solutions are
periodic. Then one averages the perturbation term by term in the small parameter. After
a finite number of terms have been averaged the higher order perturbations are truncated
thus obtaining an approximation of the full system. This approximation is well defined on
the lower dimensional reduced space. Being lower dimensional the system on the reduced
space is easier to understand. But, not all the features of the reduced system accurately
portray the original full system. It typically does not see the breakdown of invariant tori,
ergodic regions or solenoids.

2 Averaging Theorems

Let (M,Ω) be a symplectic manifold of dimension 2n, H0 : M → R a smooth Hamiltonian,
which defines a Hamiltonian vector field Y0 = (dH0)# with symplectic flow φt

0. Let I ⊂ R
be an interval such that each h ∈ I is a regular value of H0 and N0(h) = H−1

0 (h) is a
compact connected circle bundle over a base space B(h) with projection π : N0(h)→ B(h).
Assume the vector field Y0 is everywhere tangent to the fibers of N0(h), i.e. assume that
all the solutions of Y0 in N0(h) are periodic. There is no loss of generality by assuming
that all these periodic solutions have periods smoothly depending only on the value of the
Hamiltonian, i.e. the period is a smooth function T (h).

2.1 Reeb’s Theorems

Here we state two of Reeb’s theorems in more modern terminology.

Theorem 2.1 The base space B inherits a symplectic structure ω from (M,Ω), i.e. (B,ω)
is a symplectic manifold.

This is the original reduction theorem. Now let us look at a perturbation of this situation.
Let ε be a small parameter, H1 : M → R smooth, Hε = H0 + εH1, Yε = Y0 + εY1 = dH#

ε ,
Nε(h) = H−1

ε (h), and φt
ε the flow defined by Yε.

Let the average of H1 be

H̄ =
1
T

∫ T

0
H1(φt

0)dt,

which is a smooth function on B(h), and let φ̄t be the flow on B(h) defined by Ȳ = dH̄#.
A critical point of H̄ is nondegenerate if the Hessian at the critical point is nonsingular

and the function H̄ is a Morse function if all its critical points are nondegenerate. The
index of a nondegenerate critical point p of H̄ is the dimension of the maximal linear
subspace where the Hessian of H̄ at p is negative definite.

Theorem 2.2 If H̄ has a nondegenerate critical point at π(p) = p̄ ∈ B with p ∈ N0, then
there are smooth functions p(ε) and T (ε) for ε small with p(0) = p, T (0) = T , p(ε) ∈ Nε

and the solution of Yε through p(ε) is T (ε)-periodic.
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If H̄ is a Morse function then Yε has at least χ(B) periodic solutions, where χ(B) is
the Euler-Poincaré characteristic of B.

Lemma 2.1 is the key for an original direct proof of Reeb’s Theorems using symplec-
tic geometry arguments [12]. These alternative proofs lead to further applications. The
essence of the proof of the local part of Theorem 2.2 is the existence of symplectic coordi-
nates for a tubular neighborhood of the orbit through p, which is the result provided by
Lemma 2.1.

Lemma 2.1 Let p ∈ N0(h), with h ∈ I fixed. Then there are symplectic coordinates
(I, θ, y) valid in a tubular neighborhood of the periodic solution φt

0(p) of Y0(h) where (I, θ)
are action-angle coordinates and y ∈ N where N is an open neighborhood of the origin in
R2n−2. The point p corresponds to (I, θ, y) = (0, 0, 0).

In these coordinates H0 = H0(I). A local cross section is θ = α and a local cross
section in an energy level is θ = α, I = β, where α, β are constants. In addition to that,
y ∈ N are coordinates in the cross section in the energy level.

The Hamiltonian is

Hε(I, θ, y) = H0(I) + εH1(I, θ, y) = H0(I) + εH̄(I, y) +O(ε2). (1)

For the proof of this lemma and the proofs of Theorems 2.1 and 2.2, which follow from
the lemma, see [12].

2.2 Corollaries

Only the last sentence in Theorem 2.2 gives a truly global result. Those conversant with
Morse theory will see there is a sharper global result.

Corollary 2.1 Let H̄ be a Morse function, let βj be the jth Betti number of B and let Cj

be the number of critical points of index j. Then Cj ≥ βi or better yet

C0 ≥ β0

C1 − C0 ≥ β1 − β0

C2 − C1 + C0 ≥ β2 − β1 + β0

· · ·
Ck − Ck−1 + Ck+2 − · · · ± C0 ≥ βk − βk−1 + βk+2 − · · · ± β0 (k < 2n− 2)

C0 − C1 + C2 − · · · − C2n−3 + C2n−2 = β0 − β1 + β2 − · · · − β2n−3 + β2n−2 = χ(B).
(2)

For these better inequalities on a Morse function see [6]. The lower estimate on the number
of periodic solutions in Theorem 2.2 is χ(B) the alternating sum of the Betti numbers
which could be 0 or negative, whereas, the Morse inequalities give a lower estimate which
is the sum of the Betti numbers. Moreover, the estimates give some information on the
number of critical points of various indices.

The nontrivial characteristic multipliers of the periodic solution given in Theorem 2.2
are the eigenvalues of

P =
∂P

∂y
(ȳ(ε)) = E + εTJ

∂2H̄
∂y2

(0, 0) +O(ε2),
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where E is the identity matrix. The eigenvalues of Hamiltonian matrix

A = J
∂2H̄
∂y2

(0, 0) (3)

are the characteristic exponents of the critical point of Ȳ at p̄ on B. Thus, the lemma also
yields:

Corollary 2.2 Let p be as in Theorem 2.2 and let the characteristic exponents of Ȳ (p̄) be
λ1, λ2, . . . , λ2n−2, then the characteristic multipliers of the periodic solution through p(ε)
are

1, 1, 1 + ελ1T +O(ε2), 1 + ελ2T +O(ε2), . . . , 1 + ελ2n−2T +O(ε2).

This result was used in [5]. We shall say that a periodic solution is elliptic or linearly stable
if the monodromy matrix is diagonalizable and all the eigenvalues have absolute value 1.

The solution of this problem lies on the Krein-Gel’fand concept of parametric stability
[11] which we will briefly summarize.

Consider the linear constant coefficient Hamiltonian system

ẏ = Cy = J∇H(y), H =
1
2
yTSy, (4)

where S is a symmetric matrix and C = JS is a Hamiltonian matrix. System (4) (or the
Hamiltonian matrix C) is stable if all its solutions are bounded for all t and it is para-
metrically stable or strongly stable if it and all sufficiently small linear constant coefficient
Hamiltonian perturbations of it are stable. System (4) is parametrically stable implies it
is stable and (4) is stable if and only if C is diagonalizable and has only purely imaginary
eigenvalues.

Let ±α1i, ±α2i, . . . , ±αsi be the eigenvalues of the stable matrix C and Vj , j =
1, . . . , s be the maximal real linear subspace where C has eigenvalues ±αji. So Vj is a
C invariant symplectic subspace, C restricted to Vj has eigenvalues ±αji, and R2n =
V1 ⊕ V2 ⊕ · · · ⊕ Vs. Let Hj be the restriction of H to Vj .

Theorem 2.3 [11] System (4) is parametrically stable if and only if: (i) all the eigenvalues
of C are purely imaginary; (ii) C is nonsingular; (iii) C is diagonalizable over the complex
numbers; (iv) the Hamiltonian Hj is positive or negative definite for each j.

Thus, 2H = (u2
1 + v2

1) + (u2
2 + v2

2) and 2H = (u2
1 + v2

1) − 4(u2
2 + v2

2) are parametrically
stable, but 2H = (u2

1 + v2
1)− (u2

2 + v2
2) is not parametrically stable.

Consider now the linear T -periodic Hamiltonian system

ẏ = D(t)y = J∇H(y), H =
1
2
yTR(t)y, (5)

where R(t) = R(t + T ) is symmetric and D(t) = JR(t) is Hamiltonian. The periodic
system (5) is stable if all its solutions are bounded for all t and it is parametrically stable
or strongly stable if it and all sufficiently small linear T -periodic Hamiltonian perturbations
of it are stable. The monodromy matrix is M = Z(T ) where Z(t) is a fundamental matrix
solution of (5). If the system is parametrically stable then it is stable and (5) is stable if
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and only if its monodromy matrix is diagonalizable and has only eigenvalues (multipliers)
of unit modulus.

Let β±1
1 , β±1

2 , . . . , β±1
s be the eigenvalues of M and Vj , j = 1, . . . , s be the maximal

real linear subspace where M has eigenvalues β±1
j . So Vj is an M invariant symplectic

subspace, M restricted to Vj (denoted by Mj) is symplectic and has eigenvalues β±1
j , and

R2n = V1 ⊕ V2 ⊕ · · · ⊕ Vs.
For periodic systems we need to define the analog of the quadratic form Hj . We use

Cayley transformation to do this. The particular Möbius transformation

Ψ : z → w = (z − 1)(z + 1)−1, Ψ−1 : w → z = (1 + w)(1− w)−1

is known as the Cayley transformation. One checks that Ψ(1) = 0,Ψ(i) = i,Ψ(−1) = ∞
and so Ψ takes the unit circle in the z-plane to the imaginary axis in the w-plane, the
interior of the unit circle in the z-plane to the left half w-plane, etc. Transformation Ψ
can be applied to any matrix B which does not have −1 as an eigenvalue and λ is an
eigenvalue of B if and only if Ψ(λ) is an eigenvalue of Ψ(B).

Lemma 2.2 Let M be a symplectic matrix which does not have the eigenvalue −1 then
C = Ψ(M) is a Hamiltonian matrix. Moreover, if M has only eigenvalues of unit mod-
ulus and is diagonalizable, then C = Ψ(M) has only purely imaginary eigenvalues and is
diagonalizable.

Matrix Mj is the restriction of M to Vj and is symplectic, so Cj = Ψ(Mj) is a Hamiltonian
matrix and Sj = JCj is a symmetric matrix.

Theorem 2.4 [11] System (5) is parametrically stable if and only if: (i) all the eigen-
values of M have unit modulus; (ii) M does not have the eigenvalue +1 nor -1; (iii) M
is diagonalizable over the complex numbers; (iv) the symmetric matrix Sj is positive or
negative definite for each j.

Corollary 2.3 If one or more of the λj of Corollary 2.2 is real or has a real part then the
periodic solution through p(ε) is unstable. If the matrix A in (3) is the coefficient matrix
of a parametrically stable system then the periodic solution through p(ε) is elliptic. In
particular, if p̄ is a nondegenerate maximum or minimum of H̄, then the periodic solution
through p(ε) is elliptic. If H̄ is a Morse function then there are at least 2 = β0 + β2n−2

elliptic periodic solutions.

We believe this application of Krein-Gel’fand theory to be new. For the proof, see [12].

3 The Spatial Lunar Problem

3.1 The Hamiltonians

The Hamiltonian of the spatial problem is given in the rotating frame by:

H =
1
2

(y2
1 +y2

2 +y2
3)− (x1y2−x2y1)− µ√

(x1 − 1 + µ)2 + x2
2 + x2

3

− 1− µ√
(x1 + µ)2 + x2

2 + x2
3

.
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We change variables, scale time and scale the Hamiltonian in order to arrive at the lunar
case of the spatial restricted circular three body problem, see [4]. After expansion in
powers of the small parameter we end up with the system

Hε =
1
2

(y2
1 + y2

2 + y2
3)− 1√

x2
1 + x2

2 + x2
3

− ε3 (x1y2−x2y1) +
1
2
ε6 µ (−2x2

1 +x2
2 +x2

3) + · · · .

Now we have a perturbation of the spatial Kepler problem. Moser has shown that the
three-dimensional Kepler problem can be regularized and the regularized flow is equivalent
to the geodesic flow on S3 [7, 12].

The following step consists in expressing Hε in such a way that we can perform Lie
transformations conveniently, see [3]. We use polar-nodal (r, ϑ, ν,R,G,N) and Delaunay
coordinates (`, g, ν, L,G,N). The angle ` corresponds to the mean anomaly, g to the argu-
ment of the pericenter, ν is the argument of the node, L the square of the semimajor axis,
G is the third component of angular momentum vector G and N is the third component
of the angular momentum, so 0 ≤ |N | ≤ G ≤ L . The coordinate R is the momentum con-
jugate to the radial variable r and the angle ϑ is the argument of the latitude. Expressing
Hε in these variables we get

Hε = − 1
2L2

− ε3N +
1
8
ε6 µ r2

(
1− 3 c2 − 3 (1− c2) cos (2ϑ)

− 3
(
1− c2 + (1 + c2) cos (2ϑ)

)
cos (2 ν) + 6 c sin (2 ν) sin (2ϑ)

)
+ · · · ,

where c = N/G. After performing the normalization of Delaunay to a fixed finite order
we arrive at the Hamiltonian

Hε = − 1
2L2

− ε3N +
1
16
ε6µL4

(
(2 + 3 e2)

(
1− 3 c2 − 3 (1− c2) cos(2 ν)

)
− 15 e2 cos(2 g)

(
1− c2 + (1 + c2) cos(2 ν)

)
+ 30 c e2 sin(2 g) sin(2 ν)

)
+ · · · .

(6)

This normal form Hamiltonian has been calculated previously in [8]. The transformed
Hamiltonian, after truncating higher order terms, depends on the two angles g and ν
plus their associated momenta G and N respectively, whereas L is an integral of motion.
Applying reduction theory, once higher order terms have been dropped, Hε is defined on
the orbit space, or base space, which is the four dimensional space S2 × S2 [7].

We can use the set of variables given by a = (a1, a2, a3) and b = (b1, b2, b3) with the
constraints a2

1 + a2
2 + a2

3 = L2 and b21 + b22 + b23 = L2 to parameterize S2 × S2, where
a = G + LA and b = G− LA. We recall that G corresponds to the angular momentum
vector and A is the Laplace-Runge-Lenz vector; moreover, |a| = |b| = L. Notice that the
ai and bi belong to the interval [−L,L]. The explicit expressions for a and b in terms
of Delaunay variables are found in Cushman [2]. We remark that the introduction of the
invariants extends the use of the Delaunay variables as we can include equatorial, circular
and rectilinear orbits.

After several simplifications and manipulations over Hε including the dropping of the
constant term −1/(2L2) and the division by ε3, we arrive at

H̄ = −1
2

(a3 +b3)− 1
8
ε3µL2

(
3a2

1−3a2
2−3a2

3−12a1b1 +3b21 +6a2b2−3b22 +6a3b3−3b23
)
+ · · · .

(7)
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The corresponding equations of motion are

ȧ1 = a2 − 3
2ε

3 µL2 (a3b2 − a2b3) + · · · ,

ȧ2 = −a1 + 3
2ε

3 µL2 (2a1a3 − 2a3b1 − a1b3) + · · · ,

ȧ3 = −3
2 ε

3 µL2 (2a1a2 − 2a2b1 − a1b2) + · · · ,

ḃ1 = b2 + 3
2ε

3 µL2 (a3b2 − a2b3) + · · · ,

ḃ2 = −b1 − 3
2ε

3 µL2 (a3b1 + 2a1b3 − 2b1b3) + · · · ,

ḃ3 = 3
2 ε

3 µL2 (a2b1 + 2a1b2 − 2b1b2) + · · · .

(8)

We stress that the equations of motion are global in the whole base space B. Including
terms of order ε3 is enough to determine the relative equilibria of H̄.

3.2 Analysis of Equilibria

The Hamiltonian (7) starts as H̄ = −1
2(a3 + b3) + · · · so it has a nondegenerate maximum

at (a,b) = (0, 0,−L, 0, 0,−L) and a nondegenerate minimum at (a,b) = (0, 0, L, 0, 0, L).
The index of (0, 0, L, 0, 0, L) is 0 whereas (0, 0,−L, 0, 0,−L) has index 4. Now by Reeb’s
Theorem 2.2 and Corollary 2.2, the points (0, 0,±L, 0, 0,±L) correspond to elliptic periodic
solutions of the spatial restricted three-body problem of period T (ε) = T +O(ε3). These
are the circular equatorial motions already present in the planar case [12].

Hamiltonian H̄ also has two other nondegenerate critical points of index 2 at (a,b) =
(0, 0,±L, 0, 0,∓L) which correspond to rectilinear motions whose projection in the coordi-
nate space leads to periodic solutions in the vertical axis x3. They generalize the rectilinear
trajectories found by Belbruno [1] for small µ. However the minimax critical points at
(0, 0,±L, 0, 0,∓L) are not parametrically stable as their corresponding linearization is of
the type ∓1

2(u2
1 + v2

1)± 1
2(u2

2 + v2
2) and so small linear perturbations can lead to unstable

periodic solutions. Thus we cannot conclude at this point that these equilibria give rise
to elliptic periodic solutions. A deeper analysis is needed to decide about the stability of
those periodic solutions arising from (0, 0,±L, 0, 0,∓L).

The Betti numbers of S2 × S2 are β0 = β4 = 1, β2 = 2 and all the others are zero.
Besides, C0 = C4 = 1, C2 = 2 and Cj = 0 for j 6∈ {0, 2, 4}, hence Cj = βj for all j.
As we have seen H̄ is a Morse function, and has the minimum number of critical points
consistent with the Morse inequalities found in Corollary 2.1.

Near the critical points we can use (a1, a2, b1, b2) as coordinates on B = S2×S2. From
the equations (8) one sees that the characteristic exponents of all the four critical points
of Yε at the four equilibria are ±i (double). Thus, by Corollary 2.2, the characteristic
multipliers of the corresponding periodic solutions are: 1, 1, 1 + ε3 T i, 1 + ε3 T i, 1 −
ε3 T i, 1 − ε3 T i plus terms of order ε6. As we have said the maximum and minimum at
(0, 0,±L, 0, 0,±L) give rise to elliptic periodic solutions, following Corollary 2.3.

A final remark is that we have proven that any small perturbation of the spatial Kepler
problem has at least four periodic solutions, two of them of circular type in the equatorial
plane and these solutions are elliptic. The other two solutions are of rectilinear type but
their stability analysis is out of the scope of the present paper. We need to undo the linear
changes of coordinates to go back to Hamiltonian H. Thus, the four periodic solutions of
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H have approximate period T (ε) ≈ 2πε3L3. Moreover, the near circular solutions have
radii |x| ≈ ε2L2 whereas the near rectilinear solutions have their radii bounded between
ε2(1− e)L2 and ε2(1 + e)L2 where e is a parameter (the eccentricity) close to 1.
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