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ABSTRACT 

Considering that mass rotational inertia in a structure with an inverted pendulum shape increases 
period of vibration of structure. Such increase depends on location of mass center, on relation of 
considered mass inertia, on relation of rigidity between structure and foundation, and on relation of 
system stiffness. In this work expressions that allow to identify importance of such parameters are 
proposed, for cases in which the oscillator is supported on hard soil or soft soil. It is defined the 
magnitude error that occurs when not considering mass rotational inertia in calculation for period is 
defined. 

keywords: Soil-structure interaction, inverted pendulum, bridge. 

1. INTRODUCTION

Inverted pendulum type structures have three common characteristics: (1) the upper section mainly 
concentrates its mass, (2) the development of one single plastic articulation in a column is enough to 
produce its collapse, and (3) the influence of gravitational forces decreases its capacity to withstand 
lateral stress. 

Flexural momentums at superior ends of columns in this type of structures have special concern. To a 
great extent its design is ruled by such moments induced by seismic loads, as well as in column as in 
pavement or cover.  

In some of these type of structures, besides horizontal flexural moments also torsion arise in relation 
to an horizontal axe in roof system, both due to horizontal inertial strengths. By these reasons, 
specially as stability depends on resistance of one single plastic articulation, inverted pendulums had 
been very vulnerable to earthquakes [1]. 

If torsion effect is restricted, as occurs in viaduct type structures, the effect of rotational inertia 
around bridge longitudinal axe is more important than the one produced around vertical axe. If 
superstructure width is equal or greater than the height of column, mass center displacements of a 
column stack as depicted on Fig. 1, can have vertical axe displacements of superstructure which are 
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compared in magnitude with lateral displacements. This system cannot be properly represented with 
one degree of freedom system because the rotational inertia of superstructure could modify the 
fundamental period, and induce important magnitude moments in mass center, such moments can be 
positive, or negative, in relation to the base moment at any time, as consequence of response of two 
degrees of freedom system. 

An incorrect modeling of these type of systems can cause to underestimate shear strengths in the 
column during design process [2]. 

Figure 1. Inverted pendulum type structural systems. 

2. DYNAMIC EQUATIONS

Considering an oscillator with mass m supported on an element that provides lateral rigidity with 
height, L, deep foundation, and mass center position, yc, measured from joint between elements that 
provides lateral rigidity to system (Figure 2), the restitution strength referred to an inertial system, is 

R g c
F mU m z m y θ   (1) 

where 
g

U is ground acceleration and θ  is rotation angle of mass center. 
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Figure 2. Two DOF structure on flexible base. 

Restitution momentum due to mass rotation is: 
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R cm R c
M I θ F  y  (2) 

where 
cm

I is mass inertial momentum in relation to the mass center. Replacing equation (1) in 

equation (2), is obtained, 
2

R cm c g c c
M I m y θ m U  y m z y    

 
(3) 

And as inertia mass moment, in relation to mass base, is, 
2

b cm c
I I m y  (4) 

Equation (3) can be expressed, 

R b g c c
M I  θ m U  y m z y   (5) 

Without considering foundation mass, and considering ground and foundation with properties of 
translation rigidity, 

c
k , and with rotational rigidity, 

φ
k , such that, 

1 2
z = z z (6) 

where 
1

z  is mass lateral displacement and 
2

z  is mass lateral displacement due to base rotation, and 

1 2
 θ  = θ θ (7) 

Where θ  is total angular displacement of mass center and 
2

θ  is base rotation. Replacing equations 

(6) and (7) in (1) and (5), there is an equations system that represents oscillator dynamic balance, for 
the case that it is founded in flexible soil, 

1 2 1 2R g c c
F mU m z m z m y θ m y θ     (8) 

1 2 1 2R b b g c c c
M I  θ I  θ U m y z  m y z  m y     (9) 

Considering a harmonic excitation, 
2

1 1
z ω z  

(10) 

2

2 2
z ω z  

2

1 1
θ ω θ

2

2 2
θ ω θ

2

g g
U ω U

Equations (8) and (9) can be expressed like 

2 2

2 1 1 2R g c
F mω U z z y mω θ θ       

  
 (11) 
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2 2

1 2 2 1R cm c g c
M I ω θ θ  y m ω  U z z y θ       

   
 (12) 

Considering that, 

R
F

α
k

 (13) 

R

r

M
β

k
 (14) 

Equations (6) and (7), are 

1
R R

r

F M
z δ

k k
   (15) 

1
R R

r

F M
θ ε

k k
   (16) 

Due to foundation spin, 

0
2

φ

M
θ

k
 (17) 

Where 
φ

k  represents foundation angular rigidity and 
0

M  is foundation momentum. If small 

displacements are considered, mass center displacement due to foundation spin is, 

2 2

'
z θ L  (18) 

where, 
'

c
L p L y   (19) 

The foundation horizontal strength is, 

0 R
F F  (20) 

And foundation momentum, 

0

'

R R
M M F L  (21) 

equations (17) and (18) lead to: 

2

'
R

R
φ φ

M L
θ F

k k
   (22) 

and 
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 
2

2

'
'

R R
φ φ

LL
z M F

k k
  (23) 

The ground horizontal displacement is, 

0 R
g

c c

F F
U

k k
   (24) 

where 
c

k  represents the  translation rigidity of the foundation. The equation (11) can be written, 

2

2

1 1 1
´ '

c
c φ φ

L ε L
y

k k k k kmω

   
        
   
   

(25) 
1 1

'
R

c
R r φ r φ

M δ L
y

F k k k k

     
        
           

 

From equation (12), 

2
2

2

1 1

1 1
1

' * '

b
φ b c φR

* '
R

b
r φ b r φ

ε L m L
I ω

k k I k k kM

F
m δ L

I ω
k k I k k

    
       
           

      
       
    
    

 (26) 

where *

c
m m y . Replacing (26) in (25) and sorting terms is obtained the equation that allows to 

calculate oscillator circular frequencies considering soil-structure interaction (SSI), 

2 2

1 2

1 4

2,
ω E E

D

 
   

 
 (27) 

Where, 

 
b

D I m AB C   (28) 

and 

b
Am I B

E
D


 (29) 

2
1 1

' '

c
c φ φ

L ε L
A y

k k k k k

   
       
   
   

 (30) 
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1 1
'

c
r φ b r φ

m δ L
B y

k k I k k

   
      
   
   

 (31) 

2
1 1 1 1

' ' '

c c
r φ r φ φ b c φ

δ L ε L m L
C y y

k k k k k k I k k k

           
                
                  

 (32) 

Considering that the oscillator is supported on hard soil, then: 

1
c

ε
A y

k k

   
    
   

 (33a) 

1
c

r b r

m δ
B y

k I k

   
    
      

 (33b) 

1 1
c c

r r b

δ ε m
C y y

k k k I k

    
    
    

 (33c) 

It can be verified that results that are obtained with equations (33) are equal to the ones obtained 
when oscillator is founded in hard soil. Alternatively, the equation (27) can be written, 

2 2

1 2 1 1 2

1

2,
F F F    
  

 (34) 

Where, 
2

2 1 1 2
21 1 1 2

1 3 3 3 1 2
r r r

F r r r α αs
τ τ τ

    
            
     

 (35) 

 
22 2 2

1
3 1 4 4 1 4 4 6

2

αs
F r α αs r α τ

τ τ

    
          

    
 (36) 

Consider the following relationships, 

1
c

y
r

L
 (37) 

2

22

r
r

L
 (38) 

where r  is mass spin radius measured in relation to mass center, and the stiffness relationship is 
represented by 
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2' c

φ

k
s L

k
 (39) 

And relationship of translation rigidity by, 

c

k
α

k
 (40) 

It can be considered that deep of foundation is: 
0 10p . L (41) 

so that, 

1
1 10

'
L

τ r .
L

   (42) 

Periods of vibration relationship can be written as, 

1
1

e
T

T
  (43) 

2

2

e
T

T
 (44) 

Where T  represents oscillator period of vibration considering it like SDOF in translation supported on 
hard soil, 

1e
T  is oscillator period of vibration coupled in translation and 

2e
T  is oscillator period of 

vibration coupled in rotation; both considering effects of rotational inertia and with SSI. 

As can be seen on equation (37) oscillator period of vibration where effects of rotational mass besides 
effects of soil-structure interaction are considered, depends on position of mass center, 

c
y , on the 

relationship between mass spin radius and column height; on the relationships between oscillator and 
foundation rigidities, as well as on the deep of foundation. 

It will be analyzed the case in which mass is considered as concentrated in the upper section of 
column, 0r   (

2
0r  ) and mass center coincides with the junction point between column and mass 

base, 0
c

y   (
1

0r  ), then oscillator periods of vibration considering SSI are,

 
1 0

1 1
e e

T α s T    (45) 

2
0

e
T   (46) 

Where 
0e

T  is oscillator fundamental period considering mass concentrated and with SSI. In Figure 3 

are shown the values of equation (45) by changing 0 1 2 3s , , , ; and α  from 0 to 2. 
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Figure 3. Effect of SSI on oscillator fundamental period without considering rotational inertia. 

Results shown on Figure 3 correspond to the ones reported by Mylonakis [3] for the case of an 
oscillator with concentrated mass where the effect of Soil-Structure Interaction is considered, in other 
words, without considering the effects of mass rotational inertia (Figure 4a). 

k
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r
k
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0I 

k
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φ
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r
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(a) Traditional model. (b) Model considering 0I   
Figure 4. Models that consider SSI. 

Considering values suggested by Mylonakis [3] of 2'

c φ
s L k k  of 0, 1 and 3; and of 

c
α k k  varying 

from 0.0 to 2.0; for different values of relationship mass spin radius-resistant element height, 
2 2

2
r r L  from 0.0 to 0.50. 

Figure 5 shows the relationship between oscillator period considered like 2 DOF system with SSI, 
1e

T , 

and oscillator period of vibration considered like SDOF system, T founded on hard soil. Such 

relationship increases as the value of 2' c

φ

k
s L

k
  is increased. Being greater for case of 3s  . Such 

relationship also increases as rigidity relationship increases 
c

k
α

k
 . 
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Being greater for 2
c

k k  . Dotted line, 
2

0 0r r .   represents the case of oscillator with SSI, with 

concentrated mass, that is to say, like a SDOF oscillator (Figure 3a), whose period corresponds to 
0e

T . 

On the right side, the relationship between oscillator lateral period with SSI and considering mass 
inertia, 

1e
T , and period with SSI, but considering concentrated mass, 

0e
T  is shown. The relationship 

1 0e e
T T  is greater for small values of 

c

k
α

k
 , and decreases as this value increases; being smaller 

than or equal to 1.10 for: 0s   and 2α  . 

When 3s   and 2α   such relationship is smaller than or equal to 1.18, for values of 
2

r  analyzed. 

The smallest value of relationship 
1 0e e

T T  that can be seen is 1.06 and the greatest is 1.52. 

In Figure 6 the relationship between oscillator period of vibration in rotation considering SSI and 
rotational mass, 

2e
T  is shown, (Figure 4b) regarding that oscillator period is considered like SDOF 

founded in hard soil. The increase of period,
2e

T , regarding T  is barely sensitive to variation of 

2'

c φ
s L k k , then the plots of each one of the analyzed values are almost the same. 

It is observed that oscillator period of rotation considering effect of soil-structure interaction, mainly 
depends from relationship 

c
k k  increasing as such relation increases. Periods relationship, 

2e
T T , is 

from 0.18 to 0.40 for small values of 
c

k k  and for values of 2
c

k k  , the increase of such 

relationship varies from 0.33 for 
2

0 05r . , up to 0.97 for values of 
2

0 50r . . 
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Figure 6. Relationship of period of rotation with SSI and oscillator transversal period in hard soil. 

In Figure 7 on left side the relationship between periods 
1e

T T   for the case that portion of mass 

center is at a distance of 0 20
c

y . L  measured from the joint of oscillator resistant lateral element is 

shown. The relation of periods increases as value of s increases, being greater for case of 3s  . Such 
increase is also greater as value of 

c
α k k   being greater for 2

c
k k  . In the analyzed cases there 

is always an increase in lateral period if the influence of inertial rotation in movement equation is 
considered. 
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1
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c

r y L .  . 
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Comparing values of relationship 
1e

T T  shown in Figure 5, 0 0
c

y .  and values shown on Figure 7, 

0 20
c

y . L ,  it can be observed that these last ones are greater, in other words, the relation between 

transversal periods, 
1e

T  and T  is greater if mass center is further from upper node of oscillator 

resistant lateral element. 
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In Figure 7, on right side, the relation between periods 
1e

T  and 
0e

T  for the case in which 0 20
c

y . L  

is shown. Such relation is greater for small values of 
c

α k k   and decreases as this value increases; 

being smaller than or equal to 1.22 for 0s   and 2α  . When 3s   and 2α    such relation is 
smaller than or equal to 1.26. The minimum value of this relationship of periods is 1.13 and the 
maximum is 1.76. 

Comparing the values on the right side of Figures 5 and 7, it is observed that not considering the 
effects of inertial mass, in calculation of lateral period is more critical if oscillator mass center, 

c
y , is 

located higher than the upper point of oscillator resistant lateral element. 
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In Figure 8 the relationship of oscillator period of vibration in rotation considering SSI, 
2e

T  and 

oscillator period considered as SDOF founded in hard soil is shown. The increase in period, 
2e

T

regarding, T , is barely sensitive to variation of 2'

c φ
s L k k ; therefore, the plots of each one of the 

analyzed values is almost the same. It is observed that relationship 
2e

T T  depends directly on the 

relation 
c

k k , increasing as this relation increases. The relation of periods, for small values of 
c

k k  is 

from 0.14 to 0.34, and for values of 2
c

k k   the increase of such relation varies from 0.30 for 

2
0 05r . , up to 0.87 for values of 

2
0 50r . . 

3. CONCLUSIONS

In this work expressions that allow to estimate importance of rotational mass in calculation of periods 
of vibration in translation and rotation, in an inverted pendulum type oscillator supported on hard or 
soft soil were developed. For cases in which oscillator is supported on hard soil, the translation and 
rotation periods are coupled and depend on the position of mass center and on the relation rotational 
inertia-height of resistant element.  
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It is considered in all cases that mass rotational inertia increases the period of vibration for oscillator. 
When inverted pendulum type structures rest on soft soil, the phenomenon of ground-structure 
dynamic interaction plays a predominant role. In this case, translation and rotation periods are also 
coupled, and also depend on parameters that define an unstable soil, on relation of stiffness between 
oscillator and soil, and on relation of oscillator stiffness. In all analyzed cases there is an increase on 
lateral and rotation periods, if mass rotational inertia is considered in movement equation. Similar 
results are obtained for case of viaduct type structures. 
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