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Abstract

The present communication introduces an up-to-date version of the CONNFFES-
SIT method in the field of micro-macro simulations of non-Newtonian fluids. The ‘ma-
cro’ section employs a semi-Lagrangian method in order to reduce the Navier-Stokes
equations to a Stokes-like subproblem. Linear systems arising from the finite element
formulation are solved via the ‘Incomplete Cholesky Conjugate Gradient’ iterative al-
gorithm, wherein the sparsity pattern of the matrices is taking into account. As to the
‘micro’ part, the stochastic formulation simplifies the Fokker-Planck equations in the
configuration space to stochastic differential equations for the internal degrees of free-
dom of the particles (‘dumbbells’) conveying the rheological information of the kinetic
model, their integration being accomplished by means of a semi-implicit, Predictor-
Corrector algorithm. The ‘micro-macro’ coupling involves the polymer stress tensor,
which is computed through a mixed ‘Finite Element / Natural Element’ method.
An extended, search-and-locate method for unstructured meshes and non-connected
domains has been implemented. The robustness and efficiency of the method is high-
lighted on a benchmark problem (10:1 planar contraction).

1. Introduction.

The problem of viscoelastic flows is not a mild one: added to the complexity of the
Navier-Stokes equations governing a Newtonian fluid, is the fact that viscoelastic materials
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are exposed to a non-linear coupling among factors such as the history of the flow, their so-
induced internal configurations, the macroscopic rheological properties or the geometry of
the domain. However difficult it may seem, the outstanding number of applications for this
sort of materials in fields as diverse as surgery, structural mechanics or nano-electronics
more than make up for the effort that so tricky a flow may require.
The early days of research in non-Newtonian fluids can be traced back to late 1940’s
and mid 1950’s, when pioneering work by Oldroyd ([14]) and Lodge ([13]) concerning the
analytical solution of the so-called order fluids on simple geometries and low Weissenberg
numbers, struck the scene. From that point on and for almost thirty years, the interest
for this kind of flows grew up steadily. As it was, the progressive availability of compu-
tational tools during the 1960’s and 1970’s provided a prompt development of numerical
models, starting with viscometric flows. But not until 1977 complex flows of viscoelastic
fluids in two space dimensions were treated by a finite difference method proposed by
Perera and Walters ([18]); although it caused a major breakthrough in the simulation of
non-Newtonian fluids, boding all good for this field of research, a hindrance as yet not
overcome would shortly appear: the ‘high-Weissenberg number problem’. The decade of
1980’s would continue to show advance in numerical simulation, but the initial momentum
somewhat receded: higly convoluted, closed-form expressions of the constitutive equations
for some of the simplest viscoelastic materials together with the inability to reach in-
dustrially significant Weissenberg numbers, proved rather discouraging. A novel approach
that combined some of the molecular information provided by the extremely computer-
wise expensive ‘atomistic modelling’ with the flexibility of coarse-grained kinetic theory
models was shaped by the ‘micro-macro’ methods, being the original CONNFFESSIT by
Öttinger and Laso ([12]) one of the foremost methods at the time (see, e.g., [11] for a more
detailed revision on micro-macro methods).
In spite of the attactive properties of CONNFFESSIT, in which no closed-form constitutive
equations are demanded, there were a number of drawbacks that spurred further research,
such as the ‘Brownian configuration fields’ ([9]) or ‘variance reduction’ techniques ([16])
to palliate, up to a certain extent, the typical stochastic noise of this scheme; additional
issues relate to needed stabilization techniques in the finite element implementation ([6],
[7]), the location of the particles (‘dumbbells’) in complex geometries, or the size of the
ensemble in the computation of the polymer stress tensor.
The present communication tries to address these situations, while introducing a robust
and efficient implementation of the CONNFFESSIT approach.

2. Description of the model.

The structure of a CONNFFESSIT (Calculation of Non-Newtonian Flow:Finite Element
and Stochastic SImulation Techniques) implementation may be divided into three different
parts: a ‘macro’ part dealing with the conservation (Navier-Stokes) equations; a ‘micro’
part that passes the information from the kinematic model on to the particles scattered
throughout the domain; and a ‘micro-macro’ interface which accounts for making up the
polymer stress tensor. This procedure is to be iterated in time, so that transient processes
come naturally to the internal structure of the method.
The next subsections introduces the semi-Lagrangian scheme for the Navier-Stokes equa-
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tions, the stochastic processes involved as well as the algorithm employed for the location
of particles on unstructured meshes, and the mixed Finite Element / Natural Element
algorithm responsible for the calculation of the stress tensor.

2.1. Macroscopic part.

The Navier-Stokes equations for an incompressible, non-Newtonian fluid in an open
bounded domain Ω ⊂ Rd(d = 2, 3), with boundary Γ = Γ0 + Γ1, in absence of external
forces and in a time interval [0,T], may be written as:

ρ
Du

Dt
+ ∇ · τ = 0 (1)

∇ · u = 0 (2)

D(·)
Dt = ∂(·)

∂t + (·)∇(·) accounts for the total derivative operator, τ = τ s + τ p is the total
stress tensor of the fluid, and the Newtonian solvent satisfies:

τ s = p̃δ − µs

[
∇u + (∇u)t] (3)

where δ is the unit tensor. Using (1),(2) and (3), the following system of equations result:

Du
Dt − νs∆u + ∇p = 1

ρ∇ · τp

∇ · u = 0
u (x, 0) = u0(x) in Ω
u (x, t) = g0(x, t) on Γ0

−pn + νs
∂u
∂n

= g1 (x, t) on Γ1

(4)

This system is tackled via a two step Lagrangian-Eulerian procedure: the feet of the
characteristic curves are calculated for all the computational nodes in the mesh and the
equations are integrated along the trajectories of the fluid particles, thus obtaining a
Stokes problem to be solved thereafter. The ‘Method of Characteristics’ deals with the
first step, and its implementation follows that of Allievi and Bermejo (see [3] for a detailed
description in a finite element framework). Schematically, X (x, tn+1; t) represents the
position at time t of a fluid particle which reaches the mesh point x ∈ Ω at time tn+1, so
that the trajectory of such particle is ruled by:

DX

Dt
(x, tn+1; t) = u (X (x, tn+1; t) , t) (5)

X (x, tn+1; tn+1) = x (6)

The momentum and conservation equations (4) are integrated along these trajectories,
employing the trapezoidal rule for the velocity and an the rectangular upper limit qua-
drature rule for both pressure and polymer stress tensor. As regards the computation of
the feet of the characteristic curves (see, e.g. [19]), a mid-point approximation combined
with an iterative fixed point algorithm is used.
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Upon the resulting Stokes-like problem, the Galerkin formulation is applied; P2-P1 Taylor-
Hood polynomials are used for velocity and pressure, respectively, and a first degree poly-
nomial approximation is considered for the polymer stress tensor. This election of working
spaces satisfies the Inf-Sup Babuska-Brezzi condition [10] whence any further stabilization
technique is spared. The preconditioned form of the Conjugate Gradient Algorithm for in-
compressible, viscous flows as described in [5], is utilized to numerically reach the solution
of the Stokes problem, with all lineal systems derived from the Galerkin formulation being
solved by a preconditioned Incomplete Cholesky Conjugate Gradient iterative algorithm.
Since the involved stiffness and mass matrices are sparse, ad-hoc data structure and code
were devised to take advantage of that fact.

2.2. Microscopic part.

As previously stated, one of the relevant features of the CONNFFESSIT approach falls
on its ability to cope with viscoelastic fluids lacking a closed-form constitutive equation,
by the transformation of the Fokker-Planck equations into a stochastic equivalent [15].
The viscoelastic fluid chosen in the simulations presented in this communication is the
FENE (Finite Extensible Nonlinear Elastic) fluid, for which an analytical constitutive
expression cannot be written [4]. Basically, it may be described as buoyant, non-interacting
‘dumbbells’ carrying the polymeric information though their internal degrees of freedom
(configuration field Q), diluted in a Newtonian fluid. The elastic behaviour of the fluid is
close to a Hookean when slight elongation is applied, whereas the spring-like force grows
unbounded as one approaches to the maximum elongation Q0.

F FENE =
HQ

1 −
(
|Q|
|Q0|

)2 (7)

The Fokker-Planck diffusion equations for the FENE fluid adopt the form [15]:

∂ψ

∂t
=

2
ζ

(
∂

∂Q′ · F
FENEψ

)
−

(
∂

∂Q′ ·
[
κ · Q′]ψ)

+
2kT
ζ

(
∂

∂Q′ ·
∂

∂Q′ψ

)
(8)

where ζ is the friction coefficient, related to the relaxation time typical of any viscoelastic
fluid according to

λH =
ζ

4H
(9)

ψ is the distribution function in the original configuration space, and κ = (∇u)t is the
transposed of the velocity gradient. The stochastic equivalent may be expressed as:

dQ =

κ · Q − 1
2λH

Q

1 − Q2

b

 dt+
√

1
λH

ðW (10)

with Q = Q′
√

H
kT , and W a Wienner process. As it entails a generation of random num-

bers, we follow Öttinger ([15]) substituting the Gaussian distributions of the Wienner
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process by far cheaper uniform distributions, with the adequate arrangements being per-
formed.
The stochastic equation (10) is integrated by means of a semi-implicit Predictor-Corrector
scheme which consits of an Euler-Forward algorithm for the ‘prediction’ plus a Crank-
Nicolson algorithm applied at any time interval [tn, tn+1] for the ‘correction’ step, whereas
the κ tensor in the forward step is approximated by an Euler-Backward scheme.

As for the trajectories of the ‘dumbbells’, a time-adaptive version of the mid-point
plus fixed-point iterative algorithm has been implemented for those particles not mee-
ting the convergence criteria, shortening the integration step and the pseudo-foot of the
characteristic to be computed.

Figure 1: Time-adaptive scheme for the computation of the trajectories of the dumbbells.

Since this particles are moving within a domain, a search-and-locate algorithm must be
provided. An extended, more robust version of the original algorithm proposed by Allievi
and Bermejo [2] has been implemented for unstructured bidimensional meshes, and it is
sketched below:

• The method may be divided into two modes: the so-called ‘standard’ and ‘angular’
modes.

1. Standard mode: this mode should work in most conventional, connected do-
mains, lacking acute angles. Following the theory in [2], additional (secondary,
tertiary) criteria based on the value of the elemental basis functions are develo-
ped, and recurrent backwards behaviour used to detect possible wrong selection
of element.

2. Angular mode: a number of succesive angular incrementes are allowed in order
to turn round possible hollows and corners.

• All in all, the algorithm is as fast as the original one for conventional meshes, and
capable of detecting particles on unstructured non-connected domains.

2.3. Micro-Macro Coupling.

The computation of the polymer stress tensor by means of a fitting equation considering
the internal degrees of freedom of the kinematic model occupies this section. For the FENE
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model, that relation may be expressed in terms of second moments of the configuration of
the ‘dumbbells’ as:

τ p = −nkBT

 QQ

1 − Q2

b

− δ

 (11)

An implementation of the mixed ‘Finite Element / Natural Element’ computation method,
similar to that recently proposed in [1] is herewith presented (see figure 3):

1. Each element is divided into three zones: for every node, a sub-elemental zone is defi-
ned containing the current node, the centroid of the element as well as the midpoints
of the sides common to that node.

2. An average of the configurations of all particles belonging to each sub-elemental
zone is performed, and the resulting value is assigned to the center of gravity of the
sub-elemental zone.

3. A weighted average of the configurations of every sub-elemental zone belonging to
each node provide the final value for the stress tensor at each node. The weights are
the ratio between the areas of the sub-elemental zone and the total ‘mixed-element’
area.
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Figure 2: Two non-connected domains for the test of the search-and-locate algorithm.

Figure 3: Finite/Natural Element computation method for the polymer stress tensor.
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3. Benchmark problem. Planar contraction 10:1.

The current implementation was tested in a severe die-entry flow, 10 to 1 contraction,
with a FENE fluid. Beforehand, the computation method for the stress tensor was checked
in pure shear and elongational flows, and its results successfully compared to those showed
in [8]. Free-stress boundary conditions were implemented instead of the more commonly
imposed velocity profile at the outlet ([6],[7]) as to improve the flexibility of the method
should complex domains be used.
The robustness of the method was additionally tested rising the Weissenberg number,
which is defined [17] as:

We = 2λH
U

D
(12)

where U,D are the mean velocity and diameter at the outlet, respectively. For this pur-
pose, elastic effects were to be highlighted so that only a gain in the relaxation time was
considered. Appropriately reducing the time step, a maximum Weissenberg number of
We = 200 has been achieved so far.
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Figure 4: Streamlines for increasing Weissenberg number. Notice the vortex size.
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Figure 5: Vertical component of the velocity, close to the die-entry.

4. Conclusions.

An improved, more robust version of the original CONNFFESSIT approach has been
presented. New features include the method of characteristics for the integration of the
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macroscopic equations, an extended ‘search-and-locate’ algorithm or the computation of
a first degree polymer stress tensor. The results show remarkable ability of the method to
achieve high Weissenberg numbers, with no stabilization techniques being employed.
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[12] M. Laso, H.C. Öttinger. Calculation of viscoelastic flow using molecular models: the CONNFFESSIT
approach. J. Non-Newtonian Fluid Mech., 47:1-20, 1993.

[13] A. S. Lodge. On the use of convected coordinate systems in the mechanics of polymer solutions. Proc.
Camb. Phil. Soc., 47:575-584, 1951.

[14] J.G. Oldroyd. On the formulation of rheological equations of state. Proc. Roy. Soc. Lond. A, 200:523–
541, 1950.
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