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Resumen

We study some generalizations of potential Hamiltonian systems (H(x, y) = y2 +
F (x)) with one degree of freedom. In particular, we are interested in Hamiltonian
systems with Hamiltonian functions of type H(x, y) = F (x) + G(y) arising in applied
mechanical problems. We present an algorithm to plot the phase portrait (include the
behavior at infinity) of any Hamiltonian system of type H(x, y) = F (x)+G(y), where
F and G are arbitrary polynomials. We are able to give the full description in the
Poincaré disk according to the graphs of F and G, extending the well-known method
for the “finite”phase portrait of potential systems.

1. Introduction

The algorithm to plot the finite phase portrait of potential systems is a well-known and
classical example of qualitative theory of ordinary differential equations. The clue to be
able to topologically classify this type of Hamiltonian systems is, obviously, the simplicity
of its energy function,

H(x, y) =
y2

2
+ F (x),

with F ∈ C1(IR) (see Figure 1).
The fact that H “depends”basically on F (x) allows to relate the phase portrait of

{x′ = −Hy(x, y), y′ = Hx(x, y)} with the graph of the one-variable function F (x). This
kind of reduction was also explored in [2] for Hamiltonian systems of type H(r, θ) =
r2/2 + rn+1 g(θ).

The aim of this work is to extend this type of results to Hamiltonian systems de-
pending of more than one function. We have chosen a natural generalization of potential
systems, those with energy function H(x, y) = F (x) + G(y), which covers a wide range
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Figura 1: Finite representation of the phase portrait of a potential systems; minima of F
coincide with center points while maxima coincide with saddles.

of conservative physical models. We provide an algorithm to obtain the global (along the
paper, “global”means that includes the behaviour at infinity) phase portrait of polynomial
Hamiltonian systems of the form

x′ = −G′(y), y′ = F ′(x), (1)

where F and G are arbitrary polynomials. We will refer to this vector field as XH . Our
description includes the classical classification of finite critical points of smooth potential
systems.

To fix notation, we write:

F ′(x) = an xn + · · ·+ a1 x, an 6= 0; G′(y) = bm ym + · · ·+ b1 y, bm 6= 0. (2)

In the next two sections we provide the results that support the algorithm. For the
sake of space, this document only presents the main stream to apply the algorithm, but
does not cover all the proofs and details.

2. Bounded dynamics

Next two results are useful to determine the behaviour of bounded orbits of the system
(1).

Proposition 1 (Finite critical points) Let P = (x0, y0) be a finite singular point of
system (1). Then,

(a) P is a saddle if and only if F has a maximum (resp., a minimum) at x0 and G has
a minimum (resp., a maximum) at y0.
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(b) P is a center point if either F has a maximum at x0 and G has a maximum at y0

or F has a minimum at x0 and G has a minimum at y0.

(c1) P is a cusp point if either F has an inflection point at x0 or G has an inflection
point at y0.

(c2) If F has an inflection point at x0 and G has an inflection point at y0, then P is a
critical point formed by the union of two hyperbolic sectors.

Saddle points will be denoted by S; centers arising from two maxima will be denoted
by C−, while those coming from two minima will be denoted by C+. All other types of
finite critical points will be denoted by D.

The bounded separatrices of a saddle organize themselves according to the rules of the
following proposition.

Proposition 2 (Bounded separatrices)

Any center of type C+ is embraced by the proximal separatrices of the neighbouring
saddle S∗ which energy level satisfies

H(S∗) = mı́n{S : H(S) > H(C+)}.

Any center of type C− is embraced by the proximal separatrices of the neighbouring
saddle S∗ which energy level satisfies

H(S∗) = máx{S : H(S) < H(C+)}.

If the four separatrices of a saddle S embrace the period annuli of a set of centers
C := {C1, . . . , Cn}, then C ∪ S ∪ W u,s(S) can be treated as a new center with the
same energy level than S.

3. Unbounded dynamics

In order to study the behaviour of system (1) near infinity we use Poincaré compac-
tification (see for instance [3]). If we call {X, Y, Z} the coordinates in which the sphere
is expressed, the equator lies on Z = 0. Along the paper we are going to use both charts
(U1, F1) ({X > 0}) and (U2, F2) ({Y > 0}) of the vector field (1) extended to the sphere.
Additionally, we denote by (V1, G1) ({X < 0}) and (V2, G2) ({Y < 0}) the two charts on
the opposite side of (U1, F1) and (U2, F2) respectively.

Depending on the sign and parity of n − m we will use either chart, as it can be
appreciated from the following cases:
Case 1: n > m.

In the (U1, F1) chart the vector field takes the form




z1
′ = zn

2

(
z1 G′( z1

z2
) + F ′( 1

z2
)
)

= an + an−1z2 + · · ·+ a1z
n−1
2 + bmzm+1

1 zn−m
2 + · · ·+ b1z

2
1z

n−1
2 ,

z2
′ = zn+1

2 G′( z1
z2

) = zn−m+1
2 (bmzm

1 + bm−1z
m−1
1 z2 + · · ·+ b1z1z

m−1
2 ).

(3)
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We note that there are no critical points on {z2 = 0} since an 6= 0.

In the (U2, F2) chart the vector field can be written as




z′1 = −zn
2

(
G′( 1

z2
) + z1 F ′( z1

z2
)
)

= −bmzn−m
2 − · · · − b1z

n−1
2 − anzn+1

1 − · · · − a1z
2
1z

n−1
2 ,

z′2 = −zn+1
2 F ′( z1

z2
) = −anzn

1 z2 − · · · − a1z1z
n
2 ,

(4)

which has a unique critical point, z1 = z2 = 0, on {z2 = 0}.
Case 2: n = m

On the (U1, F1) chart, the vector field becomes
{

z′1 = (an + bn zn+1
1 ) + (an−1 + bn−1 zn

1 )z2 + · · ·+ (a1 + b1 z2
1)z

n−1
2 ,

z′2 = z2(bn zn
1 + · · ·+ b1 z1).

(5)

We note that critical points at infinity are given by zn+1
1 = −an

bn
.

On the (U2, F2) chart the vector field is written
{

z1
′ = −bn − bn−1 z2 − · · · − b1 zn−1

2 − an zn+1
1 − an−1 zn

1 z2 − · · · − a1 z2
1 zn−1

2 ,

z′2 = −z2 (an zn
1 + · · ·+ a1 z1 zn−1

2 ),
(6)

and the critical points at infinity are given by zn+1
1 = − bn

an
.

When n is odd and bn
an

< 0, both (5) and (6) have 4 critical points at infinity, which
coincide; if bn

an
> 0, there are no critical points at infinity. When n is even, both (5) and

(6) have 2 critical points at infinity, which coincide.
Case 3: n < m. After an appropriate change of variables, this case is the equivalent to
Case 1. Without loss of generality, then, we will omit its study and concentrate on system
(6), defined on chart (U2, F2).

One of the crucial steps to obtain the global phase portrait is to determine which
separatrices tend (both for positive and negative times) to critical points at infinity. For
this purpose, we need to distinguish special maxima and minima of functions F and G,
which apply for the case that S = (x∗, y∗) is a saddle:

Definition 1 Given a critical point S = (x∗, y∗) of system (1), we say that:

x∗ satisfies the property l (resp., L) if F (x∗) is a minimum (resp., maximum) of F
and F (x∗) < F (x) (resp., F (x∗) > F (x)) for each x < x∗.

x∗ satisfies the property r (resp., R) if F (x∗) is a minimum (resp., maximum) of F
and F (x∗) < F (x) (resp., F (x∗) > F (x)) for each x > x∗.

y∗ satisfies the property d (resp., D) if G(y∗) is a minimum (resp., maximum) of G
and G(y∗) < G(y) (resp., G(y∗) > G(y)) for each y < y∗.

y∗ satisfies the property u (resp., U) if G(y∗) is a minimum (resp., maximum) of G
and G(y∗) < G(y) (resp., G(y∗) > G(y)) for each y > y∗.

Additionally, we define the following properties:
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The saddle S∗ = (x∗, y∗) satisfies property (h1) if x∗ satisfies both the properties
r and l. Analogously, we will say that it satisfies property (H1) if x∗ satisfies both
the properties R and L.

The saddle S∗ = (x∗, y∗) satisfies property (h2u) (resp., (H2U), (H2d) or (H2D))
if y∗ satisfies property u (resp. U , d or D) and its maximal (resp., maximal, minimal
or minimal) with respect to this property.

Finally, we say that (x(t), y(t)) is an upper (resp., lower) separatrix of the saddle
S if there exists ε > 0 such that for |y(t)− y∗| < ε, we have y(t) > y∗ (resp., y(t) < y∗).

Next result (and the corollaries not shown here) gives the behavior of the main sepa-
ratrices that reach or come from a critical point at infinity.

Proposition 3 Let S = (x∗, y∗) be a finite saddle point. Then:

If S satisfies the properties (h1) and (H2U), or (H1) and (H2u), the upper separa-
trices of S form an elliptic sector E at +∞ (that is, the critical point of the vector
field on chart (U2, F2) on {z2 = 0}).

If S satisfies the properties (h1) and (H2D), or (H1) and (H2d), the lower separa-
trices of S form an elliptic sector E at −∞ (that is, the critical point of the vector
field on chart (V2, G2) on {z2 = 0}), see Figure 4.

Finally, for the infinite critical points we can use Hartmann Theorem in case they are
hyperbolic. However, since the degrees n, m and the coefficients an and bm give all the
information about the index of the vector field on R2, we can deduce the index of the
infinite critical points from Poincaré-Hopf Theorem. Then, with the help of Proposition 3
and additional reasonings, we can give the topological classification of all infinite critical
points.

More precisely the information about the finite index allows to establish the following
result:

Proposition 4 Suppose first that n−m is odd and let q∞ a critical point on the equator
of the Poincaré sphere. Then,

If q∞ does not have elliptic sectors, q∞ is a node.

If q∞ has one elliptic sectors, q∞ is the union of this elliptic sector and a hyperbolic
one, each of them lying on a different hemisphere of the Poincaré sphere (see Figure
2)(a).

Suppose now that n−m is even. Then:

If iR2 = −1, q∞ is the union of two elliptic sectors (see Figure 2)(b).

If iR2 = 1, q∞ is the union of two hyperbolic sectors (see Figure 2)(c).
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Figura 2: Different types of critical points on the equator of the Poincaré sphere.

4. Algorithm

Combining propositions 1, 2, 3 and 4 one can describe the complete phase portrait on
the Poincaré sphere. In Figures 3 and 4 we give a couple of examples, explaining the whole
procedure to build up the global phase portrait.
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Figura 3: The saddles S10 and S3 become S−10 and S+
3 respectively, see Proposition 2.

There is a connection between each of the saddles S9, S8, S6, S5 and a critical point at
infinity. Critical points at infinity are nodes, see Proposition 4.
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F‘=(x-4)(x-3)(x+5) G’=(y-1)(y+2)
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Figura 4: The saddle S2 satisfies the properties (h1) and (H2D). From Proposition 3, the
lower separatrices of the saddle S2 form an elliptic sector at −∞ and so S2 becomes S+

2 .
Then, the saddle S4 embraces the “closed heteroclinic loop”S+

2 and so S4 becomes S+
4 . At

the end, the saddle S5 embraces S+
4 . Additionally, the singular point at infinity is a union

of elliptic and hyperbolic sectors, see also Figure 2(a).
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