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22561-070, Rio de Janeiro, Brazil.

E-mails: smcm@lncc.br, rcca@lncc.br.

Keywords: advection dominated problems, finite element method, numerical analysis

Resumen

The numerical analysis of nonlinear discontinuity-capturing methods applied to
advection dominated problems has not been completely established yet. Some par-
ticular results give very good contribution towards the existence of discrete solutions
although no uniqueness results are demonstrated. This paper studies the conditions
for the uniqueness of the solution when using to the CAU (Consistent Approximate
Upwind) Petrov-Galerkin for solving advection dominated problems. The main issue
in this analysis is that it relies on the optimality property of the CAU solution which
does not depend on any restrictions of the approximation spaces.

1. Introduction

It is well known that numerical simulations of advection-dominated problems present
numerical difficulties related to the lack of stability: because advection dominates diffusion,
classical Galerkin finite element (FE) methods generate unstable approximations, which
usually exhibit spurious oscillations. The SUPG (Streamline Upwind Petrov-Galekin)
method, proposed by Brooks and Hughes [1], was the first variationally consistent, stable
and accurate finite element model for advection dominated problems. For regular solutions
this method presents quasi-optimal rates of convergence for the streamline derivative and
was first analyzed by Johnson et al. [4]. Nevertheless, for nonregular solutions, localized
oscillations are still observed in the neighborhood of steep gradients meaning that the
streamline is not always the appropriate upwind direction. To overcome this lack of mono-
tonicity many discontinuity capturing terms were designed to enhance stability either in
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a linear [5] or nonlinear way [2, 3]. Quite promising results were obtained using the non-
linear CAU (Consistent Approximate Upwind) finite element method proposed in [2]. The
systematic way of updating the upwind direction in the CAU method results in adding to
the SUPG formulation a nonlinear discontinuity-capturing term in a consistent way, en-
gendering an additional stability in the direction of the approximate gradient. The theory
has been refined over the years in several directions.

The numerical analysis of the CAU method, even to higher-order elements, has been
discussed in a recent paper [3]. The stability analysis was shown based on a linearized
iterative scheme, which uses the solution of the SUPG method as an initial guess in order
to solve the CAU (nonlinear) method. However, this analysis has some open ends [6]
concerning the solvability of the iterative scheme. Therefore, our main goal is to improve
the developed analysis. In particular, we address the problem associated to the convergence
of the linearized iterative scheme as well as the uniqueness of the solution for the nonlinear
approximate method.

2. Mathematical Model

We are interested in steady-state solutions of convection-dominated reaction-diffusion
scalar problems of the form

Lφ := γφ + u · ∇φ− ε∆φ = f in Ω
φ = 0 on Γ, (1)

where u denotes a given velocity field, ε is the given (small) positive diffusion coefficient,
γ is the given non-negative reaction coefficient and f is a source term. The problem is
defined in the domain Ω ⊂ Rn with boundary Γ.

The Galerkin formulation for problem (1) reads: find φh ∈ V p
h ⊂ H1

0 (Ω) such that,

B(φh, ηh) = (f, ηh), ∀ηh ∈ V p
h ,

with
B(φh, ηh) := ε(∇φh,∇ηh) + (u · ∇φh, ηh) + γ(φh, ηh)

and V p
h = {ηh ∈ C0(Ω); ηh|Ωe ∈ P p ∀Ωe, ηh|Γ = 0}, where P p is the set of interpolation

polynomials of degree less or equal p defined in each finite element Ωe with characteristic
element length denoted by h.

For advection-dominated problems, when ε is taken very small in problem (1), it is well-
known that classical Galerkin and stabilized finite element methods generate global and
local unstable approximations, respectively. As a remedy, discontinuity-capturing variants
are considered as an additional (but nonlinear) stabilization. Quite promising results have
been obtained using the CAU (Consistent-Upwind Petrov-Galerkin) [2, 3] formulation,
which reads as: find φh ∈ V p

h such that

D(φh, ηh) +
Ne∑

e=1

(L(φh)− f, τc[u− v] · ∇ηh)|Ωe = F (ηh), ∀ηh ∈ V p
h , (2)
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with

D(φh, ηh) := B(φ, η) +
Ne∑

e=1

(Lφh, τsu · ∇ηh)|Ωe ;

F (ηh) := (f, ηh) +
Ne∑

e=1

(f, τsu · ∇ηh)|Ωe ,

where τs and τc are the stabilization parameters from the SUPG [1, 4] and CAU [2]
methods, respectively. There are a variety of possible designs for these parameters in the
literature [1, 2, 3, 4, 6, 5]. The auxiliary vector field v in equation (2) is a modified velocity
field such that it satisfies the original partial differential equation (1) for the approximate
solution φh ∈ V p

h in each element. This requirement implies

[u− v(φh)] · ∇φh = L(φh)− f =: R(φ). (3)

Then, the vector field v is determined such that it is the velocity field closest to the
real velocity field u in the L2 sense. Hence, it is obtained by solving the following local
minimization problem: find u ∈ L∞(Ω)d such that

‖u− v‖L2(Ωe) ≤ ‖u−m‖L2(Ωe), ∀m ∈ Qm, (4)

with
Qm = {m; m · ∇φh − ε∆φh + γφh − f = 0 in Ωe, e = 1, . . . , Ne}.

The solution of (4) together with (3) leads to
{

v − u = 0 , if |∇φh| = 0 ;
u− v = R(φh)

|∇φh|2∇φh , otherwise.
(5)

Thus, if |∇φh| = 0, the linear SUPG method is recovered. Otherwise, |u− v| = |R(φh)|
|∇φh| =:

β(φh), which ensures that, in each element Ωe, limh7→0v(φh) = u, when limh7→0φh = φ.
Besides, as v is selected minimizing ‖u− v‖L2(Ωe), the following inequality is verified

β(φh) =
|R(φh)|
|∇φh| ≤

|R(ψh)|
|∇ψh| = β(ψh), ∀ ψh ∈ V p

h . (6)

Due to this property, one may conclude that the approximate solution of (2) using (5) is
optimal. This is a remarkable feature of this method. In fact, the property (6) is crucial
to yield the uniqueness result presented in next section.

3. Uniqueness of solution

Let the CAU method (2) be re-written as: find φh ∈ V p
h such that

a(φh;φh, ηh) = F (ηh), ∀ηh ∈ Up
h , (7)

where

a(φh;φh, ηh) := D(φh, ηh) +
Ne∑

e=1

c(φh; φh, ηh)|Ωe , (8)
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with

c(φh;φh, ηh)|Ωe :=
(

τc
|R(φh)|2
|∇φh|2 ∇φh,∇ηh

)
|Ωe .

The non-symmetric bilinear form D(·, ·) is coercive (see, for example, [3]), which implies
the following SUPG-stability property

D(wh, wh) ≥ C(θ)|||wh|||2, ∀wh ∈ V p
h , (9)

with C(θ) = 1 − 1/2
√

1 + θ, where θ is defined in [5]. The bilinear form D(·, ·) is also
continuous in the following stabilized mesh dependent norm:

|||ηh|||2 :≡ ε‖∇ηh‖2 + γ‖ηh‖2 +
Ne∑

e=1

τs‖u · ∇ηh‖2
Ωe

. (10)

yielding uniqueness and existence solution for the SUPG method [4], taking τc = 0 in
problem (7). Besides, providing that τc ≥ 0, c(ηh; ηh, ηh)|Ωe ≥ 0 for all ηh ∈ V p

h , the
stability of the CAU method follows immediately from the previous SUPG stability result,

a(ηh; ηh, ηh) ≥ C
′
(θ)|||ηh|||2. (11)

For a quite similar method, it was assumed in [7] that the quantity |β(·)| satisfies

q0 ≤ |β(φh)| ≤ q1, (12)

for q0, q1 > 0, implying coercivity and continuity for the bilinear form a(ηh; ·, ·) and a
unique solution that comes from the Lax-Milgram theorem [5, 6, 7]. However, a proof of
the lower bounded is not exhibited in [7]. Latter on, it was applied a variant of Brouwer’s
fixed point theorem to prove the existence of a discrete solution for the CAU nonlinear
problem (7) but a uniqueness result remained still open [5]. Therefore, using only the
optimal-CAU property (6) we will show this fact in the following theorem.

Theorem 1: Assuming that the minimization property (6) holds, the CAU method (7)
has a unique solution φh ∈ V p

h .
Proof: Consider two solutions φh and φ̃h belong to V p

h of problem (7). Using the definition
of function β(·), we have

D(φh − φ̃h, ηh) +
Ne∑

e=1

c(φh;φh, ηh)−
Ne∑

e=1

c(φ̃h, φ̃h, ηh) = D(φh − φ̃h, ηh)

+
Ne∑

e=1

[
(τc[β(φh)]2∇φh,∇ηh)|Ωe − (τc[β(φ̃h)]2∇φ̃h,∇ηh)|Ωe

]
= 0. (13)

From the optimal property of the CAU solution, β(φh) ≤ β(ψh), ∀ψh ∈ V p
h , that is,

β(φh) ≤ β(φ̃h), since φ̃h ∈ V p
h . Similarly, β(φ̃h) ≤ β(φh) as well. Hence,

β(φh) = β(φ̃h) = α, (14)
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where α is a non-negative constant. Notice that α = 0 only when R(φh) = 0, that is, φh

satisfies the residual equation and the non-linear operator vanishes. Now, substituting (14)
into (13) yields

D(φh − φ̃h, ηh) +
Ne∑

e=1

(
τcα

2(∇φh −∇φ̃h),∇ηh

)
|Ωe = 0, ∀ ηh ∈ V p

h . (15)

Next, taking ηh = φh − φ̃h ∈ V p
h and using the SUPG-stability property (9), the equation

(15) is re-written as

C(θ)|||φh − φ̃h|||2 + α2
Ne∑

e=1

(
τc(∇φh −∇φ̃h),∇φh −∇φ̃h

)
|Ωe ≤

C1

{
|||φh − φ̃h|||2 +

Ne∑

e=1

τc|∇φh −∇φ̃h|2Ωe

}
≤ 0,

where C1 = max{C(θ), α2} is a positive constant. Therefore, since τc ≥ 0, the above
inequality yields φh = φ̃h . ¤

4. Linearized problem

To solve the nonlinear problem (7) it is necessary to consider iterative methods which
are intended to keep the main properties of the CAU method at each iteration. This can
be achieved by using the following simple method: from the previous computed iterate
solution φn

h, n ∈ N , we get

c(φn
h;φn+1

h , ηh)|Ωe = (R(φn+1
h ), τn

c [u−v(φn
h)]·∇ηh)|Ωe =

(
τc|β(φn

h)|2∇φn+1
h ,∇ηh

) |Ωe , (16)

where

τn
c = τc(u− v(φn

h)) and (u− v(φn
h)) =

R(φn
h)

|∇φn
h|2
∇φn

h.

Hence, the iterative algorithm consists in: given φn
h and [u − v(φn

h)], find {φn+1
h } ∈ V p

h

such that
a(φn

h; φn+1
h , ηh) = F (ηh), ∀ηh ∈ V p

h , (17)

where

a(φn
h; φn+1

h , ηh) = D(φn+1
h , ηh) +

Ne∑

e=1

c(φn
h; φn+1

h , ηh)|Ωe

is a non-symmetric bilinear form defined on V p
h × V p

h , for a given φn
h ∈ V p

h . It is coercive
and continuous [3, 5, 6] in the norm (10). Consequently, the linearized problem (17) is
uniquely solvable via the Lax-Milgram theorem. The zero-th iterative solution φ0

h is the
SUPG solution, which can be seen as the zero order residual correction for each τ0

c = 0.
Due to the property (6), any iterative solution {φn+1

h } of (17) satisfies

β(φh) =
|R(φh)|
|∇φh| ≤

|R(φn
h)|

|∇φn
h|

= β(φn
h). (18)
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In addition, the sequence of solutions {φn+1} is also upper bounded [3], that is, there is a
positive constant C, independent of n, such that,

|||φn+1
h ||| ≤ C‖f‖, ∀n. (19)

From this fact and assuming that {φn+1
h }, solution of the linearized problem (17), converges

to φh, solution of the nonlinear CAU method (7), when n 7→ ∞, we may prove that the
additional term c(φh, φh, ηh) does not degrade the rates of convergence as long as regular
solutions are concerned [3]. This result is presented in the following theorem.
Theorem 2: Considering ε = O(h) and τs = O(h/p) we arrive at the following a priori
error estimate:

|||φ− φh|||2 ≤ C

Ne∑

e=1

(
h

p

)2s+1

|φ|2s+1,Ωe
, (20)

where φ|Ωe ∈ Hk+1(Ωe) for some k ≥ 1, for any 0 ≤ s ≤ mı́n(p, k), p ≥ 1.
The proof of the previous result is based on an important open problem: to prove that

the sequence {φn+1
h } converges to φh, solution of the nonlinear CAU method (7), when

n 7→ ∞. Work in this subject is ongoing and will be addressed in a forthcoming paper.
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