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Reaction rate theory in solids is modified taking into account intrinsic localized modes or discrete breathers
(DBs) that can appear in crystals with sufficient anharmonicity, resulting in violation of Arrhenius’ law. Large-
amplitude oscillations of atoms about their equilibrium positions in the lattice cause local potentials of alternating
sign, which are described in terms of time-periodic modulations of the potential barriers for chemical reactions
taking place in the vicinity of DBs. The reaction rate averaged over large macroscopic volumes and times including
many DBs is increased by a factor that depends on the DB statistics. The breather statistics in thermal equilibrium
and in thermal spikes in solids under irradiation with swift particles is considered, and the corresponding reaction
rate amplification factors are derived.
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I. INTRODUCTION

The problem of escape from metastable states is of
importance to many fields of physics, chemistry, engineering,
and biology. It is well known that in thermal equilibrium
the fluctuation-activated reaction rate Ṙ is expressed by
Arrhenius’ law:

Ṙ = R0 exp(−Ea/kbT ), (1)

where R0 and Ea are the frequency factor and the activation
energy, respectively, kb is the Boltzmann constant, and T is the
temperature. As shown below R0 has dimensions of inverse
time. How can the interplay of nonlinearity and discreteness of
the lattice influence this law? It has been shown that in crystals
with sufficient anharmonicity a special kind of time-periodic
and spatially localized vibrations can appear, called intrinsic
localized modes or discrete breathers (DBs) [1–5]. DBs have
frequencies above or below the phonon band so that they
do not couple with phonons and thus are thermally stable.
Over the last decade much progress has been achieved in
the understanding of DB properties and their role in various
experimental situations. MacKay and Aubry [2] suggested that
the existence of DBs could result in apparent violation of
Arrhenius’ law, that is, the phenomenon of chemical reactions
taking place at much lower temperatures than expected.
Further development of this hypothesis by Archilla et al. [3]
has taken into account the DB statistics [4] for the evaluation
of the reaction rate due to the DBs having energies above the
activation energy. They have shown that, although there are
many fewer breathers than phonons, there may be many more
with energies above the activation energy, making them good
candidates to explain, e.g., low-temperature reconstructive
transformations observed in some layered insulators. In this
paper we show that reaction rates depend on DBs of all
energies due to effect of the time-periodic modulation of
the activation energy. Large-amplitude oscillations of atoms
about their equilibrium positions in the lattice cause local
potentials of alternating sign, which may be described in
terms of time-periodic modulations of the potential barriers
for chemical reactions taking place in the vicinity of DBs.

The paper is organized as follows. In Sec. II we present a
generic model for a Brownian particle escape from a potential
well with a barrier height periodically modulated in time. In
Sec. III we combine the reaction amplification rate due to
one DB with the breather statistics in thermal equilibrium
and in thermal spikes in solids under irradiation with swift
particles. In Sec. IV we present a quantitative comparison
of the proposed theory with experiments for equilibrium
and nonequilibrium systems. In Sec. V we discuss possible
extensions of the present model and some of the outstanding
problems. We summarize in Sec. VI.

II. ESCAPE RATE WITH ACCOUNT OF THE POTENTIAL
BARRIER MODULATION

Consider a heavily damped particle of mass m and viscous
friction γ , moving in a symmetric double-well potential V(x)
(see Fig. 1). The particle is subject to fluctuational forces
that are, for example, induced by coupling to a heat bath.
Such a model is archetypal for investigations in reaction-rate
theory [6]. The fluctuational forces cause transitions between
the neighboring potential wells with a rate given by the famous
Kramers rate:

ṘK = R0 exp(−�V /D), R0 = ω0ωb

2πγ
(2)

with ω2
0 = V ′′(xm)/m being the squared angular frequency of

the potential in the potential minima, and ω2
b = |V ′′(xb)/m|

the squared angular frequency at the top of the barrier;
�V is the height of the potential barrier separating the two
minima, and D is the Gaussian white-noise strength, which is
related to the temperature as D = kbT in the case of thermal
equilibrium.

In the presence of periodic driving of frequency � and
amplitude Vm, the double-well potential V (x,t) = V (x) −
(x/xm)Vm cos(�t) is tilted back and forth, thereby raising
and lowering successively the potential barriers of the right
and the left well, respectively, in an antisymmetric manner. If
the driving frequency is small compared to the thermalization
frequency, i.e., if � << ω0, then periodically modulated escape
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FIG. 1. Sketch of the double-well potential V(x) = (1/4)bx4−

(1/2)ax2. The minima are located at ±xm, where xm = (a/b)1/2. These
are separated by a potential barrier with the height given by �V =
a2/4b.

rates of the Arrhenius type may be used (adiabatic assumption
[7]):

Ṙ(t) = ṘK exp

[
Vm cos(�t)

D

]
. (3)

This expression is widely used in the theory of stochastic
resonance [7], which shows that noise-induced hopping
between the potential wells can become synchronized with
the weak periodic forcing. We are interested in another aspect
of this problem, namely, in the rate of escape from the
well averaged over the modulation period, 2π/�, which is
given by

〈Ṙ(t)〉 = ṘK

�

2π

∫ 2π/ �

0
exp

[
Vm cos(�t)

D

]
dt

= ṘKI0

(
Vm

D

)
, (4)

where the amplification factor I0(x) is the zero-order modified
Bessel function of the first kind.

In order to evaluate the average escape rate in a more general
case of an arbitrary modulation frequency we will use another
assumption, i.e., that the probability for a particle to escape
from a well in each “jump” is given by exp(−Ẽ), where Ẽ

is a random value that fluctuates around its mean value as
Ẽ = 〈E〉 + Em cos(ϕ̃) with a probability density for ϕ̃ given
by p(ϕ̃) = 1/2π . Then the integration over ϕ̃ will give for the
average escape rate the same expression as in the adiabatic
case:

〈Ṙ(ϕ̃)〉 = ṘK

1

2π

∫ 2π

0
exp[Em cos(ϕ̃)]dϕ̃ = ṘKI0(Em),

Em = Vm

D
.

This assumption is more general than the adiabatic one,
since it requires essentially only the independence of the

FIG. 2. Temperature dependence of the amplification factor I0,
for the average escape rate of a thermalized Brownian parti-
cle from a modulated potential barrier at different modulation
amplitudes.

fluctuational force acting on a particle (characterized by
the white noise) from the barrier modulation. In both cases the
amplification factor is determined by the modulation to noise
ratio, and it does not depend on the modulation frequency or
the mean barrier height.

Thus, although the periodic forcing may be too weak
to let the particle roll periodically from one potential well
into the other one (Vm < �V ), it can amplify the aver-
age reaction rate drastically if the ratio of the modula-
tion amplitude to the noise strength is high enough, as is
demonstrated in Fig. 2 for thermal equilibrium systems, in
which D = kbT .

III. BREATHER-INDUCED AMPLIFICATION OF
REACTION RATES

Large-amplitude oscillations of atoms about their equi-
librium positions in the lattice cause local potentials of
alternating sign, which may be described in terms of time-
periodic modulations of the potential barriers for chemical
reactions taking place in the vicinity of DBs. DBs may have
frequencies above or below the phonon band depending on
the system under consideration. Since the effective breather
lifetime is much longer than the atomic oscillation period,
we will assume the barrier modulation amplitude to be
constant during the breather lifetime and to be proportional
to the breather energy. Then the reaction rate at the breather
sites will exceed that elsewhere by the amplification factor
(4) determined by the breather energy EB . We are inter-
ested in the reaction rate averaged over large macroscopic
volumes and times including many DBs. Since DBs can
appear at any lattice site randomly, this average can be
found by multiplying the concentration (the mean number
per site) of breathers of a given energy,fB (E), into the
corresponding amplification factor, I0(E), and integrating
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over all possible DB energies normalized to the noise
strength:

〈Ṙ〉B = ṘK

[ ∫ Emod

Emin

fB(E)I0(E) dE

+
∫ Emax

Emod

fB(E)I0(Er ) dE

]
, E ≡ EB/D, (5)

Emod =
{

Emax, if Emax � Er

Er, if Emax > Er
,

where Er ≡ �V /D is the normalized reaction activation en-
ergy, and Emod is the maximum barrier modulation amplitude,
which is assumed to be equal to the barrier height for breathers
with energies higher than that.

In order to evaluate fB(E) we will use the DB statistics
developed in Refs. [3,4] for two-dimensional breathers. This
statistics theory is based on some simple hypotheses, which,
in principle, can be fairly general: (1) DBs in two and three
dimensions have a minimum energy Emin, (2) the effective
lifetime of a breather with energy E is given by τB(E) =
τ 0
B( E

Emin
− 1)z, with z and τ 0

B being constants (which means

that they do not change with the energy E) that depend on the
system. This law is the simplest mathematical expression that
takes into account that large breathers have longer lives than
smaller ones, with the lifetime of breathers with minimum
energy Emin equal to zero. It has to be considered as an
approximation because it is not derived from first principles.

In these terms, the rate equation for fB(E,t) can be written
as follows:

∂fB(E,t)

∂t
= KB(E) − fB(E,t)

τB(E)
, (6)

where KB(E) is the rate of creation of DBs with en-
ergy E > Emin. It has an obvious steady-state solution at
∂fB(E,t)/∂t = 0:

fB(E) = KB(E)τB(E). (7)

In the following sections we will consider the breather
formation by thermal activation and then extend the model
to nonequilibrium systems.

A. DB formation by thermal activation

The rate of creation of DBs is assumed to be proportional to
exp(−EB/kbT ) since breathers form from fluctuations through
an activation process [3,4]. In normalized energy units one has

KB(E) = K0
B exp(−E), E ≡ EB/kbT , (8)

whence it follows that under thermal equilibrium, the DB
energy distribution function fB(E) and the mean number of
breathers per site nB are given by

fB(E) = K0
Bτ 0

B

(
E

Emin
− 1

)z

exp(−E), (9)

nB =
∫ Emax

Emin

fB(E)dE

= K0
Bτ 0

B

exp(−Emin)

(Emin)z+1

∫ Emax−Emin

0
yz exp(−y)dy. (10)

Noting that 
(z + 1,x) = ∫ x

0 yz exp(−y) dy is the second
incomplete gamma function [3], Eq. (10) can be written as

nB = K0
Bτ 0

B

exp(−Emin)

(Emin)z+1

(z + 1,Emax − Emin). (11)

It can be seen that the mean DB energy is higher than the
averaged energy density (or temperature):

〈EB〉=kbT 〈E〉=kbT

∫ Emax

Emin
fB(E)E dE∫ Emax

Emin
fB(E) dE

→ kbT (Emin+z+1).

(12)

So far we have followed the reasoning of Ref. [3], in which
the mean reaction rate due to DBs is assumed to be determined
by breathers with energies higher than the reaction activation
energy (the potential barrier height), and hence it can be written
as follows:

〈Ṙ〉B = RB
0

∫ Emax

Er

fB(E)dE

= RB
0 K0

Bτ 0
B

exp(−Emin)

(Emin)z+1

∫ Emax−Emin

Er−Emin

yz exp(−y)dy, (13)

where Er ≡ �V /kbT is the normalized reaction activation
energy and RB

0 is the frequency factor that may be different
from R0 in Eq. (1) and it should be determined separately. It is
evident that in this model, the breather effect on reaction rate
vanishes if Emax � Er .

According to the present model, DBs of all energies
influence the reaction rate due to their persistent character
resulting in the reaction barrier modulation effect. Combining
Eqs. (9) and (5), the mean reaction rate averaged over all
breather energies takes the form

〈Ṙ〉B = ṘK〈A〉B, Emod =
{

Emax, if Emax � Er

Er, if Emax > Er
,

(14)

〈A〉B = K0
Bτ 0

B

[ ∫ Emod

Emin

(
y

Emin
− 1

)z

exp(−y)I0(y) dy

+
∫ Emax

Emod

(
y

Emin
− 1

)z

exp(−y)I0(Er )dy

]
, (15)

where 〈A〉B is the averaged amplification factor.
In order to make quantitative estimates one has to know

the product K0
Bτ 0

B and other parameters of DBs (z, Emin, Emax)
that depend on the system. We will use the results of numerical
simulations [3], in which the numbers of breathers and their
energy spectra have been calculated for a two-dimensional
network of 50 × 50 nonlinear oscillators cooled down from
the initial temperature of about 600 K. The mean number
of breathers per site nB was about 10−3, and according to
the energy spectra, all types of multibreathers and single
breathers with different symmetries have been formed with the
following range of parameters: z ≈ 0.5 − 3, Emin ≈ 4 − 16,
Emax ≈ 10 − 20. In order to fit approximately the numerical
form of fB(E), six breather types have been introduced, each
one characterized by its own parameters z, Emin, Emax, and
a relative probability to occur, p (Table I). Substituting these
data in Eq. (11), the product K0

Bτ 0
B can be estimated for each
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TABLE I. DB parameters deduced from numerical simulations [3] for six different DB types.

DB type 1 2 3 4 5 6

Emin
B = EminkbT (eV) 0.24 0.37 0.41 0.62 0.67 0.83

z 1.5 1.17 3 0.52 2.07 1.8
Emax

B = EmaxkbT (eV) − 0.47 – – – 0.95
p 0.103 0.026 0.281 0.097 0.202 0.290
K0

Bτ 0
B 0.35 2.3 773 1.2 × 103 1.8 × 105 9 × 106

DB type and used for the evaluation of the DB amplification
factor.

Figure 3 shows the amplification factor dependence on the
reaction activation energy according to the present model and
the model [3] assuming that all DBs have the same maximum
energy. The comparison demonstrates that the modulation
effect rapidly increases with increasing reaction barrier up
to the maximum DB energy, above which it becomes the only
mechanism of the reaction rate amplification. In this region the
amplification factor does not depend on the activation energy.

In this section as in Refs. [3,4], the rate of breather creation
was assumed to be proportional to exp(−EB/kbT ). However,
the necessary conditions for breather creation are not yet clear.
Some studies suggest that DBs in thermal equilibrium will be
generated only if the averaged energy density (or temperature)
is large enough for nonlinear terms in the equations of motion
to be relevant [8]. In the opposite case of rather small temper-
atures no breathers are expected to persist. As was argued in
Ref. [4], the basic mechanism leading to energy localization is
modulation instability of short-wavelength modes. The latter
is more effective if dissipation of long-wavelength phonons is
fast enough, which may explain the principal role of cooling
(i.e., transient process of relaxation of a nonequilibrium state
toward equilibrium) in the breather formation. A prominent
example is the relaxation of an initially strongly heated
lattice part modeled in Ref. [8]. In the following section we
will consider a natural example of such processes that take
place in solids under irradiation with swift particles. Apart
from fundamental aspects, this example is of considerable
technological importance in the fields of nuclear engineering
and radiation effects.

B. DB formation in radiation-induced thermal spikes

Penetrating into a solid, a heavy ion with the energy
exceeding 1 MeV/amu noticeably changes material properties
in a narrow cylindrical region (track) around its trajectory.
Since more than 90% of the energy loss of such projectiles
is due to the electron excitations [9], these changes are often
related to the local material heating called “thermal spike”
(TS) resulting from energy and momentum transfer from the
excited electrons to the lattice in the track [10,11]. As a result,
thermally activated processes are enhanced, which should be
taken into account in modeling of the radiation effects.

At the times of about 10−15 s electron gas within the track
becomes thermalized, and its temperature can reach 10–100 eV
[10,11]. This thermal spike dissipates due to the heat diffusion
in electron system and due to the heat transfer to the ion system,
which is described conventionally by a set of two differential
equations of the heat diffusion and exchange [12]:

∂Te

∂t
= χe�Te − αe(Te − Tp); αe ≡ αep

ce

, (16)

∂Tp

∂t
= χp�Tp + αp(Te − Tp), αp ≡ αep

cp

, (17)

subjected to the initial conditions Te,p(t = o) = θe,p(�r), where
ce,p and χe,p are the heat capacity and conductivity of each
subsystem, and αep is the electron-ion coupling coefficient.

Since the time of the energy transfer from a particle to the
medium is much less that the relaxation times of the medium,
one may consider the particle to be an instant source of energy
that causes some initial temperature distribution in electron
and phonon systems given by θe,p(�r), where the subscript e

(a) (b)

. . . . . . . .

FIG. 3. Amplification factor dependence on the reaction activation energy at T = 600 K according to the present model [Eq. (15)] and
the model [3] [Eq. (13)] assuming RB

0 = R0 and Emax
B = 1eV(a); Emax

B = 2eV(b) for all breather types. Other DB parameters are presented in
Table I.
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corresponds to electrons and p corresponds to phonons. For a
sufficiently long track in Z direction with axial symmetry of
the temperature distribution one has

θe,p(�r) = εe,p

ce,pL

1

4πρ2
0

exp

(
− ρ2

4ρ2
0

)
, (18)

where ρ is the radius vector modulus, ρ0is the straggling
coefficient, L is the track length, and εe,p is the energy
transferred to electrons or phonons, respectively.

Assuming the coefficients α,χ ,c to be temperature inde-
pendent, an analytical solution of the equation set could be
obtained [12,13]. Consider two limiting cases, which allow
making statistical analysis of the effect of thermal spikes
on reaction rates that depend exponentially on the lattice
temperature.

The limiting case, αep → 0, describes an adiabatic regime,
in which there is no energy transfer between the subsystems,
and the solution is given by [12]

Te,p(ρ,t) = εe,p

4πce,pL
(
χe,pt + ρ2

0

) exp

[
− ρ2

4
(
χe,pt + ρ2

0

)
]

.

(19)

This regime can be realized at short times at which the heat
exchange between the subsystems can be neglected:

t << t∗, t∗ = (αe + αp)−1, (20)

An opposite (asymptotic) regime, αep → ∞, can be real-
ized at sufficiently large times and distances from the trek
axis:

t >> t∗, ρ >> ρ∗, (ρ∗)2 = χe + χp

αe + αp

. (21)

In this regime, electron system cools down to the lattice
temperature, and subsequently both systems have a common
temperature, T ≈ Te ≈ Tp, given by the following expression,
which is similar to (19) but has effective heat conductivity,
χa ≡ (χece + χpcp)/ca , and heat capacity, ca ≡ ce + cp:

T ≈ 1

4πL

εa

ca

(
χat + ρ2

0

)exp

[
− ρ2

4
(
χat + ρ2

0

)
]

,

εa ≡ εe + εp. (22)

Now, we are interested in the reaction rate, 〈Ṙ〉T , averaged
over large macroscopic volumes and times dV dt including
many TSs. A mathematical scheme of this averaging procedure
has been developed by Lifshits et al. [12]. It reduces the
many-body problem of TSs in the phase volume dV dt to
the one-body problem, i.e., to the temperature field from one
spike. The main point of this scheme is the determination of
a four-dimensional volume in space and time, �(T ), in which
temperature is higher than T . In the case of cylindrical spike
of a length L, �(T ) is given by [12]

�(T ) = πL

∫ t0

0
ρ2(T ,t) dt, (23)

where ρ(T ,t) is the curve of constant temperature and t0(T ) is
the time at which ρ(T ,t) falls to zero. Then the mean reaction
rate can be written in the following form:

〈Ṙ(T )〉T =
∫ ∞

0
Ṙ(T̄ + T )P (T ) dT , P (T ) = −dW (T )

dT
,

W (T ) ≡ KT �(T ) = ∫ ∞
T

P (θ ) dθ, (24)

where W (T ) is the probability of the temperature deviation
from the mean value T̄ by more than T and KT = J/L is the TS
production rate, which is proportional to the flux of energetic
particles ϕ. The expression for 〈Ṙ(T )〉T can be rewritten as the
integral over W :

〈Ṙ(T )〉T =
∫ 1

0
Ṙ[T̄ + T (W )]dW. (25)

Thus, in order to evaluate 〈Ṙ(T )〉T one needs to derive the
dependence ρ(T ,t)from the solution T (ρ,t)given by Eqs. (19)
and (22), and then solve the equation ρ(T ,t0) = 0 with respect
to t0 and find expressions for W (T ) and T (W ). In the adiabatic
regime this procedure results in the following expressions for
W (Te,p) in each isolated subsystem [12]:

W (Te,p) ≈
(

T ∗
e,p

Te,p

)2

,

(T ∗
e,p)2 ≡ 1

16π

(
εe,p

L

)2
ϕ

χe,p(ce,p)2
. (26)

In the asymptotic regime one has a similar expression for a
common temperature probability distribution [13]:

W (T ) ≈
(

T ∗
a

T

)2

, (T ∗
a )2 ≡ 1

16π

(εa

L

)2 ϕ

χac2
a

. (27)

Consider this regime in more details, since it describes the
effect of thermal spikes in both subsystems on the reaction rate
that depends on the lattice temperature. The substitution of (1)
and (27) into (25) results in the following expression for the
mean reaction rate:

〈Ṙ(T )〉T ≈ [1 − W (T̄ )]Ṙ(T̄ ) + 2R0

(
kbT

∗
a

Ea

)2




(
2,

Ea

kbT̄

)
,

(28)

(2,x) = ∫ x

0 y exp(−y)dy.

The probability of the temperature deviation from the mean
value is usually very small [W (T̄ ) << 1], and so the first
term in (28) corresponds simply to Arrhenius’ law, which
depends exponentially on the mean temperature. The second
term in (28) describes the TS-induced addition to the mean
reaction rate, 〈Ṙ(T )〉TS. For sufficiently high activation energy
(Ea/kT̄ >> 1) it takes an especially simple form:

〈Ṙ(T )〉T S ≈ 2R0

(
kbT

∗
a

Ea

)2




(
2,

Ea

kbT̄

)
−−−−−−→

Ea
kbT

�1

2R0

(
kbT

∗
a

Ea

)2

, (29)

which is proportional to the irradiation flux J and does not
depend on the lattice temperature. It is also proportional to the
sum of the energies transferred to both subsystems squared,
(εe + εp)2. So even at εp << εe, when the initial energy
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FIG. 4. Dependence of the mean reaction rate on the mean
lattice temperature given by (28) for the case of ion irradiation
of a metal target at the following irradiation and material param-
eters: ϕ = 1014 ion/cm2s, εe + εp = 1 MeV, L = 2 × 10−4 cm,
A = 1013s−1, Ea= 1 eV.

transfer to the lattice is negligible, the reaction rate is increased
due to the energy transfer via the electron subsystem. The TS
effect on the reaction rate (1) is shown in Fig. 4 for the case of
a typical ion irradiation.

It can be seen that the mean reaction rate becomes
temperature independent below some threshold temperature
TTS, which increases with increasing activation energy and
irradiation flux as

TTS ≈ Ea

kb ln
[

1
2

(
Ea

kBT ∗
a

)2] . (30)

This fluctuating temperature background favors the DB
creation in the cooling phase of radiation-induced thermal
spikes. Averaging the local rate of creation of DBs (8) over
large macroscopic volumes and times including many TSs
one obtains the expression for the mean production rate of
DBs with energy (normalized to the mean temperature)E =
EB/kbT̄ :

〈KB〉TS(E) ≈ 2K0
B

(
T ∗

a

T̄

)2

E−2. (31)

Note that it is inversely proportional to the DB energy
squared in contrast to the exponentially strong dependence
of the local rate of creation of DBs. It follows from (31) [with
account of (7)] that the energy distribution function and the
mean steady-state concentration of breathers created in thermal
spikes are given by

〈fB〉TS(E) = 2K0
Bτ 0

B

(
T ∗

a

T̄

)2 (
E

Emin
− 1

)z

E−2, (32)

〈nB〉TS = 2K0
Bτ 0

B

(
kbT

∗
a

Emin
B

)2 ∫ Emax/Emin

1
y−2(y − 1)zdy. (33)

Temperature dependence of the mean concentration of DBs
formed by thermal spikes (33) and by thermal fluctuations (9)
is shown in Fig. 5. For the sake of simplicity, only one type
of DB was selected with parameters that would correspond

FIG. 5. Temperature dependence of the mean concentration of
DBs formed by thermal fluctuations (9) and by thermal spikes (33) at
the following irradiation and DB parameters: ϕ = 1014 ion/cm2 s,
εe + εp = 1 MeV, L = 2 × 10−4 cm, K0

Bτ 0
B = 1, Emin

B = 0.2 eV,
Emax

B = 1 eV, z = 9.

to the mean DB concentration of ∼10−3 with a mean DB
energy of ∼ 0.7 eV found in the numerical simulations [3]
at T ≈ 550K.

Combining (32) and (5), the mean reaction rate averaged
over all DBs created in TSs takes the form:

〈Ṙ(T )〉B,TS = ṘK

∫ Emax

Emin

〈fB〉TS(E)I0(E) dE = 〈A〉B,TSṘK,

(34)

〈A〉B,TS = 2K0
Bτ 0

B

(
kbT

∗
a

Emin
B

)2

×
[ ∫ Emod/Emin

1
y−2(y − 1)zI0(yEmin)dy

+
∫ Emax/Emin

Emod/Emin

y−2(y − 1)zI0(Er )dy

]
. (35)

Temperature dependence of the mean reaction rates with
account of DBs formed by thermal fluctuations (14) and by
thermal spikes (34) is shown in Fig. 6 along with the mean
reaction rate due to TS without account of DBs (29). It can
be seen that in spite of the fairly low concentration of DBs
formed by thermal spikes, their contribution to the TS-induced
enhancement of the reaction rates can be very significant.

Naturally, the DB effect depends on their parameters
(K0

Bτ 0
B , z, Emin, Emax) that depend on the system. To show

some of the trends let us express the Eq. (34) in the following
form

〈Ṙ(T )〉B,TS = 〈A〉B〈Ṙ(T )〉TS, (36)

〈A〉B = K0
Bτ 0

B

(
Ea

Emin
B

)2

exp

(
− Ea

kbT̄

)

×
[ ∫ Emod/Emin

1
y−2(y − 1)zI0(yEmin) dy

+
∫ Emax/Emin

Emod/Emin

y−2(y − 1)zI0(Er ) dy

]
, (37)
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FIG. 6. Temperature dependence of the mean reaction rates with account of DBs formed at thermal equilibrium (a) and in thermal spikes
(b) at the following irradiation and DB parameters: ϕ = 1014 ion/cm2 s, εe + εp = 1 MeV, L = 2 × 10−4 cm, K0

Bτ 0
B = 1, Emin

B = 0.2 eV,
Emax

B =Ea= 1eV, z = 9.

where the amplification factor 〈A〉B does not depend on irradi-
ation conditions and is determined only by DB parameters and
by the reaction activation energy, similar to that for thermal
equilibrium breathers defined by (15). Their comparison is
shown in Fig. 7.

The common trend is a very strong dependence on the DB
decay exponent, whereas the dependence on the maximum
DB energy is qualitatively different. The concentration of
high-energy breathers at thermal equilibrium (if any) is
exponentially low, and so their contribution to the reaction
rate is insignificant. On the other hand, the DB production
rate in thermal spikes (31) is inversely proportional to the DB
energy squared, and so high-energy breathers play a major role
in the reaction rate amplification due to their relatively longer
life times. Temperature dependence of the DB amplification
factors is rather weak as demonstrated in Fig. 8 for two
different values of the maximum DB energy.

IV. COMPARISON WITH EXPERIMENTAL DATA

A. Reconstructive transformations in mica muscovite

Some silicates experience reconstructive transformations,
which implies the breaking of the bond between silicon and
oxygen, a particularly strong one. Therefore, high activation

energies and a very slow reaction speed are expected. In
the laboratory, temperatures above 1000 ◦C are necessary to
observe the transformations in a relatively short period of time.
In nature, many years are required. However, experiments in
some layered silicates such as mica muscovite have been
performed, in which about 36% of muscovite has been
transformed into lutetium disilicate in three days at 300 ◦C [3].
The activation energy of the reconstructive transformations
have been estimated to be 1–2 eV, which would require,
according to Arrhenius’ law (1), the transformation time
larger than the experimental time by a factor of 104–105.
The lack of explanation from conventional chemical kinetics
suggested the exploration of new hypotheses. In particular,
the authors [3] explored the breather hypothesis assuming that
in mica muscovite, there exist DBs that have enough energy
to overcome the activation energy, and that there are enough
of them to influence the reaction speed significantly. They
concluded that the DB-induced increase of the reaction rate
would be roughly equal to the ratio between the number of
DBs and the number of phonons above the activation energy,
and estimated the ratio to be about 104–105, in agreement
with experimental observations. However, the estimate was
made assuming that the maximum DB energy was higher than
the reaction barrier, which was not supported by numerical

. . . . . .

FIG. 7. Dependence of the DB amplification factors at thermal equilibrium (15) and under irradiation (37) at room temperature on the DB
decay exponent and maximum energy at the following parameters: K0

Bτ 0
B = 1, Emin

B = 0.2 eV, Ea= 1 eV; (a) Emax
B =Ea= 1 eV; (b) z = 9.

041124-7



DUBINKO, SELYSHCHEV, AND ARCHILLA PHYSICAL REVIEW E 83, 041124 (2011)

FIG. 8. Temperature dependence of the DB amplification factors at thermal equilibrium (15) and under irradiation (37) at the following
parameters: K0

Bτ 0
B = 1, Emin

B = 0.2 eV, z = 9,Ea= 1 eV; (a) Emax
B = 1 eV, (b) Emax

B = 2eV.

simulations (Table I), according to which the maximum DB
energy was found to be about or below 1 eV for some DB
types and was not specified for others.

The present model seems to solve this problem by demon-
strating that reaction rates are increased by DBs of all energies
due to effect of the time-periodic modulation of the activation
energy. Figure 3 shows that the DB amplification factor can
be as high as 4 × 104–6 × 106 even in the case of the
activation energy being higher than the DB maximum energy,
where the model [3] would give zero result. Thus we can
conclude that the breather hypothesis can explain the
low-temperature reconstructive transformations in layered
insulators, which are good candidates for the DB formation
under conditions close to thermal equilibrium. In the following
section we consider the DB formation in strongly nonequi-
librium systems, such as metals under irradiation with swift
particles.

B. Radiation-induced softening of metals

Defects formed under irradiation in the bulk act as addi-
tional pinning centers for gliding dislocations, which results
in the well-known effect of radiation-induced hardening
[14]. On the other hand, there is experimental evidence
of radiation-induced softening (RIS) under low-electron or
gamma irradiation, which has been discovered in the early
1960s [15] and investigated extensively thereafter (see, e.g.,
Ref. [16]). Single HCP crystals of Zn, Sn, In, and Pb have been
irradiated at liquid nitrogen temperature (78 K) with electron
flux density ranging from 1017 m−2 s−1 to 1018 m−2 s−1

and energies below and above the threshold displacement
energies, the latter being 0.7 MeV (Zn), 0.8 MeV (Sn, In)
and 1.2 MeV (Pb). At such low temperatures plastic strain
occurs via dislocation glide, the rate of which is limited
by thermally activated unpinning of dislocations from local
obstacles. The over-threshold irradiation has resulted in the
radiation-induced hardening due to formation of additional
pinning centers. But with decreasing beam energy below the
threshold level the plastic strain rate under irradiation increased
as compared to that prior to or after irradiation. Then it
was realized that irradiation not only produced defects, i.e.,
additional pinning centers for gliding dislocations, but also

provided some softening mechanisms that operated during
irradiation. However, the underlying RIS mechanism remained
unclear.

Recent experiments by Dubinko et al. [17,18] on the RIS
of polycrystalline FCC metals Al and Cu (95.5% pure) under
electron irradiation were designed to test both subthreshold
and over-threshold electron irradiation at ambient temper-
atures in order to make the results more closely related
to the real in-reactor environment. The electron energy of
0.5 MeV used in the experiments was higher than the threshold
displacement energy in Al (0.15 MeV) and about the threshold
displacement energy for Cu. So in the first case, we dealt with
the over-threshold electron irradiation, while in the second
case, irradiation was essentially subthreshold. In spite of this
difference, electron irradiation of Al and Cu has resulted in
similar behavior of the deformation curves illustrated in Fig. 9
for the case of Al.

The deformation strengthening curve σ (ε) under continu-
ous irradiation and a constant strain rate ε̇ex goes below the
control curve and up to the higher ultimate deformation before
destruction [Fig. 9(a)], which means that the material under
irradiation becomes more soft and less brittle. It should be
noted that the softening occurs under over-threshold electron
irradiation above the room temperature and the displace-
ment rate, K = 2 × 10−9 s−1, comparable to that in the
nuclear reactor environment. The beam-induced temperature
increase is about 20 ◦C [Fig. 9(b)], which is insufficient
to explain the observed material softening, but it makes it
rather difficult to separate the heating effect from that of
irradiation.

In order to single out an athermal component of the
RIS, let us consider a discrete irradiation regime (Fig. 10),
in which the samples were irradiated under external load
during short time intervals followed by the intervals without
irradiation.

When the electron beam is switched on (ϕ �= 0), the
external stress jumps down sharply by the value δσϕ , and
subsequently a linear deformation stage occurs at which the
deformation strengthening coefficient θϕ , is always lower
than that without irradiation, and it becomes negative after
some deformation level. This case is shown in detail in
Fig. 10(b). When the electron beam is switched off (ϕ = 0),
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FIG. 9. The deformation strengthening curves, i.e., the depen-
dence of the yield stress σ on the plastic strain ε and time
for polycrystalline aluminum (99.5%) [17]. The electron beam
parameters are presented in Table II. (a) Curve 1 shows σ (ε) without
irradiation at room temperature and curve 2 – σ (ε) under electron
irradiation; (b) the time evolution of the sample temperature increases
during irradiation.

the external stress jumps up sharply by the same value δσϕ

and subsequently grows linearly with time at a rate θ0 > θϕ .
As a result, the net external stress decreases by the value �σϕ ,
which indicates that the metal microstructure changes due to
irradiation.

The immediate stress jump at the moment of the beam
switching on/off, δσϕ , is a purely athermal effect since it is too
quick for any significant temperature evolution. It increases
with increasing deformation level, as shown in Fig. 11 for

(a)

(b)

3210

1

h (mm)

δσϕ, MPa

45
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FIG. 11. (a) Stress jump δσϕ as a function of deformation of
samples with different thickness h: Cu (⊗, h = 0.51 mm); Al (�, h
= 0.23; �, h = 0.36; ©, h = 0.57; ⊗, h = 0.82; �, h = 1.76; ∇ , h
= 2.15). (b) δσϕ as a function of h for Al at ε = 15%.

Cu and Al samples of different thickness h. The electron
penetration depth in Al is about 0.5 mm, and δσϕ decreases
by a factor of 8 with increasing sample thickness from 0.23 to
2.5 mm [Fig. 11(b)]. It can be seen that δσϕ increases linearly
with increasing plastic strain, and it is higher in Cu than in
Al: δσϕ measured at ε = 15% is equal to ∼2.5
MPa in Cu and ∼1 MPa in Al, which corresponds
to approximately the same relative value of the stress
jump, δσϕ/σ ∼ 1%.

Let us make an assumption that the electrons having
energies in the MeV range produce thermal spikes, which
help dislocations to overcome pinning centers resulting in
the observed RIS. In order to evaluate this effect we will
use a classical “string” model of the dislocation employed
recently for modeling of the plasticity increase of materials
under electric current pulses [19]. Accordingly, the rate of

FIG. 10. (a) Evolution of the external tensile force (measured in newtons) during deformation of Al samples under discrete irradiation
regime; (b) yield stress evolution during one irradiation period at a late deformation stage. Intervals designated with ϕ = 0 correspond to zero
electron flux.
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thermally activated plastic strain is given by the well-known
expression

ε̇T = ε̇0 exp

[
−Ea(σ )

kbT

]
, ε̇0 = bldρdωd,

(38)

ωd ≈ 2

πbxcr

√
H0ωDb

ρvs

,

where b is the Burgers vector length, ρd is the dislocation
density, ld is the mean length of dislocation segments pinned
to the obstacles, ωD and ωd are the Debye frequency and the
frequency of the dislocation oscillations, respectively, ρ is the
material density, vs is the sound velocity, and xcr and Ea(σ )
are, respectively, the critical distance and effective activation
energy required to unpin the dislocation from an obstacle,
which decreases with increasing external stress σ as follows:

Ea(σ ) = H0

(
1 − σeff

σc

)2

, σeff = σ − σin,

σc = κ
√

cI , σin = μb

2π

√
ρd, (39)

where H0 is the activation energy required to unpin the
dislocation from an obstacle at zero effective stress, σeff , and σc

is the critical stress to unpin the dislocation at zero temperature
(neglecting quantum oscillations), σin is the internal stress
due to the dislocation microstructure, μ is the shear modulus,
κ is the phenomenological coefficient proportional to the shear
modulus [20]. The mean length of dislocation segments ld is
determined by the dislocation density and the concentration of
impurity atoms cI acting as pinning centers:

ld (ρd,cI ) =
(√

ρd + 1

b

√
cI

)−1

. (40)

Now, in order to evaluate the yield stress under a constant
strain rate one has to solve Eq. (38) with respect to σ ,
which results in the well-known expression describing the
deformation strengthening dependence on temperature and the
strain rate ε̇ex:

σT (T ,ε̇ex) = σin + σc

[
1 −

√
kbT

H0
ln

(
ε̇0

ε̇ex

)]
. (41)

With account of the irradiation-induced TSs, substituting (38)
for (1), one can rewrite the expression (29) as

〈ε̇〉TS ≈ 2ε̇0

[
kbT

∗
a

Ea(σ )

]2

, T ∗
a (ϕ) =

√
1

16π

(εa

L

)2 ϕ

χac2
a

,

(42)

whence the TS-induced yield stress can be derived:

σTS(ϕ,ε̇ex) = σin + σc

[
1 −

(
2ε̇0

ε̇ex

)1/4
√

kbT ∗
a (ϕ)

H0

]
, (43)

which, in contrast to (41), depends on the irradiation flux ϕ.
The plastic strain rate with account of the TS-induced DBs

is given by the expression similar to (36):

〈ε̇〉B,TS = 〈A〉B〈ε̇〉TS, (44)

. .

FIG. 12. Dependence of the relative DB amplification factor,
〈A〉B (E)/〈A〉B (Emin), on the reaction activation energy E at the
following DB parameters: z = 9, Emin

B = 0.1eV, Emax
B = 1eV. Dotted

curve corresponds to the relative DB amplification coefficient,
A0

B (E)/A0
B (Emin).

where the amplification factor, 〈A〉B , does not depend on
irradiation conditions, but it depends on the reaction activation
energy, Ea(σ ), in a complicated way. However, as demon-
strated in Fig. 12, this dependence can be approximated as

〈A〉B ≈ A0
BE3/2

a , Ea(σ ) < Emax
B (45)

for activation energies small as compared to the DB maximum
energy, whence the DB-induced yield stress can be evaluated
by the expression

σDB(ϕ,ε̇ex) = σin + σc

{
1 − A0

B

(
2ε̇0

ε̇ex

) [
kbT

∗
a (ϕ)

]2

√
H0

}
,

(46)

where A0
B is the constant amplification coefficient determined

only by the DB parameters presented in Table II. The above
evaluated yield stresses are valid for single crystals, whereas
for polycrystalline materials they should be multiplied by the
Taylor factor M (M = 3.06 for equiaxed bcc and fcc metals
[14]).

The immediate yield stress jump at the moment of the beam
switching on/off occurs so quickly that the sample temperature
and internal stress (determined by the microstructure) remains
constant. Its magnitude, |δσϕ|, depending on the underlying
mechanism, is given by the difference between the expressions
(41), (43), and (46) for zero and nonzero irradiation flux ϕ.
Accordingly, the classical expression (41), which does not
depend on ϕ, would predict no RIS effect: |δσϕ|T = 0, while
the other two expressions result in the following RIS effects
for polycrystalline materials:

|δσϕ|TS(ϕ,ε̇ex) = Mσc

(
2ε̇0

ε̇ex

)1/4
√

kbT ∗
a (ϕ)

H0
∝ ρ

1/4
d ϕ1/4,

(47)

|δσϕ|DB(ϕ,ε̇ex) = MσcA
0
B

(
2ε̇0

ε̇ex

) [
kbT

∗
a (ϕ)

]2

√
H0

∝ ρdϕ. (48)
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TABLE II. Material and irradiation parameters used in calculations.

Parameter Value

Atomic spacing, b (m) 3.23×10−10

Atomic volume of the host lattice, ω (m−3) 2.36×10−29

Matrix shear modulus, μ (GPa) 26.5 (Al); 54.6 (Cu)
Critical stress coefficient, κ (MPa) 110 (Al); 248 (Cu)
Activation energy, H0 = μω/4 0.977 (Al); 2.012 (Cu)
Critical unpinning distance, xcr xcr = 4b

Concentration of impurity pinning centers, cI 5×10−3

Initial dislocation density, ρ0
d (m−2) 1012

Mean dislocation propagation range, Leff (μm) 2.6
Debye temperature, TD (K) 394 (Al); 315 (Cu)
Minimum DB energy,Emin

B = μω/44 (eV) 0.089 (Al); 0.183 (Cu)
Maximum DB energy, Emin

B = μω/6 (eV) 0.651 (Al); 1.342 (Cu)
DB decay exponent, z 9
Electron beam energy, εa (MeV) 0.5
Electron beam density, at ϕ (m−2 s−1) 4×1017

Ambient temperature, T (K) 300
Plastic strain rate, ε̇ex 10−4

As can be seen, the TS-induced RIS effect depends on the
irradiation and loading conditions rather weakly, as compared
to the linear dependence of the DB-induced RIS effect on
the irradiation flux and dislocation density. The latter is
proportional to the plastic strain ε, according to the classical
Taylor model [21]:

ε = bρdLeff, (49)

where Leff is the mean propagation distance of gliding disloca-
tions before they get stuck in the dislocation “forest,” which is
typically in the micron range (Table II). Accordingly, the RIS
effect is expected to increase with increasing plastic strain, in
agreement with experimental data (Fig. 11). A more detailed
comparison between the theory and experiment [Fig. 13(a)]
shows that the TS-induced RIS mechanism operates only at

low strain levels, while the DB-induced RIS mechanism is
responsible for the observed liner dependence of the RIS on the
plastic strain. Figure 13(b) demonstrates that both mechanisms
are temperature independent in agreement with their athermal
nature.

These results show that mechanical properties of materials
under reactor conditions can be different from those of the
surveillance samples in out-reactor tests after an equivalent
irradiation dose, which should be taken into account in
forecasting the material service life.

V. DISCUSSION

In this section we will discuss some perspective extensions
of the present model.

.

.

.

.

.

.

. . . . .

FIG. 13. (a) The yield stress jump δσϕ as a function of the dislocation density ρd and plastic strain ε according to the RIS models based on
TSs (47) and DBs (48), compared to the experimental data for Al and Cu samples of a thickness h = 0.51 mm. (b) Temperature dependence of
δσϕ calculated for ε = 15%. Material and irradiation parameters used in calculations are presented in Table II.
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A. Time evolution of breathers

Equation (6) is the simplest master equation for the DB
distribution function, which implies that DBs are formed at a
rate KB(E) and do not change for a time τB(E), after which
they disappear. However, a breather can change its energy due
to the interaction with phonons, electrons, other breathers, or
stable lattice defects. This could be taken into account in the
master equation of the following form:

∂fB(E,t)

∂t
= KB(E) − ∂

∂E

⌊
fB(E,t)

dE

dt

⌋
− SB(E),

(50)

where dE/dt is the adiabatically slow rate of breather energy
change (e.g., due to phonons), and SB(E) is the DB sink in the
energy space due to various collision events. This equation is
similar to that used in the theory of nucleation and evolution
of the new phase particles in a nonequilibrium environment
(see, e.g., Ref. [22]). Evaluation of the master equation (50)
is an outstanding problem in a more comprehensive theory.

B. Moving breathers

The interaction of moving DBs with defects is presently
a subject of great interest and can be connected with a
number of phenomena observed in crystals under irradiation,
such as the radiation-induced migration of point defects in
the crystal bulk [23,24] or the radiation-induced formation
of Schottky defects at extended crystal defects [25–27].
Thermally activated DBs considered in the present paper may
move randomly from site to site, which would increase a
probability of coupling between DBs and defects. This could
be taken into account in the master equation (50).

Another type of mobile localized excitations (called
quodons) are created in atomic collisions under irradiation
with swift particles. As the incident recoil energy is dispersed,
on-site potentials and long-range cooperative interactions
between atoms can result in the creation of quodons, which
are high-energy mobile longitudinal optical mode DBs that
can propagate great distances in atomic-chain directions [25].
The interaction of quodons with extended lattice defects was

suggested to result in the radiation-induced recovery processes
such as the void shrinkage [26] and self-organization of the
void lattices [27]. However, the underlying mechanism, i.e.,
the quodon-induced vacancy emission from voids, needs
further investigations that should take into account the present
results. This will be done elsewhere.

VI. SUMMARY

(1) Reaction rate theory in solids has been modified taking
into account intrinsic localized modes or discrete breathers that
can appear in crystals with sufficient anharmonicity, resulting
in violation of Arrhenius’ law.

(2) The reaction rate averaged over large macroscopic
volumes and times including many DBs can be increased by
many orders of magnitude depending on the DB statistics.

(3) The breather statistics in thermal equilibrium and under
irradiation with swift particles has been considered, and the
corresponding reaction rate amplification factors have been
derived.

(4) The reaction rate amplification factor increases strongly
with increasing DB lifetime and the maximum DB energy that
depends on the system.

(5) Radiation-induced formation of DBs changes mechani-
cal properties of materials under reactor conditions as com-
pared to the surveillance samples in out-reactor tests after an
equivalent irradiation dose, which should be taken into account
in forecasting the material service life.

(6) The present model shows that the effects due to the crystal
anharmonicity are of both fundamental significance and of
considerable technological importance in the fields of nuclear
engineering and radiation effects.
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