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Abstract Deep level transient spectroscopy shows that defects created by alpha ir-
radiation of germanium are annealed by low energy plasma ions up to a depth of
several thousand lattice units. The plasma ions have energies of 2-8 eV and there-
fore can deliver energies of the order of a few eV to the germanium atoms. The most
abundant defect is identified as the E-center, a complex of the dopant antimony and
a vacancy with and annealing energy of 1.3 eV as determined byour measurements.
The inductively coupled plasma has a very low density and a very low flux of ions.
This implies that the ion impacts are almost isolated both intime and at the surface
of the semiconductor. We conclude that energy of the order ofan eV is able to travel
a large distance in germanium in a localized way and is delivered to the defects ef-
fectively. The most likely candidates are vibrational nonlinear wave packets known
as intrinsic localized modes, which exist for a limited range of energies. This prop-
erty is coherent with the fact that more energetic ions are less efficient at producing
the annealing effect.
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1 Introduction

In science like in many other aspects of human activity, there are often fortunate
coincidences that orientate research in unexpected directions. In 2012 there was
an international workshop in Pretoria, South Africa, called NEMI 20121. Several
theoreticians and nonlinear physicists attended, among them there were two of the
authors. Several talks were intended for non specialist in order that physics students
could be able to understand them. One of the subjects was nonlinear localized ex-
citations that travel along a periodic media without losingenergy and keeping their
shape. They are called intrinsic localized modes (ILMS) or discrete breathers (DBs).
The first name emphasizes the internal character of the phenomenon and reminds
us of the linear vibration modes or phonons. The latter name comes from the ob-
servation of the internal vibration they experience that can be compared with the
breathing of a living being. They were first obtained as an exact solution for the
continuous sine-gordon equation [26]. Simulations using molecular dynamics are
able to reproduce them in several solids with energies of theorder of a few tenths or
a few units of an eV.

Among the attendants was a PhD student, part of a research group of the Univer-
sity of Pretoria working on defects in semiconductors, particularly in germanium.
They have obtained unexpected results while treating Ge with low energy (2-8 eV)
plasma ions. Those energies are known as subthreshold because the threshold en-
ergy to produce displacements of atoms in germanium is between 11.5 for the〈111〉
direction and 19.5 eV for the〈100〉 direction [12]. However, they had observed that
something was penetrating at least twoµm inside the germanium wafer and was
able to anneal several defects, in particular, the most abundant one, the E-center.
The energy for annealing an E-center is about 1.3 eV, according to our measure-
ments and theoretical calculations [23]. On the other hand the maximum energy
that an Ar ion of 4 eV can transmit to a Ge atom is 3.6 eV, therefore the energies
were precisely what was expected for ILMs. A line of collaboration was started that
joined nonlinear theory, computer simulations, plasma physics and semiconductor
physics that eventually confirmed ILMs as the most likely cause of the annealing [1]
and also suggested them as the explanation for other long-distance effects such as
the modification of defects by electron beam deposition, where the energy transmit-
ted was below 1.3 eV [5]. In this workd we will try to give an explanation of the
different branches of the physics involved and to analyze the reasoning that leads
to the ILM explanation and the consequences both for semiconductor physics and
nonlinear physics.
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2 Germanium

The diamond structure of germanium is well known, each atom has covalent bonds
with the four nearest neighbours at the vertices of a tetrahedron as shown if Fig. 1.
Normally a conventional cubic unit cell comprised of 8 atomsis used. The diamond
structure can be seen as an fcc lattice with two atoms at points(0,0,0) and at 1/4 of
the diagonal [2]. The lattice unit isa = 5.66Å for Ge, slightly larger than 5.43̊A for
Si and even larger than 3.57Å for C diamond. The diamond structure is not the best
for moving ILMs because there is no chain of nearest neighbours forming a straight
line. This is a reason for which, although stationary ILMs have been constructed
with molecular dynamics [24], the attempts to construct moving ILMs have failed so
far. Several lines of research seem promising, one option isto construct ILMs in the
next neighbour directions such as〈100〉where there is a straight line of atoms. Other
is to study polarizations as the ones observed for ballisticphonons in germanium or
silicon [13, 19] which can travel distances of 160 nm. It seems also possible that
ILMs can be nonlinear perturbations of linear optical modeswith high energy, high
velocity, short wavelength and low dispersion, such as at the middle of the Brillouin
zone for optical branches.

The number of Ge atoms per unit volume can be obtained asnGe = 8/a3 =
4.42× 1022cm3. Other properties of interest are atomic number 32, atomic mass
M = 72.61 amu, densityρ = 5.323g/cm3, sound velocitycs = 5400 m/s, Debye
temperatureTD = 360 K, Einstein temperatureTE = 288 K, covalent radius 1.22̊A,
atomic radius 1.52̊A, melting point 1210.55K, 1st ionization energy 7.899 eV and
specific heat 0.32 J/gK at 300 K.

1 NEMI 2012: 1st International Workshop: Nonlinear effects in materials under irradiation, March
12-17, 2012, Pretoria, South Africa. P. Selyshev, chairman

Fig. 1 Diamond structure
of germanium. Each atom
is bonded with four nearest
neighbours at the vertices of a
tetrahedron. The conventional
cubic unit cell usually used
is also shown. It includes 8
atoms and can be seen as an
fcc lattice with two atoms at
0 and at 1/4 of the diagonal.
The primitive cell has these
two atoms as a basis and the
primitive vectors have their
origin at 0 and end at the
center of each adjacent face



4 JFR Archilla, SMM Coelho, FD Auret, C. Nyamhere, VI Dubinko, V Hizhnyakov

3 Phonons in Ge

The objective of this subsection is to review the well known concepts of lattice
dynamics and to see how they apply to Ge and to justify subsequent calculations.
Phonons are the usual means for energy transport in a crystaland the responsible
party for thermal annealing of defects. With this review we want to demonstrate
that they cannot be th responsible for the annealing of the E-center defect during Ar
plasma bombardment. We will frequently use general concepts of lattice dynamics
and the reader can consult any textbook, for example Refs. [2,7].

In classical mechanics for a crystal withnat per unit volume, there are 3nat

degrees of freedom. In the harmonic approximation the substitution of uk,ω =
Aexp(ik ·r−ωt) in the equation of movement leads to 3nat different linear modes of
frequencyω , wave numberk, phase velocityc = ω/k and polarizationA. They are
organized in branchesω = ω(k), three of them are acoustic, that isω vanishes lin-
early withk in the long wavelength limit. If the crystal has a basis ofp atoms or ions
in each primitive cell, there are also 3(p−1)optical branches, that are bounded from
below. In Ge with two Ge atoms in the unit cell, there are threeoptical branches.
Each branch hasnGe/2 modes. In the classical description, each mode can have
any energyE with a probability at temperatureT given by Maxwell-Boltzmann
equationP(E) = exp(−E/kBT )/kBT , which leads to an average energykBT that is
identical for each mode. Therefore, it is trivial to obtain the energy per unit volume

Fig. 2 Phonon dispersion and density of states for Ge. Experimental values are shown as circles
and theoretical calculation are shown as solid lines. Modesabout the center of some optical bands
with high frequency, large group velocity, short wavelength and low dispersion may convert into
ILMs when the amplitude enters the nonlinear range. Reproduced with permission from: Wei, S.,
Chou, M.Y.: Phonon dispersion of silicon and germanium fromfirst principles calculations. Phys.
Rev. B50, 2221 (1994). Copyright (1994) by American Physical Society
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Fig. 3 Primitive Wigner-Seitz
reciprocal cell for an fcc
lattice such as Ge, showing
the directions ink-space and
points that appear in the
spectrum shown in Fig.2. The
point Γ corresponds to wave
numberk = 0, where the three
acoustical bands originate.
The Wigner-Seitz cell is the
region ofk-space that is closer
to (0,0,0) than to any other
point of the lattice. Modes
with wave vectors about the
middle ofΓ -L, Γ -K andΓ -X
may convert into ILMs when
their amplitude increases.
Axes are the same as in Fig. 1

u = 3kBT nGe and the specific heat at constant volumecV = ∂u/∂T = 3kBnat, a re-
sult known as the Dulong-Petit law. This result is approximate at room temperatures
and above but fails spectacularly at lower temperatures, which led to the quantum
description of the harmonic crystal. The classical description of the linear modes of
the crystal remains valid but the statistics are quite different.

In quantum mechanics a linear oscillator with frequencyω can only have ener-
gies given byEn =

1
2 h̄ω +nh̄ω , wheren is the excitation or occupation number. As

the ground state energy12 h̄ω cannot be lost we will usually suppress it and use

En = nE, with E = h̄ω , (1)

whereE = h̄ω is the quantum of energy, also called the energy level.
At a given temperatureT , the average values〈n〉 and〈En〉 can be obtained with

Bose-Einstein statistics. They are

〈n〉= 1

eE/kbT −1
, 〈En〉= 〈n〉E =

E

eE/kbT −1
, (2)

wherekB = 8.617×10−5eV/K is the Boltzmann constant.
In a solid with 3nat degrees of freedom and therefore the same number of lin-

ear modes, each one is equivalent to a linear oscillator witha given frequencyω .
It is usual to describe them as phonons or quasi-particles and to use the expression
n phonons of a particular type with energyE = h̄ω instead of a linear mode or
state with frequencyω and excitation numbern. We will also follow this conven-
tion although in some instances it may be more convenient to revert to the original
terminology.

As the number of frequencies is very large and they are very close,ω andE = h̄ω
are considered as quasi-continuous variables. Most energylevels are degenerate, i.e.,
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Fig. 4 Comparison with the number function or normalized density of states for germanium: ob-
tained from Fig. 2 and Ref. [25] (—); Einstein model withTE = 288 (vertical —) ; Debye model
with TD = 360 (· · ·). The mean mode energy is for the first twoEph = kBTE ≃ 25 meV. The Debye
model by definition has a maximum energyKBTD = 31 meV with average energy 23.3 meV equiv-
alent to 270 K (vertical· · ·) smaller than the Einstein’s one. The acoustic and optical bands can be
seen although they overlap

there is more than one mode with that energy, and in the quasi-continuous descrip-
tion there are very many in an interval[E,E +dE].

A variable density of states (DOS)g(E) is introduced, also some times called
the density of levels. It is defined such asg(E)dE is the number of linear modes or
quantum phonon states per unit volume with energies betweenE andE +dE. For a
discrete system the phonon spectrum is always bounded from above, that is, there is
a maximum frequency and energyωM andEM = h̄ωM, therefore

∫ EM

0
g(E)dE = 3nat. (3)

A rough estimate of the maximum value of energy level for the acoustic modes
can be obtained using the fact that the minimum value of the wavelength is twice
the lattice unit of the primitive cellda, thenEM,ac ≃ h̄ωM,ac = h̄c2π/2da, with c
the speed for the mode. For Ge,da = a/

√
2= 4.00Å and usingcs = 5400 m/s, we

obtainEM,ac= 28 meV andfM,ac= 6.7 THz similar at the observed values in Figs. 2
and 3. However, such a simple estimate for the optical modes is not possible because
the phase velocity tends to infinity whenk → 0.

Generally speaking there is no minimum frequency or energy as explained above,
however, when considering only a part of the system, it can bedescribed as subjected
to an external potential representing the interaction withthe rest of the crystal. In
this case the phonon spectrum becomes optical, i.e., bounded from below.

The energy of the solid per unit volume is given by
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Fig. 5 (Left): Average number of phonons with respect to temperature between room temperature
TR = 300 K and E-center annealing temperatureTA = 423 K. From bottom to top: optical phonons
with Eop = 35 meV; Einstein phonons withEE = 24.9 meV; average number of phonons with Ge
DOS; acoustic phonons withEac=10. (Right): Average energy for different phonons, from bottom
to top: optical phonons withEop =35 meV; Einstein phonons withEE = 24.9 meV (TE = 288 K)
indistinguishable from the one obtained with Ge DOS; acoustic phonons withEac = 10 meV and
average classical energykBT . It can be seen that the acoustic modes have more phonons and more
energy than the optical ones and at room temperature and above a quantum description is necessary

uE =

∫ ET

0
〈n(E)〉E g(E)dE =

∫ ET

0

E

eE/kbT −1
g(E)dE . (4)

We will also use the number density or normalized density of states f (E) =
g(E)/3nGe, with the property that asf (E)dE is the fraction of modes with ener-
gies betweenE andE +dE and therefore the normalization condition and average
phonon energyEph are given by

∫ ET

0
f (E)dE = 1 , Eph =

∫ ET

0
E f (E)dE . (5)

There are two approximations frequently used for the density of states: the Debye
and the Einstein models. In the Debye model, all phonon modesare substituted by
three acoustic branches with dispersion relationω = ck, with the samec, which is
an average velocity. These acoustic branches lead to a density of modes or states per
unit volumegD(E) = 3/(2π2h̄3)c3E2 [2]. Then, fD(E) = g(E)/nat = αDE2, with
the constantαD depending on the particular solid throughc and nat. The energy
has a cutoff valueED such that the condition of normalization

∫ ED
0 fD(E)dE = 1 is

fulfilled. Therefore,αDE3
D/3= 1. The valuesED andTD = ED/kB are known as the

Debye energy and temperature, respectively. Therefore there is only one unknown,
eitherc or TD, either of which cannot be measured as they do not correspondto
real magnitudes. What is done is to chooseTD such that the specific heatcv(T )
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fits the measurements. For Ge, a value ofTD = 360K or ED = kBTD = 31.1 meV is
usually given, which corresponds toc= 3420 m/s. This velocity is not a real quantity
but coherently it is approximately the mean of the velocities of the two transversal
modes,≃ 2500 m/s, and the longitudinal one, 5400m/s [15]. The Debye dispersion
relation works, of course, better for the acoustic branchesand small wave vectors.

The Einstein model supposes that there are 3nGe modes with the same frequency
ωE , beingEE = h̄ωE andTE = EE/kB, the Einstein energy and temperature, respec-
tively. The value ofTE is chosen so as to fit the specific heat of the solid, beingEE an
average energy of the phonons in the crystal. For germanium its value isTE = 288 K
and will be used in this work. In this model the mean energy perunit volume at
temperatureT in germanium is simply

uE =
3nGe

eEE/kBT −1
(6)

The actual phonon dispersion relation and the density of states have been ob-
tained and checked with experimental ones in Ref. [25]. Bothmagnitudes are shown
in Fig. 2. The normalized density of statesf (E) can be obtained from it but as the
resolution is poor for low energies we have substituted thatpart by the Debye one.
The Ge density of states is shown in Fig. 3 together with the corresponding one for

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

T  (K)

c v/3
k B

Fig. 6 Comparison of the experimental specific heat per degree of freedom: (–) using germa-
nium density of states [25]; (- -) the Einstein model withTE = 288; (−·−) the Debye model with
TD = 360; (◦) and (∆ ) experimental values from Refs. [3,17], respectively. Thehorizontal line cor-
responds to the classical Dulong-Petit law. The Einstein and the Debye model are slightly better at
intermediate temperatures, because they have been fitted for that. At high temperatures the experi-
mentalcv becomes larger because actual frequencies also increase with temperature. The two sep-
arated dotted curves correspond to two Einstein models withenergiesEac= 10 andEop = 35 meV,
the upper and lower curves, respectively. These values are representative of the acoustic and optical
branches
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the Debye and Einstein model for comparison. Forg(E) two concentrations of states
appear near the top and near the bottom of the spectrum, with adrastic simplifica-
tion we can describe them as an optical band aroundEop= 35 meV and an acoustic
one aroundEac= 10 meV. The mean phonon energy

∫ ET
0 f (E)EdE is approximately

equal to the Einstein energy.
Figure 3 represents the number of phonons and the average energies as a func-

tion of temperature for acoustic phonons, optical phonons,Einstein phonons, and
average values obtained with the density of statesg(E). It can be seen that the clas-
sical statistics is not valid at the temperatures of interest in this work and that there
are significant differences between optical and acoustic phonons. The energy in the
acoustic modes is larger than in the optical ones in spite of having less energy but
with more phonons. It can also be seen that the average numberof phonons〈n〉 is
smaller or closer to one which indicates that the classical description is not good at
room temperatures and above.

Figure 3 represents the specific heat at constant volume obtained from these mod-
els. There is no significant difference at the temperatures of interest in this work be-
tween room temperatureTR = 300 K and the annealing temperature of the E-center
TA = 423 K. This justifies the use of the Einstein density of statesas a good approxi-
mation for calculations. The specific heats for two Einsteinmodels withEac andEop

are also represented for comparison.

4 Defects and their detection with DLTS

Point defects in the structure or the type of atoms of the semiconductor can appear
with some probability due to the temperature but they can also be created by ra-
diation. In the experiments described in this work most of the defects are created
by 5 MeV alpha radiation [14, 21] produced in the decay of the americium isotope
241Am. A Ge sample with dimensions 3×5×0.6mm is brought into contact with
americium foil for 30 minutes.

Defects can be of many types, some simple examples are shown in Fig. 7, such
as a vacancy, a substitutional atom, a self-interstitial, aforeign interstitial, a Frenkel
pair that is, a combination of a vacancy and a self-interstitial and an E-center, which
is a combination of a dopant substitutional atom and a vacancy. The germanium
sample used in this work is doped with antimony (Sb), with a dopant concentration
nSb = 1.3× 1015cm−3. Dopant atoms as Sb atoms occupy substitutional positions
but are not considered defects as they are an essential part of the semiconductor
electrical properties. The main defect appearing afterα irradiation is the E-center
already described. There are many others types such as vacancy complexes like the
di-vacancy (V-V), the tri-vacancy (V3), the tetra-vacancy (V4) and combinations of
interstitials as di or tri-interstitials (I2, I3). Also, hydrogen (H), due to its small size
is able to penetrate almost everywhere and can combine with other defects forming
complexes such as VHn, where n is an integer with values from 1−4. A variant of
the E-center is the A-center, a complex of an oxygen interstitial and a vacancy.
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Fig. 7 Examples of some point defects in a crystal. The E-center studied in this work is a complex
of a vacancy and a substitutional dopant Sb

Defects can experience many processes like diffusion, interaction between them,
modification, annealing and others. Generally speaking allthese processes are en-
hanced by temperature and the rate at which the process takesplace depends in an
Arrhenius form on a quantity known as the enthalpy for the process or sometimes
referred to as the activation energy or barrier energy for the process. That is

κ ∝ e−∆H/kBT . (7)

The semiconductor Ge has a band gap ofEg = 0.67 eV. Some defects introduce
electrical levels inside the band of a semiconductor, as forexample in Sb-doped
Ge, Sb introduce levels very close to the conduction band. When they are within
the band gap and more than 0.1 eV from the conduction or the valence bands they
are considereddeep. Usually they are called electrontraps when they introduce an
electron level and hole traps when they introduce a hole level, respectively. We will
write only about electron traps for simplicity, because thetreatment of holes is very
similar, and because the main defect we are interested in, the E-center, is an electron
trap. The E-center is located atET = 0.38 eV below the conduction band. The same
defect has also been reported asET = 0.37.

When an electron is in a trap level it has a mean time of permanenceτn and its
inverseen = 1/τn is the probability of emission per unit time. This magnitudeand its
dependence on temperature are key to defect detection as it is the actual magnitude
measured in DLTS [16,22]. This dependence can be easily deduced.

Suppose that there areNT traps per unit volume, the probability for an electron
occupying the trap level of energyEt (notET which isET = Ec−Et) is given by the
Fermi-Dirac distribution

ft =
1

e(Et−EF )/KBT +1
, (8)
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whereEF , the Fermi energy is located near the middle of the phonon band.
The probability that a moving electron is captured by a trap is given bycn =

σappvthNT (1− ft)n, whereσapp is the capture cross section of an electron for the trap,
vth is the thermal velocity of the electrons,NT the trap concentration,(1− ft ) the
probability of the trap being empty andn the number of electrons per unit volume.
The latter quantity can be obtained asn=Nc exp(−(Ec−EF)/kBT ), whereEc is the
bottom energy of the conduction band,m∗

e being the effective mass of an electron

and Nc = 2
(

2πm∗
ekBT/h2

)3/2
is the effective density of states in the conduction

band [2]. The thermal velocity can also be obtained asvth = (2Eth/m∗
e)

1/2, with
Eth = 3/2kBT .

The trap emission ratern is given byrn = NT ften, that is, the concentration of
traps multiplied by the probability of being occupied and the probability of emission
per unit time for a trap. At thermal equilibriumcn = rn anden can be isolated as

en = σappNcvthexp(−ET/kBT ) , (9)

with ET = Ec −Et , that is, the distance of the trap level to the conduction band.
It is easy to check that the pre-exponential factor is proportional to T 2 as the

effective mass is approximately constant at the bottom of the conduction band where
most of the occupied states are.

Some authors discuss the interpretation of this expressionof the emission rate
[6] as a function of the capture parameters, howeverσapp andET are considered
the defect signature and used worldwide. Independently of the meaningσapp has
the right dependence on the temperature and should simply considered simply as a
parameter of the defect.

The technique known as DLTS, deep level transient spectroscopy, uses a pn junc-
tion or a metal-semiconductor junction known as a Schottky diode. A voltage pulse
is sent through the junction in reverse bias, so as to flood allthe traps with electrons,
which after the pulse start to emit electrons towards the conduction band at a rate
given by Eq. (9). The capacitance of the junction depends on the charge accumu-
lated in the traps and therefore changes with time as the traps become depleted. It is
measured at two different timest1 andt2. If C0 is the capacitance att1 and∆C the
change in the capacitance betweent1 andt2, it can be demonstrated that the relative
change in the capacitance∆C/C0 has a maximum when the so called rate window
equals the emission probability:

RW ≡ ln(t1/t2)
t1− t2

= en . (10)

Typical rate windows are 80 s−1 and 200 s−1. Measurements of the DLTS signal
∆C/C0 are performed while the temperatureT is changed. When the RW equals the
emission rate of some defect a peak appears in the plot of∆C/C0 with respect to T.
In this way the different defects appear. At the peak
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Fig. 8 DLTS Arrhenius plots
of some electron trap de-
fects observed in Ge. The
E-center, here marked as E0.38
figures among them. Repro-
duced with permission from:
Coelho, S.M.M., Auret, F.D.,
Janse van Rensburg, P.J., Nel,
J.: Electrical characteriza-
tion of defects introduced in
n-Ge during electron beam
deposition or exposure. J.
Appl. Phys.114(17), 173,708
(2013). Copyright (2013) by
AIP Publishing LLC

NT = 2

(

∆C
C0

)

peak
ND, (11)

whereND is the number of dopants in an n-type semiconductor andNT is the num-
ber of traps corresponding to the peak. Using several RWs, several values ofen

can be obtained for different temperatures, beingET the slope of the representation
ln(T 2/en) with respect to 1/T . From the same representation the value ofσapp can
be obtained and therefore the defect is fully characterized. From the height of the
peak the concentration of the defectNT can also be obtained. The value of the re-
verse bias determines the depth of the measurements and allows for the plotting of
the profile ofNT as a function of the depth of the sample. This procedure to char-
acterize the E-center in Ge was performed in Ref. [5] and the Arrhenius plots for
several defects can be seen in Fig. 8.

5 Experiment of plasma-induced annealing

The main experiment is done as follows: (a) The Ge wafer is bombarded with 5 MeV
alpha particles during 30 minutes and it is left for 24 hours at room temperature for
the defects to stabilize as initially there is a fast kinetic[11]; (b) The surface of Ge
is divided into two partsA andB, then a diode is made using resistive evaporation of
Au on partA and DTLS is performed to measure the defect concentrations,(c) The
Ge sample is introduced into an inductively coupled plasma (ICP) with 4 eV Ar
ions and pressure of 0.1 mb for half an hour in intervals of 10 minutes to allow for
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cooling; (d) DTLS is performed in partA, where ICP has been done through Au,
(e) A diode is evaporated on partB, where ICP has been applied directly on the Ge
surface, and then, DTLS is performed there.

The short time of alpha irradiation is done to allow for better DLTS measure-
ments. A concentration of about 10% ofND, as the was obtained, or less is ideal

The results of the three measurements are presented in Fig. 5. We will concentrate
on the most abundant defect, the E-center. (1) The concentration after alpha damage
and 24 hours rest isNT = 1.07×1014cm−3; (2) After direct ICP on germanium it
is reduced by 30%; (3) If the ICP is applied through the Au contact, the reduction is
about 7%, smaller but still significant.

Other details of interest are: (4) The sample heats up to about 40◦C in spite of the
cooling intervals; (5) If there is no cooling the sample heats up to about 65◦C and
the decrease in the rate of annealing is dramatic; (6) The defects are annealed up
to a depth of 2600 nm inside the Ge sample [1]; (7) If other metals are used for the

Fig. 9 DTLS spectra showing the experimental results. The defect concentrations on the right axis
are only valid for the peaks. The main peaks correspond to theE-center defect. A 30% diminution
of the concentration of this defect can be observed after 30 minutes under the action of an induc-
tively coupled plasma (ICP) with 4 eV Ar ions. If the ICP is applied through the Au contact the
diminution exists although it is substantially smaller. Reproduced with permission from: Archilla,
J.F.R., Coelho, S.M.M., Auret, F.D., Dubinko, V.I., Hizhnyakov, V.: Long range annealing of de-
fects in germanium by low energy plasma ions. Physica D297, 56–61 (2015). Copyright (2015)
by Elsevier
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contact the annealing also takes place as with Au but the effect depends on the metal
used; (8) If a plasma of larger energy 8 eV is used the annealing rate increases, but
given that a plasma of larger energy also has a larger flux, theeffect per Ar ion is
much smaller (see below); (9) The temperature to achieve a similar rate of annealing
is 150◦C as deduced in Sect. 7 and by other authors [18].

There was no measurable concentration of Ar after ICP which discards Ar chan-
nelling. Other explanations were considered and discardedin Ref. [1] such as mul-
tivacancy production, production of minority charge carriers, production of defects
that could diffuse and interact with the E-center and diffusion of H that could passi-
vate the vacancies in the E-center.

6 ILM hypothesis

In this section we analyze the experiment and examine the possibility that Ar ions
produce intrinsic localized modes that travel in a localized way with little dispersion
through the semiconductor and are able to anneal the defects. The exact nature of
these ILMs is not yet known but here it is assumed that they have a vibrational
part due to their origin from an Ar ion hit. If they have also some charge or other
properties is unknown and not necessary for this hypothesis.

The rate of ion-induced annealing is given by the following equation:

dNT

dt
=−σiΦiNT , (12)

whereσi is an effective cross-section for defect annealing by plasma ions. It is as if
imaginary Ar ions would penetrate Ge and anneal a defect but at this stage there is
no need of an hypothesis,σi is just the probability per unit time and unit flux of Ar
ions that a defect is annealed. Integrating the equation above we obtain:

NT (t) = NT (0)e−σiΦit or σi =− 1
Φi t

ln
NT (t)
NT (0)

(13)

For the experiment described with pressurep = 0.1mb, that corresponds to 4 eV
ions, the flux isΦi = 5.58×1010cm−2s−1 [1], t = 30×60s andNT (t)/NT (0) = 0.7,
andσi ≃ 35.6Å2 is obtained. This value should be compared withσ0 = (nGe)

−2/3 ≃
8Å2, that is, the average area corresponding to an atom of Ge at the surface of
the semiconductor, thenσi ≃ 4.4σ0. This result indicates that the process has an
enormous efficiency. It has to be considered with caution as also neutrals may be
arriving at the semiconductor surface, but it should not change the result by more
than one order of magnitude, probably by around a factor of two in the flux.

It is interesting to see what the change in efficiency is when an 8 eV plasma is
used. The flux in this case isΦi(8eV) = 1.35× 1013cm−2s−1 [1] and using only
600 s time the concentration is reduced to 80% of the original. The cross section
becomesσi(8eV)≃ 0.26Å2 ≃ 0.033σ0. Therefore a larger energy per Ar ion does
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not increase the efficiency of the ion-annealing process butreduces it by a factor of
≃ 140. This is coherent with our hypothesis that the Ar+ impacts produce ILMs,
because ILMs have a definite range of energies. More energy than what is required
will be dispersed into phonons which would interfere with the propagation of the
ILMs. It is also interesting to be aware of a few magnitudes toappreciate what
could be happening in the semiconductor. Suppose that ILMs travel at a speed of
the order of magnitude of the speed of sound in Ge,cs = 5400 m/s, the time needed
for an ILM to travel the measured depthd = 2600 nm isδ t = 0.5 ns. This means
that the area for an Ar+ hit in δ t is a circle with a radius of about 106 lattice units,
or in other words each impact and travel is completely isolated.

Note also that the traps are almost isolated as(NT )
−1/3 ≃ 2200Å or 370 lattice

units. Therefore there is no influence between them.
Let us introduce a couple of parameters,γ the efficiency of ILM creation by Ar

ions, that is
ΦILM = γΦi (14)

andα the cross section for ILM defect annealing measured inσ0 units, that is

σILM = ασ0 . (15)

Therefore
σi = αγσ0 (16)

andαγ ≃ 3.6. The cross section should be larger thanσ0 because the size of an E-
center is at least two atoms and due to the complex nature of Ge, ILMs probably have
also a complex structure with a few atoms involved perpendicular to the movement
of the ILMs. If the interaction takes place at a distance of four atoms thenα ≃
82σ0 andγ = 0.06. The latter result implies that about 20 Ar+ hits are necessary to
produce an ILM. The number of Ar+ to anneal a defect can also be calculated easily
asΦi t/(0.3NT d)≃ 1.2×104.

In the following section it will be made clear that this rate of annealing cannot be
produced only by the increase in temperature. Therefore, although the numbers are
approximate and many objections can be made there are a few clear consequences of
this analysis: (1) Some entity which we call ILM, and most likely it is a vibrational
entity, is able to travel distances of a few micrometers inside Ge in a localized way
and without losing much energy (2) There is a high efficiency in the conversion
of Ar+ hits to ILMs; (3) There is a high efficiency for ILMs to anneal or modify
defects.

Note that if the annealing barrier isEA it is neither necessary for an ILM to have
nor to deliverET to anneal the defect. The change of the barrier due to the passing
of an ILM nearby brings about a change in the annealing rate which can be very
high. See Refs. [4,8–10].
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7 Thermal annealing

In this section we review thermal annealing and apply it to Gein order to compare
the temperature and energy needed to obtain the same rate of thermal annealing as
with Ar ions.

Thermal annealing of defects in semiconductors is given by afirst order kinetic

dNT

dt
=−KNT , (17)

whereK, known as the reaction rate constant is given by an Arrheniustype law

K = Ae−Ea/kBT , (18)

whereEa is known as the annealing energy andA as the pre-exponential factor.
Ea can be interpreted as the potential barrier which is necessary to surmount in
order that the transformation or diffusion process for annealing takes place. The
exponential term can be seen as the probability for an accumulation of energy of
magnitudeEa. The pre-exponential termA has units of frequency and it is also
known as the frequency factor. It is related to the number of attempts per unit time
that the system tries to pass the barrier and with the curvature of the energy with
respect to the reaction coordinate.A may also depend on the temperature but in a
much weaker way than the exponential term. It also depends onthe entropy change.

The integration of Eq. (17) leads to the exponential decayNT (t)=N(0)exp(−Kt)
and comparing the experimental data with ln(N(t)) = ln(N(0))−Kt it is possible
to obtainK. Several data for E-center annealing have been published [11,18]. Here
we will use the results obtained by some of the authors according to the procedure
described in Ref. [20] and using the same dopant and defect concentration as in this
work. Figure 7(a) shows the exponential decay at 165◦C and Figure 7(b) represents
ln(NT ) with respect to time for three temperatures. The approximate linear depen-
dence can be seen. From the slopes, three values of the reaction rate constant are
obtained and in Fig. 7(c) ln(K) is represented with respect to 1000/T and the linear
dependence can be observed. Comparing with ln(K) = ln(A)−Ea/kBT the values
A = 5.5×1011s−1 andEa = 1.3 eV are obtained. These numbers should be treated
with caution as the experimental procedure is very sensitive to the details of the
experimental technique. The sample has to be cooled and reheated to measure the
defect concentration.

8 Comparison of thermal and plasma-induced annealing

Comparing the equations for thermal annealing Eq. (17) and ion-induced annealing
Eq. (12) we can observe that if both process have the same rateof annealing
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Fig. 10 (a) Defect concentration versus annealing time atT = 165◦C. (b) Semi-log plot of de-
fect concentration versus annealing time at temperatures 155◦C, 160◦C and 165◦C from which
the annealing rate constant,K, is calculated. (c) The Arrhenius plot from whichEA = 1.3eV ,
A = 0.55 THz andTA = 423 K are obtained. Lines are fitted curves, circles and triangles are ex-
perimental values, the square in (c) corresponds to a thermal annealing rate equal to ion-induced
annealing. Details of the experimental procedure used can be read in Ref. [20]

K = σiΦi or Ae−Ea/kbT = σiΦi . (19)

From this equation, the value ofTA = 423 K is obtained.
The thermal energy atTA per unit volume using Ge density of statesg(E) from

Sect. 3 is given by

uph =
∫ Em

0
〈n〉Eg(E)dE . (20)
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Note that the use of the Einstein model withTE = 288 K leads to very similar results.
The increment in energy from room temperatureTR = 300 K toTA = 423 K is given
by

∆uph = uph(TA)− uph(TR)≃ 2.9KJ/mol≃ 30.1meV/atom. (21)

The energy per unit volume of energy in ILMs is given by

uILM = ρILM EILM , (22)

whereρILM is the density per unit volume of ILMs andEILM is the mean ILM
energy. Both quantities are unknown but we can estimate both. The maximum flux
of ILMs is the flux of ionsΦi and the maximum energy is the energy that a 4 eV Ar
ion can deliver to a Ge atom, 3.6 eV. Let us supposeEILM ≃ 3 eV andΦILM ≃ Φi.
The velocity of ILMs should be of the order of magnitude of thed velocity of sound,
vILM ≃ cs = 5400 m/s. ThenρILM ≃ΦILM /vILM ≃ 105cm−3 and the ILM energy per
Ge atom is

uILM

nGe
=

ΦILM ILM EILM

vILM nGe
≃ 7×10−15meV/atom. (23)

This value is so small because there is only an ILM for every 4× 1017 Ge atoms.
Therefore the ratiouILM /∆uph ≃ 10−16, which proves that an enormously larger
amount of energy in phonons is needed in order to produce the same annealing effect
than the Ar ions produced. Changes in the ILM energy, their speed, the number of
them created by neutrals in the plasma and other factors cannot change their energy
density by a factor of 1016.

9 Summary

In this work we have described an experiment in which a low energy, low flux Ar
plasma anneals defects in Sb-doped Ge up to a significant depth below the surface.
The hypothesis advanced in Ref. [1] and continued here is that Ar ions produce
some kind of travelling localized excitation with great efficiency. We call these en-
tities intrinsic localized modes or ILMs because their energy and other properties
indicates that their energy is vibrational, although this is by no means demonstrated.
Some space has been dedicated to phonons in germanium in order to have a clear
picture of them and their energies and so doing clarify that they cannot be respon-
sible for the annealing effect, because the ILM energy density is much smaller than
the phonon density which produces the same annealing rate. Also we think that the
study of the dispersion relation can bring home ideas about how to construct ILMs
in Ge, which will be the confirmation of the present hypothesis but seems to be a
daunting challenge.

The numbers are approximate, many hypotheses and estimations that have been
advanced may be incorrect, however none of these problems can change the fact of
the observation of long-range annealing in germanium produced by Ar plasma and
that ILMs are the most promising cause.
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