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1 Dpto. de Matemática Aplicada y Estad́ıstica Campus de la Muralla, Universidad de Politécnica de
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Abstract

In [Proc. ECIT-89, World Scientific, (1991), 177–183], A. N. Sharkovskĭı and S.
F. Kolyada stated the problem of characterization skew-product maps having zero
topological entropy. It is known that, even under some additional assumptions, this
aim has not been reached. In [J. Math. Anal. Appl., 287, (2003), 516–521], J. L.
G. Guirao and J. Chudziak partially solved the problem in the class of skew-product
maps with base map having closed set of periodic points. The present paper has
two aims for this class of maps, on one hand to improve that solution showing the
equivalence between the property “to have zero topological entropy” and the fact “not
to be Li-Yorke chaotic in the union of the ω-limit sets of recurrent points”. On other
hand, we show that the properties “to have closed set of periodic points” and “all
nonwandering points are periodic” are not mutually equivalent properties, for doing
this we disprove a result from Efremova of 1990.

1 Introduction, Notation and Statement of the main results

Our frame of working will be discrete dynamical systems induced by skew-product maps
defined on the unit square I2 = [0, 1]× [0, 1], i.e., continuous transformations from I2 into
itself of the form F : (x, y) → (f(x), g(x, y)). The maps f and g are respectively called
the base and the fiber map of F . Obviously, for every x ∈ I, the maps gx defined by
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gx(y) := g(x, y) form a system of one-dimensional maps depending continuously on x. For
having more information on this type of systems, see for instance [1], [3], [4], [14] or [15].

By C∆(I2) we denote the class of skew-product maps on the unit square. Let F be
an element of C∆(I2): for every x ∈ I2 and every integer n ≥ 1, we define Fn(x) =
F (Fn−1(x)) and F 0 as the identity map on I2. A point x ∈ I2 is said to be periodic by
F if there exists a positive integer n such that Fn(x) = x. The smallest of the values
n satisfying the previous condition is called the period of x. By P(F ) we denote the set
of all periodic points by F and by Per(F ) we denote the set of all periods of the points
of P(F ). For an x ∈ I2, we define the ω-limit set ωF (x) of x by F as the set of all
y ∈ I2 such that there exists a sequence of positive integers {nk}∞k=0 holding Fnk(x) → y,
where k → ∞. Let Rec(F ) be the set of recurrent points of F , i.e., the set of all x ∈ I2

such that x is an accumulation point of (Fn(x))∞n=0. A closed invariant set M ⊆ I2 (i.e.,
F (M) ⊆ M) is called minimal by F if it is non-empty and it does not contain proper
closed invarinat subsets. By UR(F ) we denote the set of uniformly recurrent points of F ,
i.e., all recurrent points with minimal ω-limit sets. A pair of points {x, y} ⊂ I2 is said to be
a Li-Yorke pair of a map F , if simultaneously holds lim infn→∞ d(Fn(x), Fn(y)) = 0 and
lim supn→∞ d(Fn(x), Fn(y)) > 0. A point x ∈ I2 is a nonwandering point of F provided
that for any neighborhood U of x there exists a positive integer m such that Fm(U)∩U 6= ∅.
The set of nonwandering points of F is denoted by Ω(F ). Given a subset A ⊆ I2, we say
that F |A is chaotic (in the sense of Li-Yorke, see [17]) if A contains a Li-Yorke pair of F .

To detect the presence of simple dynamic in a given discrete system is an important
problem in mathematics. The Bowen’s definition (see [5]) of the notion of topological
entropy is a good tool for reaching this aim. In this setting, if the system has zero
topological entropy the dynamical behaviour can be understood as simple. On the contrary
if the entropy is positive a complex dynamics appear. Therefore, a natural problem arrives:
to find topological characterizations of the notion of zero topological entropy. For interval
systems, i.e., discrete systems of the form (I, f), where f is a continuous self-map of I,
there exists a long list of equivalent properties to (P1): f has zero entropy (h(f)=0) (see
[19]). Some of the most representative of such properties are the following:

(P2): the topological entropy of f|Rec(f) is 0 (h
(
f|Rec(f)

)
= 0),

(P3): f|Rec(f) is non-chaotic,
(P4): every recurrent point of f is uniformly recurrent (Rec(f)=UR(f)),
(P5): the period of every periodic point is power of two.
The equivalence between (P1) - (P5) for the interval case establishes an useful proce-

dure for discover dynamical simplicity.
In 1989, A.N. Sharkovskĭı and S.F. Kolyada (see [18]) formulated the problem of study-

ing the relations between the properties (P1)− (P5) on the setting of skew-product maps
of the unit square. It is well known that they are not mutually equivalent (see [2], [8], [12],
[14], [16]). Moreover, even under some additional assumptions on the skew-product map
F , the equivalence is not reached. In [13], Z. Kočan proved that in the case of skew-product
maps non-decreasing on the fibres (i.e., on sets of the form Ix = {x}× I, x ∈ I) conditions
(P1), (P2) and (P5) are equivalent, (P3) implies (P4) and (P4) implies (P1). However
(see [13, cf. Lemma 4.2]) there exists an example of a skew-product map non-decreasing
on the fibres holding (P2) but nor (P3) neither (P4) (this example is based on the ideas
from [9]). The implication from (P4) to (P3) has been recently disproved by J. Chudziak
et al. in [7] by taking an appropriate Floyd-Auslander minimal system and then taking
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its appropriate continuous extension to a skew-product map of the square non-decreasing
on the fibres.

In [11], J.L.G. Guirao and J. Chudziak considered the problem of the equivalence of
(P1)− (P5) in the class of skew-product maps with base map having closed set of periodic
points. Under such assumption was proved that conditions (P1) − (P5) are mutually
equivalent. In that setting the relation between (P1) and (P3) states that the property of
having zero topological entropy is equivalent to the presence of some “order” (in the sense
that there is no chaos) in the set of recurrent points for maps in C∆(I2) having bases with
closed sets of periodic points. The first objective of the present paper is to remark that
the previous result can be easily improve by proving the equivalence between (P1) and
a stronger property than (P3), in the sense that we will have no chaos in a potentially
bigger set than Rec(F ), we called this new property (SP3) (strong (P3)).

On other hand, the class of skew-product maps having base map with a closed set of
periodic point, which works for solving the problem stated by Sharkovskĭı and Kolyada,
was studied by L. Efremova [6] in the nineties of the last century. One of the main results
in the dynamics of these maps is the following theorem.

Theorem 1 (Efremova) Let F ∈ C∆(I2) with base map f such that P(f) is closed. Then

Ω(F ) =
⋃

x∈P(f)

{x} × Ω(F px |Ix), (1)

where px is the period of x.

This result has some important implications, one of them is the equivalence between
the following two properties:

• P(F ) is closed,

• P(F ) = Ω(F ).

The second a central aim of this paper is to show that the previous equivalence does
not hold by disproving Theorem 1.

The statement of our main results on the two problems is:

Theorem A. Let F ∈ C∆(I2) with base map f such that P(f) is closed. Then the following
properties are equivalent:

(P1) F has zero topological entropy,

(SP3) F restricted to
⋃

(x,y)∈Rec(F )

ωF (x, y) is non-chaotic.

Theorem B. There exists G ∈ C∆(I2) with base map g such that P(g) is closed, holding

Ω(G) 6=
⋃

x∈P(g)

{x} × Ω(Gpx |Ix). (2)
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2 Proof of the main results

Proof of Theorem A.
On one hand, by definition (SP3) implies (P3) and by [11], (P3) implies (P1).
Let h(F ) = 0. By [10], Rec(F ) = UR(F ), and thus⋃

x∈Rec(F )

ωF (x) =
⋃

x∈UR(F )

ωF (x) = UR(F ).

Indeed, by definition every uniformly recurrent point belongs to its own ω-limit set and
therefore to

⋃
x∈UR(F ) ωF (x). On the other hand, let y ∈

⋃
x∈UR(F ) ωF (x), so there exists

x0 ∈ UR(F ) that y ∈ ωF (x0).
By definition follows that ωF (y) ⊂ ωF (x0) and since x is uniformly recurrent ωF (x0)

is a minimal set and therefore ωF (y) = ωF (x0) from which we have that y is a uniformly
recurrent point.

Thus, F |⋃
x∈Rec(F ) ωF (x) = F |Rec(F ) and it is non-chaotic, by [10].

Proof of Theorem B. As a base map let g be a continuous interval map having P(g) closed
with an attracting fixed point y∗ isolated in the set P(g).

For constructing the fiber map, let h be a continuous interval map with a no nonwan-
dering point z∗ but, such that a small modification on the definition of h(z) becames z∗

on a nonwandering point of the modified map. Indeed, for example we consider as a map
h the piecewise linear map such that 0 → 7

8 , 1
4 →

3
8 , 1

2 →
1
2 , 3

4 →
7
8 and 1 → 1. Obviously,

z∗ = 1
4 does not belong to Ω(h). On other hand, if we consider hδ (with δ < 1

16) the
piecewise linear map such that hδ(z∗−δ) = z∗−δ and hδ(z) = h(z) for any z ∈ I\(z∗−δ),
the point z∗ ∈ Ω(hδ).

Since the fixed point y∗ is attracting, there exists an open neighborhood V of y∗ such
that diam(V) < 1

16 . We define a skew-product map G : V × I → V × I of the form
G(y, z) = (g(y), hδ(z)) where δ = |y− y∗|. By [10] this map can be extended continuously
to the whole square I2 remaining the skew-product morphology.

Let m∗ = (y∗, z∗). We shall show that m∗ ∈ Ω(G)\
⋃

x∈P(g){x} × Ω(Gpx |Ix). Indeed,
y∗ is isolated in P(g) and hy∗ = h, therefore Ω(hy∗) = Ω(h). Since z∗ /∈ Ω(h) and the set
of nonwandering points is closed, m∗ /∈

⋃
x∈P(g){x} × Ω(Gpx |Ix).

On the converse, we shall verify that m∗ ∈ Ω(G). By the construction of the map h,
for any left-side open neighborhood W of the fixed point c = 1

2 , there exists a non-negative
integer m such that

z∗ ∈ hm−1(W). (3)

Let M = V ′ × L ⊂ I2 be an open neighborhoof of m∗ where we assume that V ′,L ⊂
I and V ′ ⊂ V. We have to show that there exists a non-negative integer l such that
Gl(M) ∩M 6= ∅.

By definition, the point y∗ is an attracting fixed point for the base map g, therefore
there exists y ∈ V ′\{y∗} such that gn(y) ∈ V ′ for each non-negative integer n. Thus,
for ending the proof is enough to show the existence a non-negative integer l such that
z∗ ∈ Kl where by Kl we denote the projection on the second coordinate of Gl(M∩ Iy).

By definition of the skew-product map G, Gl(M∩ Iy) = g(G(M∩ Iy)) for every non-
negative integer l. Now, since G(M∩ Iy) contains certain left-side open neighborhood W
of the fixed point c, (3) ends the proof showing m∗ ∈ Ω(G).
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