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Resumen

The lubrication equation ut = (unuxxx)x plays an important role in the study of the
interface movements. In this work we analyze the generalizations of the above equation
given by ut = (unuxxx)x − kumux. By using Lie classical method the corresponding
reductions are performed and some solutions are characterized.

1. Introduction

The evolution equation
ut = 5. (un 5 .(4u)) = 0,

where u stands for the thickness of the film and n depends on the geometry of the problem,
arises by analysing the evolution of a thin film of a viscous liquid, dominate by surface
tension effects [10]. The one-dimensional version is

ut = (unuxxx)x, (1)

and the modified version
ut = unuxxxx (2)

are considered in [1] where the formation of singularities are studied. Besides, analytical
approximation to the solutions are obtained in [1] and [14] for the case 0 < n << 1 by
applying perturbation theory.

In previous papers [8],[7] we have classified the classical symmetries admitted by the
generalized equations

ut = (f(u)uxxx)x, (3)

and
ut = f(u)uxxxx, (4)
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and by using symmetry reductions we found that for some particular functional forms
of f the one-dimensional lubrication model admits some solutions of physical interest
as similarity solutions: travelling-wave solutions, source and sink solutions, waiting time
solutions and blow-up solutions. We were also able to characterize those solutions as
solutions for some lower-order ODEs and moreover we obtained some particular solutions.

In some physical situations one lubrication approximation reduces the evolution equa-
tion to a long unstable wave diffusion equation.

ut = (unuxxx)x − (kumux)x, (5)

[2, 11].
In this work we study (5) from the point of view of the theory of symmetry reductions

in partial differential equations. We obtain the classical symmetries admitted by (5), then,
we use the transformations groups to reduce the equations to ordinary differential equa-
tions. Physical interpretation of these reductions and some elementary solutions are also
provided.

2. Classical Lie symmetries

One of the mathematical models for diffusion processes is the fourth-order nonlinear
diffusion equation (5) To apply the classical method to (5), we consider the one-parameter
Lie group of infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u) +O(ε2),

t∗ = t + ετ(x, t, u) +O(ε2),

u∗ = u + εφ(x, t, u) +O(ε2),

(6)

where ε is the group parameter.
The associated Lie algebra of infinitesimal symmetries is the set of vector fields of the

form

v = ξ∂x + τ∂t + φ∂u. (7)

One then requires that this transformation leaves invariant the set of solutions of the
equation (5). This yields an overdetermined, linear system of equations for the infinitesi-
mals ξ(x, t, u), τ(x, t, u) and φ(x, t, u). Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface condition

Φ ≡ ξ
∂u

∂x
+ τ

∂u

∂t
− φ = 0. (8)
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Applying the classical method to the equation (5), with k 6= 0 leads to a three-
parameter Lie group. Associated with this Lie group we have a Lie algebra which can
be represented by the following generators:

v1 = ∂x, v2 = ∂t, v3 =
n−m

2
x∂x + (n− 2m)t∂t + u∂u

2.1. Optimal system

In order to construct the optimal system, following Olver, we first construct the com-
mutator table (Table 1) and the adjoint table (Table 2) which shows the separate adjoint
actions of each element in vi, i = 1 . . . 3, as it acts on all other elements. This construction
is done easily by summing the Lie series.

The corresponding generators of the optimal system of subalgebras are

v1 + µv2,

v3,

λv2 + v3,

λv1 + v3,

(9)

where λ and µ are arbitrary real constants.
Each generator of this optimal system (9) defines a reduction, which we now enumerate.

Tabla 1: Commutator table for the Lie algebra vi.

v1 v2 v3

v1 0 0 n−m
2

v1

v2 0 0 (n− 2m)v2

v3 −n−m
2

v1 −(n− 2m)v2 0
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Tabla 2: Adjoint table for the Lie algebra vi

Ad v1 v2 v3

v1 v1 v2 v3 − n−m
2

εv1

v2 v1 v2 v3 − (n− 2m)εv2

v3 e
(n−m)ε

2 v1 e(n−2m)εv2 0

3. Classical reductions

In the following, reductions of the equation (5) to ODE,s are obtained using the gene-
rators of the optimal system.

3.1. Reduction with the generator v1 + µv2

z = x− µt, u = ω, (10)

and the ODE
µω + ωnω′′′ − kωmω′ − c1 = 0 (11)

3.2. Reduction with the generator v3

z = t
m−n

2(n−2m) x, u = t
1

n−2m ω, (12)

and the ODE
(n− 2m)(ωnω′′′ − kωmω′)− zω − c1 = 0 (13)

3.3. Reduction with the generator λv2 + v3, n = 2m

z = e−
mt
2λ x, u = e

t
λ ω, (14)

and the ODE
λ(ω2mω′′′ − kωmω′)− zω − c1 = 0 (15)

3.4. Reduction with the generator v3, n = m

z = x, u = x2ω, (16)

and the ODE

ω′ = 4
m(1− 2

m)(1− 1
m)(1 + 2

m)ω2m+1 − k 2
m(1 + 2

m)ωm+1 (17)
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3.5. Reduction with the generator λv1 + v3, n = m

z = x +
λ

m
ln|t|, u = t−

1
m

ω, (18)

and the ODE
m(ωm(ω′′′ − kω′) + zω − λω − c1 = 0 (19)

4. Analysis of the reduced equations

Finally, we discuss some interpretation of the similarity variables in the above reduc-
tions and provide some particular solutions. We remark the following facts:

* Solutions of (10) satisfying the first reduction are travelling wave solutions for any
arbitrary constants n and m.

* If we take in the second reduction (12) n = m−2, we have that the similarity solution
has the form

u(x, t) =
1

t
1

2+m

ω(
x

t
1

2+m

),

thus, if m > −2, n > −4 it is clear that u(x, t) → δ(x) as t → 0 and the similarity solution
is a source solution.

* An analogue situation is found in the third reduction for the particular case m = −2.
In fact, we have that

If λ < 0 u(x, t) → δ(x) as t → −∞
If λ > 0 u(x, t) → δ(x), as t → +∞

so, the similarity solution is in the first case a source solution while in the second case is
a sink solution.

* For the fourth reduction the ODE is a first order equation that can be implicitly
solved, for k = 0 we obtain a family of waiting-time solutions (if n 6= 2 or 4) given by

u(x, t) =

{
x

4
a

[
4( 4

a + 1)( 4
a − 1)( 4

a − 2)(t0 − t)
]− 1

a x ≥ 0
0 x < 0

.

* For n = m, solutions satisfying the fifth reduction are decaying travelling waves with
decaying velocities.
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