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Analysis of masonry vaults as a topology optimization problem
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ABSTRACT

An innovative approach is proposed to analyze 3D masonry vaults, assuming masonry to behave as a
linear elastic no-tension material. Masonry is replaced by a suitable equivalent orthotropic material
with spatially varying elastic properties and negligible stiffness in any direction along which tensile
stresses must be prevented. An energy-based algorithm is implemented to define the distribution and
the orientation of the equivalent material for a given load, minimizing the potential energy so as to
achieve a purely compressive state of stress. The algorithm is embedded within a numerical
procedure that performs a non-incremental analysis under given loads. The collapse load of masonry
structural elements can also be predicted running a sequence of independent analyses. The
capabilities of the approach in predicting the crack pattern in typical masonry vaults are also shown.

Keywords: masonry vaults, linear elasticity, no-tension material, FEM, topology optimization.

1. INTRODUCTION

The collapse of masonry structures, especially arches and vaults, usually occurs far beyond first
cracking. Accordingly, non-linear analyses are often preferred to conventional approaches based on
the classic theory of elasticity when the safety of this type of structures has to be assessed. Limit
analysis is widely adopted to evaluate the bearing capacity of ductile structures. Assuming the
compressive strength of masonry to be infinite, neglecting its tensile strength and assuming “tensile
strains” to be unbounded, limit analysis can be applied to evaluate the collapse load and the relevant
failure mechanism(s) also for masonry structures. This approach has been extensively followed to
investigate the structural behaviour of brickwork and stonework, in particular arches and vaults [1]. In
principle, a full non-linear analysis is able to follow the complete loading process, from the initial
stress-free state to the highly cracked state precursory of collapse. The reliability of the material
models available so far is a crucial issue when the nonlinear analysis of existing masonry structures is
carried out, see e.g. [2]. Among the approaches that are currently employed to analyse masonry-like
solids, the no-tension model allows the structural behaviour to be evaluated assuming the stress
tensor to be negative semi-definite and to depend linearly upon the elastic part of the strain, see e.g.
[3]. The no-tension approach is of major importance since it allows the structural assessment to be
performed both at the serviceability limit state and at incipient collapse, recovering conventional load
multipliers computed through limit analysis. Notwithstanding the apparent simplicity of the no-
tension model, the need to treat discontinuities in the stress and displacement fields gives rise to
several numerical issues. Well-known difficulties arise when dealing with incremental approaches,
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whereas robust energy-based procedures can be alternatively developed assuming no-tension bodies
to be hyper-elastic [4].

This contribution extends the formulation originally presented in [5] for two-dimensional problems to
three-dimensional ones. The real no-tension material is replaced by an equivalent orthotropic
material, exhibiting negligible stiffness in any direction along which a tensile principal stress must be
prevented in the body. The elasticities of the equivalent material along its symmetry axes are reduced
with respect to those of the real material using a penalization law typical of Topology Optimization [6].
The equilibrium of the no-tension body is sought by minimizing the strain energy with respect to the
distribution and the orientation of the orthotropic material.

A couple of case studies are presented to assess the proposed approach in the simulation of the
structural response of three-dimensional no-tension structures. The collapse load multiplier of an arch
subjected to an increasing horizontal force is computed and compared with the results given by limit
analysis. The structural behaviour of a groin vault under dead loads is also investigated, comparing a
conventional linear elastic analysis with the results of the proposed non-linear approach.

2. PROBLEM FORMULATION

2.1. Equivalent orthotropic material

Consider a 3D solid, consisting of an isotropic linear elastic no-tension material, occupying a domain
Q. The position of any point y € Q is defined by a triplet of orthogonal Cartesian (global) coordinates,
21, 23, 23. Let o, a=l, 11, 1], be the eigenvalues of the stress tensor o computed at g, with o < g < oy
According to the sign of the principal stresses, the material behaviour at y is different. If o < O, the
material behaves like a conventional isotropic material. If one or two of the principal stresses are
positive, the material behaves like an orthotropic material: “cracking strains” & > 0 arise along the
tensile isostatic line(s), whereas the material behaves elastically along the direction(s) of the principal
compressive stress(es). Finally, if o; 2 0, the material behaves like a “void phase”, allowing for any
positive semidefinite “cracking strain”.

A suitable equivalent orthotropic material can be defined to match the behaviour of the real no-
tension material according to the sign of the principal stresses. Let Z;, i=1,2,3, be the symmetry axes of
the orthotropic material, locally coinciding with the principal stress directions z,, a=l, Il, Ill, at any
point of the real solid. The stress-strain law for the orthotropic material at any point y can be written
as € = Cd, where, using the notation proposed in [7]:

(€11 ( ?:11 3\
E~22 0-22
€33 033
E=1{v2e, [+ O =V2d,( (1)
V2é,5 V26,3
\/7531J L\/26-31)

and
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[ 1/E;  —V51/E; —Vs1/Es 0 0 0 ]
—7/12/5'1 1/E2 _T/3Z/E3 0 0 0
Z'= _7/13/5'1 _T/ZS/EZ 1/E3 (1 0 0 (2)
0 0 0 1/G,, 0 0
0 0 0 0 1/Gys 0
[ 0 0 0 0 0 1/G3q]

In eq. (2), E;, i=1,2,3, is the Young’s modulus of the equivalent material along the symmetry axis Z;,
G‘ij i,j=1,2,3, is the shear modulus in the symmetry plane (Z},Z}) and v, ,j=1,2,3, is the Poisson’s ratio
along Z; under uniaxial tension along Z;. The equalities 1,/E; = V51/E,, W43/Ey = ¥31/E3 and
V,3/E, = 53,/E3, hold. The orientation of the maximum principal stress (hence, of the material
symmetry axes) to the global reference system is locally defined by a triplet of Euler angles (&, &, &)

- see Figure 1.

Figure 1. Euler’s angles defining the orientation of the principal stresses to the global reference system

The elastic properties of the equivalent orthotropic material along its symmetry axes can be related to
those of the isotropic no-tension material through a generalization of the so-called SIMP material
model (see e.g. [6]), such that:

E1=pr, E2=P§E: E3=p§Er

A pp_E A pp_E A p p_E
Giz = /p1 P2 3aeyy 23 = /pz P33y 031 = /p3 P13ty (3)
p P 4 p p P
Vi, = by vV, V1= Pz V, V3= by vV, = Py V, Tha = Pe V, Th, = Py v,
12 P;J ’ 21 p117 ’ 13 p—? ’ 31 p110 7 23 pg ’ 32 pg f]

where E and vare the Young’s modulus and the Poisson’s ratio of the isotropic material, respectively,

0, i=1,2,3, are nondimensional variables ranging between pmi,(> 0) and 1, which can be interpreted as
“normalized material densities” along Z;, Z, and Z3, and p is a penalization parameter (usually taken
equal to 3). The normalized densities are given a strictly positive lower bound, pmi,, to avoid any
singularity in the stiffness matrix of the body, K, when a finite element discretization is adopted. The
interpolation in Eq. (3) is conceived so as to provide vanishing stiffness in any direction along which a
variable attains its minimum value, and basically matches the anisotropic damage law proposed in [8].

Finally, denoting by o and & the arrays of the stress and strain components in the global Cartesian
reference system 0z,z,z3, the stress-strain law in this system can be written as

o= D(pl: ,02; ,03, 011 92/ 63)8 (4)
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with
D = qDq" (5)

InEq. (5), D = €~ and q = q(64, 6, 85) is a transformation matrix which can be written as

q=

[ Qfl 0122 Q%S \/7012 Ql3 ﬁQlB Qll ﬁQllQlZ
Q221 Q%Z Q223 \/EQZZ Q23 \/5023 QZl ﬁQZlQZZ
Q?%l Q?%Z Q§3 \/EQ32 Q33 \/EQS3 QSl \/5031032

V2Q51Q31 V2Q22Q35 V2Q230Q33 Q22033 + Q23Q32 Q21Q33 + Q23031 Q21Q35 + Q22031
V2Q31Q11 V2Q3,012 V2033013 Q32013 + Q33Q12 Q31Q13 + Q33011 Q31012 + Q32045
V2011021 V2012Q22 V2Q13Q23 Q12023 + Q13025 Q11Q23 + Q13021 Q11022 + Q12021

with
C1C3 — S1C3S3 S1C3 + C1C2S3  S353
Q = |—C153 — S1C2C3 —S1S3 1 C1C2C3  S3C3 (7)
515, —C155 Cy
being ¢; = cosd, s;=sind, i =1,2,3 (see also [7]).

2.2. Energy-based analysis of no-tension 3D solids

The equilibrium of any linear elastic no-tension solid can be solved distributing the equivalent
orthotropic material defined in Sec. 2.1 over the body, according to the sign of the principal stresses -
see also [5]. In view of a displacement—based numerical solution, the continuous formulation of the
problem can be stated as follows:

. 1
(ming, 5,0, 5 Jey € DD (D1, P2, p3; 61,62, 63)e(W)dQ
s.t. [, € (W)De(v)dQ = frt tovdl Vv, ulr, = u,
161,62,63|2, =z, Z; = 21, Z3 = zy (8)

P1,P2,Pp3l01 <0, 07, <0, g7y <0

\Pmin < P1,P2,P3 =1

In the above equation, the objective function is the elastic strain energy computed through the
displacement field u over the 3D domain 2, whereas the minimization unknowns are the fields of the
“normalized material densities” p, i=1,2,3. The boundary of the domain, I' = I'; U I';, usually consists
of two different parts: the former is subjected to given tractions t,, whereas the latter undergoes
prescribed displacements u,. Eq. (8.2) requires that the displacement field fulfils the elastic
equilibrium in Q and along I', whereas Eq. (8.3) prescribes alignment of the symmetry axes of the

94



Matteo Bruggi and Alberto Taliercio

equivalent orthotropic material to the principal stress directions. Finally, Eq. (8.4) requires the
normalized densities to define a compression-only stress state all over the domain.

Discretizing the body by a mesh of N constant strain tetrahedral finite elements, the proposed
formulation reads as follows:

N
. 1 T
min Ez Ue Ke (xle’ X201 X300 tle’ tZe’ tSe) Ue
e=1
N
Z Ke(xle, X2es xBe’ tle’ tZe’ t3e) Ue = f (9)
) e=1

X1er X260 X3,|Tep) OepOerrp < 0,

0 < Xpin S X1 Xper X5, < 1,

min =

e=1..N

The objective function of the above optimization problem is the strain energy, computed over the N
elements of the mesh from the stiffness matrices, K., and the arrays of the nodal displacements, U., of
each element. f denotes the array of the equivalent nodal loads. The three sets of element unknowns
X1e, X2, X3e (resp. tie, the, tse) correspond to the material densities along the symmetry axes (resp. to the
Euler’s angles defining the orientation) of the equivalent orthotropic material in any finite element e.
The above minimization problem is solved through mathematical programming [9].

Details on the numerical implementation of the problem in Eq. (9) can be found in [5]. By repeatedly
calling the minimization algorithm for different values of the loads, the collapse load of the structural
element can also be estimated as the value at which the slope of the curve relating the load multiplier
to the displacement of a control point becomes lower than a prescribed tolerance.

3. NUMERICAL APPLICATIONS

3.1. Semi-circular arch

A semi-circular arch is first considered (Figure 2). Under plane strain conditions, or with suitable
transversal constraints, the arch can be representative of any segment of a barrel vault. The arch has
an internal radius ri=0.4 m, whereas the external radius re=0.5 m. A three-dimensional model is
analysed through a tetrahedral-based discretization made of 8329 elements, assuming the arch to
have a thickness of 0.1m. The elastic properties of the material are E = 10,000 MPa and v = 0.1. A
radial pressure of 0.1 MPa acts along the external surface of the arch; a horizontal live load F, with F
= 1 kN and increasing with the multiplier , is applied at approximately half of the height of the arch.
This structure was originally investigated in [10] to compare the value of the collapse multiplier
computed through a no-tension complementary energy formulation to the result achieved by a
conventional limit analysis suggesting a four-hinges collapse mechanism and an ultimate load
multiplier .= 0.272. The solid line in Figure 3 shows the diagram of the horizontal displacement of
the point loaded by the horizontal force versus the load multiplier , as computed in the original
reference [10] through a plane strain discretization. A much finer 3D mesh is herein implemented to
capture the behaviour of the arch at incipient collapse with increased accuracy. The dotted line in
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Figure 3 connects results achieved by the proposed optimization procedure for independent analyses
carried out at increasing values of the parameter . A good agreement is found in the first part of the
curve, whereas the ultimate value of the load multiplier for which the optimization algorithm finds
convergence is not far from the value of the collapse multiplier, , predicted by limit analysis.
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Figure 2. Semi-circular arch: geometry and load conditions
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Figure 3. Semi-circular arch: load-displacement diagram obtained through the proposed numerical method vs.
benchmark results [10]. The collapse load multiplier given by limit analysis is also shown

Figure 4 shows the (magnified) deformed geometry computed by the proposed procedure at incipient
collapse, which matches the expected four-hinge mechanism. The highest strains are localized within
limited regions of the three-dimensional domain, whereas the remaining parts of the structure exhibit
an almost rigid response.

3.2. Groin vault

A groin vault given by the intersection of two barrel vaults with internal radius r;=0.8 m and external
radius r.=1.0 m is dealt with. The material properties are assumed to be equal to those used in the
previous example. A discretization with 12456 elements is employed to investigate the structural
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response of the vault under the effect of self-weight, see Figure 5. Lateral confinement is enforced by
suitably constraining the horizontal displacements of the sides of the vault.
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Figure 4. Semi-circular arch: magnified deformed shape at incipient collapse

Figure 5. Groin vault: views of the adopted three-dimensional discretization

First, the vault is analysed assuming a linear elastic behaviour of the material both in compression and
in tension. Figure 6 and Figure 7 show, respectively, the contour maps of the principal stresses g; and
oy 0p1 is not reported here, as its order of magnitude is much lower than that of g; and a;;. As one
may easily see from the referenced figures, positive principal stresses exist both at the intrados and at
the extrados, in the upper part of the structure.

The no-tension model is then adopted to investigate the structural response of the vault neglecting
the tensile strength of masonry. Figure 8 and Figure 9 show, respectively, the contour maps of the
principal stresses g; and ay;, according to the results of the analysis performed through the proposed
algorithm. Apparently, no tensile-stress is found in any region of the vault, whereas the maximum
absolute values of the principal compressive stresses increase with respect to those obtained by a
linear elastic analysis.
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Figure 6. Groin vault: map of the principal stress o; (extrados and intrados, with o, < g0;; < agy;;) under the
assumption of linear elastic behavior
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Figure 7. Groin vault: map of the principal stress a;; (extrados and intrados, with o; < a;; < ay;;) under the
assumption of linear elastic behavior

Regions where the stress vanishes correspond to regions experiencing cracking strains. In the upper
part of the intrados, the vault is fully cracked a two principal stresses vanish. At the extrados, cracks
arise perpendicularly to one principal direction (corresponding to o,) in wide regions along the
perimeter of the vault.
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Figure 8. Groin vault: map of the principal stress a; (extrados and intrados, with o; < a;; < ay;;) under the
assumption of no-tension behavior
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Figure 9. Groin vault: map of the principal stress o;; (extrados and intrados, with o, < 0;; < agy;;) under the
assumption of no-tension behavior

4. CONCLUSIONS

Following a recent proposal for 2D no-tension structures [5], a numerical method is presented to
perform the analysis of no-tension 3D structural elements under given loads according to an energy-
based non-incremental algorithm. The strain energy of a body made of an equivalent orthotropic
material is minimized, so as to avoid tensile stresses throughout the structure. An interpolation typical
of topology optimization [6]is employed to define the elastic properties of the equivalent material, so
that a negligible stiffness is obtained along the direction(s) of the tensile principal stress(es). In the
formulation implemented herein, the nondimensional “densities” that define the elastic moduli of the

99



Analysis of masonry vaults as a topology optimization problem
Third International Conference on Mechanical Models in Structural Engineering
University of Seville. 24-26 june 2015.

equivalent material and the orientation of the relevant symmetry axes are both sets of minimization
variables for the strain energy.

The proposed algorithm correctly captures the typical crack pattern observed in masonry vaults. Also,
the collapse mechanisms and the collapse load multipliers of these vaults can be estimated without
any a-priori hypothesis regarding the position of the “plastic hinges” (Sec. 3).

In the continuation of the work, the simplification adopted so far, according to which masonry is
macroscopically isotropic, will be removed to take elastic anisotropy into account. The cracking strains
predicted by the proposed approach will be also compared with those obtained by incremental
analyses carried out with commercial FE (or XFE) programs. Finally, the possibility of defining optimal
reinforcing layouts will be dealt with, extending the formulation adopted here to distribute the
equivalent orthotropic material over the vault to define the distribution and the orientation of a
tension-only strengthening layer, see in particular [11].
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