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Resumen

We consider the Restricted Three Body Problem (RTBP), and we restrict our
attention to the equilibrium point L3. Our aim is centered in the description, as global
as possible, of the dynamics around this equilibrium point. In this communication, we
initially consider small values of µ, for which homoclinic connections to the equilibrium
point L3 are horseshoe-shaped, and then, other values of µ are considered. We compute
the objects in the center manifold of L3, including the invariant manifolds associated
with them. They are computed by purely numerical procedures, in order to avoid
the convergence restrictions of the semi-analytical ones (typically used around L1

or L2). We deal with homoclinic connections of periodic orbits and develop some
numerical tools in order to compute them. These tools can be extended to compute
also homoclinic connections to invariant tori.

1. Introduction

Let us consider the circular restricted three-body problem (RTBP) where two bodies
(called primaries) describe circular orbits around their common center of mass, and a
third body of infinitesimal mass moves under the gravitational effect of the primaries but
having negligible effect on their motion. With suitable units, we can assume that the
primaries have masses 1 − µ and µ, µ ∈ (0, 1/2], that the period of their motions is 2π
and that their distance is the unit. Let r = (x, y, z) be the coordinates of the third body
and p = (px, py, pz) the corresponding momenta in a rotating reference system where
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the primaries are fixed at (µ, 0, 0) and (µ− 1, 0, 0). Then, the Hamiltonian governing the
motion of the infinitesimal particle is given by

H =
1
2
(p2

x + p2
y + p2

z)− xpy + ypx − 1− µ

r1
− µ

r2
, (1)

where r1 =
√

(x− µ)2 + y2 + z2 and r2 =
√

(x− µ + 1)2 + y2 + z2 (see, for example [8]).
The value of the Hamiltonian on each orbit will be referred to as the energy of the orbit
and its relation with the Jacobi integral is given by C = −2H + µ(1 − µ). Furthermore,
the equations of the problem satisfy the symmetries

(t, x, y, z, px, py, pz) −→ (−t, x,−y, z,−px, py,−pz),
(t, x, y, z, px, py, pz) −→ (−t, x,−y,−z,−px, py, pz).

(2)

The RTBP has five equilibrium points: the collinear points, L1, L2 and L3, and the
equilateral ones, L4 and L5. We will consider L1 located between the two primaries, L2

located such that the small primary is between L1 and L2, and L3 such that the big
primary is between L1 and L3. We denote by Ci and Hi the value of the Jacobi constant
and the energy at the equilibrium point Li, i = 1, . . . , 5. It is well known that 3 = C4 =
C5 < C3 ≤ C2 < C1, and C3 = C2 for µ = 1/2.

In this communication, we focus our attention on the dynamics of the RTBP around
the equilibrium point L3. The dynamics around the collinear points have been studied by
several authors using different techniques and approaches (see, for example, [3], [4], [5], [6]
and the references therein). It is well known that the linear behaviour of the three points
is of type center×center×saddle. In spite of this, there is a strong difference between Li,
i = 1, 2, and L3: while the first two points are strongly affected by both primaries, the effect
of the small primary on L3 is almost negligible. Furthermore, in the case of L1 and L2,
the invariant manifolds can be computed in series expansion by semi-analytical procedures
as the ones based in Lindstedt-Poincaré method or reduction to the center manifold (see
[7]). These methods produce expansions of the manifolds up to an arbitrary order, which
give initial conditions on the manifolds up to a high degree of accuracy. However, these
methods are not suitable for the neighbourhood of L3 due to the small range of values of
the energy for which the truncated series are valid.

We explore numerically the existence and organization of invariant objects around
L3, as well as the existence of homoclinic orbits. We start dealing with the invariant
manifolds of the equilibrium point L3 and then with the families of planar Lyapunov
periodic orbits (LPO) that are born at L3. Then, the invariant manifolds associated with
LPO are considered. We develop numerical methods in order to compute, at the same
time, both a periodic orbit and an homoclinic connection to it. The explorations are done
for µ ∈ [10−4, 0.03], which contains the Earth-Moon value, µEM = 0.01215058560962404
and the Sun-Jupiter value, µSJ = 9.53875×10−4. Finally, we generalize the methods used
in order to find homoclinic connections to invariant tori.

2. Linear behaviour around L3 and homoclinic phenomena

It is well known that the linear behaviour of the equilibrium points is of type center ×
center × saddle and that two families of periodic orbits are born at them: the planar and
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vertical Lyapunov orbits. In the case of the planar Lyapunov orbits (see, for instance, [4]),
and for values of the energy less than the first vertical bifurcation orbit (corresponding
to the value at which the family of Halo orbits is born), the orbits have central and
hyperbolic parts. For a fixed value of the energy, the corresponding Lyapunov orbit has
stable and unstable invariant manifolds and there exists a (cantorian) family of invariant
tori connecting the planar orbit with the vertical one with the same energy. Each of these
tori inherits the hyperbolic behaviour of the backbone periodic orbits.

Let X be one of the invariant objects around L3. We denote by W u(X) the unstable
manifold and W s(X) the stable one (or simply W u and W s). In the case of a collinear
equilibrium point, the invariant manifolds have dimension 1 and contain planar orbits
that tend (backwards or forwards in time) to the equilibrium point. For each manifold,
W

u/s
+ (Li) denotes the branch corresponding to the eigenvector that points to the upper

half plane {y > 0} and by W
u/s
− (Li) the branch corresponding to the eigenvector pointing

to the lower half plane {y < 0}. This notation can be extended for the branches of the
invariant manifolds of a periodic orbit or an invariant torus: W

u/s
+ (respectively W

u/s
− )

denotes the branch that enters into the upper space {y > 0} (resp. lower space {y < 0})
after leaving forward (resp. backward) in time a neighbourhood of the invariant object.
We observe that the symmetries given by (2) map orbits on W u− to W s

+ and vice versa.
We are interested in homoclinic connections to an invariant object X, which are so-

lutions of the RTBP such that tend to X forward and backward in time. Such solutions
belong to the stable and unstable manifolds associated with X, this is, to the intersection
W u ∩W s. In order to compute homoclinic orbits, we fix a Poincaré section Σ and we look
for elements of

(
W u ∩ Σj

) ∩ (
W s ∩ Σk

)
, where W u/s ∩Σm denotes the m-th intersection

of the invariant manifold with Σ. Depending on the branches that are involved we look
for the following kinds of homoclinic connections:

connection of type (−j,−k), which takes place when
(
W u− ∩ Σj

) ∩ (
W s− ∩ Σk

) 6= ∅.
Similarly, a connection of type (+j, +k) can be defined. Observe that, if there exists
a connection of type (−j,−k), then it is a non-symmetric orbit and the symmetric
orbit is a connection of type (+j, +k).

connection of type (−j,+k), which takes place when
(
W u− ∩ Σj

) ∩ (
W s

+ ∩ Σk
) 6= ∅.

Similarly, a connection of type (+j,−k) can be defined. If there exist symmetric
connections, they must be of one of these types.

3. Homoclinic connections to L3

In this Section, we look for values of µ for which there exists an homoclinic connection
to L3. Font, in [2], proved that there exists an infinite sequence of µ tending to zero,
such that there exists an homoclinic connection to L3 for each one of these values. These
connections are all symmetric. In [1], the behaviour of the invariant manifolds of L3 as
µ varies and its relation with horseshoe orbits are described and a procedure to compute
symmetric homoclinic connections to L3 using the symmetry of the orbits is given. Here we
want to generalize that procedure in order, to find, if they exist, non symmetric connections
as well.
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We consider in this section Σ = {x = µ− 1/2}. We start with an initial condition on
the linear approximation of the invariant manifold, and we follow the flow of the RTBP
until the corresponding intersection with Σ. As the invariant manifolds are 1-dimensional,
W

u/s
± ∩Σm consists of one point zu/s(µ), so we look for values of µ such that zu(µ) = zs(µ).

We consider the values of µ ∈ [10−4, 0.03], which contains the cases of Sun-Jupiter and
Earth-Moon problems.

Concerning homoclinic connections of type (−j,−k), we explore the cases (−1,−2),
(−2,−3) and (−3,−4) and we do not observe numerical evidence of non-symmetric ho-
moclinic connections.

In the case of an equilibrium point, all homoclinic connections of type (−j,+k) or
(+j,−k) are symmetric (which is not true in the case of periodic orbits or invariant tori).
We explore the cases j = 2, k = 3 and j = 2, k = 5 and j = 4, k = 5. We find homoclinic
connections in all of them, in particular, all the symmetric homoclinic orbits described in
[1]. In Figure 1, two different homoclinic orbits to L3 for different values of µ are shown.
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Figura 1: Homoclinic orbits to L3 of type (−3, 2) for µ = 0.0010015432 (left) and (+2,−5)
for µ = 0.012143988024852 (right). (W u in continuous red line, W s in dashed blue line)

4. Homoclinic connections to Lyapunov orbits

In this section we deal with the family of planar Lyapunov periodic orbits (LPO)
around L3 and their homoclinic orbits. For values of the energy H close to H3, the LPO
inherit the behaviour of the equilibrium point, so the associated invariant manifolds ha-
ve a shape similar as the invariant manifolds of L3. Fixed a planar Lyapunov orbit X,
we consider the different branches of each invariant manifold W u/s(X), and we look for
their intersections with the section Σ = {x = µ − 1/2}. The invariant manifolds are 2-
dimensional objects that can be viewed as tubes in the phase space. It can be expected
that the first crossings of each W

u/s
± (X) with Σ will be like S1 curves, so one way to

compute the homoclinic connections is to look for the intersections of these curves (see
Figure 2). However, this procedure presents some problems when the energy or µ increases
due to the presence of multiple loops that make difficult to compute ‘exactly’ the m-th
crossing with a section (see Figure 5). In this case, we use a different approach in order to
find a specific homoclinic orbit without computing the whole curve W

u/s
± (X) ∩ Σm.

Next, we describe slightly the methods used.
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Figura 2: W u− ∩ Σ1 and W s− ∩ Σ2 curves in the (y, y′) plane (y′ = py − x) for two planar
LPO around L3 of energy H = −1.500476742438758 (left) and H = −1.500476517438758
(right). (µ = µSJ and Σ = {x = µ− 1/2})

1. Intersection of the invariant manifolds with a defined section.
Fixed X a periodic orbit, a simple method consists of taking, for each point of the
orbit, the linear approximation of the invariant manifold, and follow the flow (forward
or backward, depending on the manifold) by numerical integration until the desired
intersection with Σ. This method has problems when the orbit on the manifold has
loops. In this case, we use a global parametrization of an invariant manifold in order
to obtain a parametrization of the curve W

u/s
± (X) ∩ Σm. In Figures 2 and 5 the

intersections of the invariant manifolds with different sections (Σ = {x = µ − 1/2}
and Σ′ = {y = 0}) for different LPO are shown.

Once we have the two curves, obtained from the intersection of each invariant ma-
nifold and Σ, the homoclinic orbits can be computed as the intersection of both
curves. As we have them as a union of polygons, we can check for intersections
between segments and then refine the process.

2. Computation of a homoclinic of a periodic orbit: matching of manifolds on a section.
The idea is to compute directly an homoclinic orbit without computing the whole
intersection of an invariant manifold with a section. In order to do this, we look
for two orbits, each one in a different invariant manifold, such that match at their
corresponding intersection with Σ. We remark that in order to obtain robust results
this method is implemented by using a multiple shooting strategy.

As we have said before, as the energy increases, so do the loops, which is a problem
if the number of intersections with Σ is fixed. In order to avoid counting the number
of intersections when computing an homoclinic orbit, we introduce in the equations
as an unknown quantity the time to reach Σ. Finally, if we want to implement a
continuation method it is necessary to vary the periodic orbit. Thus we compute, at
each step, a periodic orbit and an homoclinic connection to it.

Let us show some of the results obtained.
We consider the mass parameter µSJ = 9.53875×10−4. We start looking for homoclinic

orbits of type (−1,−2). We consider the section Σ = {x = µ−1/2} and compute the curves
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Figura 3: Characteristic curve (H, y) of a family of homoclinic orbits to Lyapunov orbits
for µ = µSJ .
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Figura 4: Non symmetric homoclinic orbits for µ = µSJ H = −1.5004762674387578125
(left) and H = −1.4935767674387578125 (right).

W u− ∩Σ1 and W s− ∩Σ2, which can be represented in the (y, y′) plane (y′ = py − x). Recall
that there is no homoclinic connection to L3 of this type. Then, for values of H slightly
bigger than H3, no homoclinic orbits of this type are expected, and the curves do not
intersect (see Figure 2 left). But as we increase H, first the curves become tangent at one
point –so there is one homoclinic orbit–, and then intersect at two points, giving rise to
two homoclinic orbits (see Figure 2 right).

Then, given a homoclinic orbit, we follow the family it belongs to, predicting a new
orbit using the tangent vector to the curve that represents the family of homoclinic orbits.
As the energy increases, the number of loops increases as well, so although we start the
family with a homoclinic orbit of type (−1,−2), it is possible to find other homoclinic
orbits with a different number of intersections with Σ in the same family. In Figure 3 the
characteristic curve of a family of homoclinic orbits in the (H, y) plane is shown, being y
the second coordinate of the matching point of the invariant manifolds at Σ. In Figure 4
two non symmetric homoclinic orbits are shown.

All of the above homoclinic connections are non-symmetric orbits. In order to find
symmetric homoclinic orbits, we consider the (−1, +4) case. We start considering a LPO
withH = −1.500476742438758, for which there no exists connections of type (−1,−2), and
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Figura 5: Intersection of the invariant manifolds of a periodic orbit for µ = µSJ and
H = −1.500476742438758 with two different sections: W u−∩Σ1 and W s

+∩Σ4 curves in the
(y, y′) plane (left), W u− ∩ Σ′ and W s

+ ∩ Σ′ curves in the (x, x′) plane (right).

we compute W u− ∩Σ1 and W s
+ ∩Σ4. The curves obtained, represented in the (y, y′)-plane,

are shown in Figure 5, left, where the effect of the loops can be observed. In this case we
obtain 28 intersection points, that is, 28 homoclinic orbits which contain symmetric and
nonsymmetric homoclinic orbits. In order to identify the symmetric orbits, sometimes it
is more convenient to deal with the section Σ′ = {y = 0}, because the symmetric orbits
correspond to the points on the curves with x′ = 0. In Figure 5, right, W u−∩Σ′ and W s

+∩Σ′,
for the same periodic orbit as before, are shown, where, 14 homoclinic symmetric orbits
can be identified.

5. Homoclinic connections to invariant tori

Consider a level of energy smaller than the first bifurcation of the family of planar
Lyapunov orbits. The family of invariant tori of this energy level connecting the planar
and the vertical Lyapunov orbits inherit the hyperbolic behaviour of the periodic orbits.
Thus, for each invariant torus, we can consider the 3-dimensional invariant manifolds
associated to them and we can look for homoclinic connections considering again the
intersection of each branch of the invariant manifolds with a given section. The method
of computing homoclinic orbits looking for two specific orbits in each invariant manifold
and doing section matching can be generalized to invariant tori. In Figure 6 two different
homoclinic orbits for the same invariant torus are shown.
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-1.5 -1 -0.5  0  0.5  1  1.5-2
-1.5-1

-0.5 0
 0.5 1

 1.5
-0.004
-0.002

 0
 0.002
 0.004

-1.5 -1 -0.5  0  0.5  1  1.5-1.5
-1

-0.5
 0

 0.5
 1

 1.5
-0.01

-0.006
-0.002
 0.002
 0.006

 0.01

Figura 6: Homoclinic connections to an invariant tori for µ = µSJ and H = −1.46 (left)
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