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Abstract. P systems with active membranes using only two electrical charges and
only rules of types (a) and (c) assigned to at most two membranes are shown to
be computationally complete – thus improving the previous result of this type from
the point of view of the number of polarizations as well as with respect to the
number of membranes. Allowing a special variant of rules of type (c) to delete
symbols by sending them out, even only one membrane is needed. Moreover, we
present an algorithm for deterministically deciding SAT in linear time using only two
polarizations and global rules of types (a) , (c), and (e).

1 Introduction

Membrane systems are biologically motivated theoretical models of distributed and parallel
computing. The most interesting questions in the area probably are completeness (solving every
solvable problem) and efficiency (solving a hard problem in feasible time). In this paper we will
address both problems, i.e., we shall show that when using only two polarizations in P systems
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with active membranes we already obtain computational completeness in only two membranes
and as well we shall give an algorithm how to use such systems to decide SAT in linear time.

The question of removing the polarizations (charges +,−, 0 associated with the membranes)
from P systems with active membranes without diminishing their computing power or their effi-
ciency in solving computationally hard problems in a feasible time was formulated several times
and was recently considered in various contexts (with the polarizations replaced by various other
features, such as label changing – see, e.g., [3], [4]). Here we present another way for improving
previous results: the number of polarizations can be decreased to two, without introducing new
features. It is worth mentioning that the computational completeness is obtained for systems
with the same types of rules as in [15], hence without using membrane division and membrane
dissolution, even decreasing the number of membranes from three (Theorem 7.2.1 in [15]) to
two. It remains as an open question whether polarizations can be completely removed.

There are numerous results of solving such (mostly NP-complete) problems as SAT, HPP,
Validity, Subset-Sum, Knapsack, Vertex Cover, Clique, QBF-SAT by P systems with active mem-
branes with three polarizations (e.g., see [3], [4], [1], [2], [8], [9], [11], [12], [13], [14], [16], [17],
[19], [20]). The ability of the system to act depending on the membrane polarizations and to
change them is a powerful control feature, the use of which is not necessary if one pays the price
of changing membrane labels. Another result is solving SAT in a uniform manner, without polar-
izations and without changing labels, but also using membrane dissolution and non-elementary
membrane division. Here we show that two polarizations are enough even when restricting the
types of rules to (a) , (c) , and (e) .

2 Prerequisites

The reader is assumed to be familiar with basic elements of formal language theory. For an alpha-
bet V , by V ∗ we denote the free monoid generated by V under the operation of concatenation;
the empty string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The family of recursively
enumerable languages is denoted by RE; NRE denotes the family of recursively enumerable
sets of non-negative integers, and PsRE denotes the family of recursively enumerable sets of
Parikh vectors of non-negative integers. In the following we will not distinguish between a vector
(y1, ..., yβ) , its representation by a multiset or its representation by a string with Parikh vector
(y1, ..., yβ) . For more notions as well as basic results from the theory of formal languages, the
reader is referred to [5] and [18].

We now also recall the definition of a graph-controlled grammar and prove a special normal
form needed in the proof of the main theorem stated in this paper:

A graph-controlled grammar is a construct

G = (N,T, Lab, S, R, {1} , {n}) ,

where N denotes the set of non-terminals, T is the set of terminal symbols, Lab = {1, ..., n} is
the set of labels, S is the start symbol, R is a finite set of rules that can be represented as a
function from Lab to P × 2Lab × 2Lab, where P denotes the set of all context-free productions
over the set N of non-terminal symbols and the set of terminal symbols T. A rule in R usually
is written in the form

(i : p (i) , σ (i) , ϕ (i)) ,

where σ (i) is called the success field and ϕ (i) is called the failure field of the rule labelled by i; the
context-free production p (i) is of the form A (i) → w (i) , where A (i) ∈ N and w (i) ∈ (N ∪ T )∗ .
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Without loss of generality we not only assume that N ∩ Lab = ∅ and that there is only one
initial label (i.e., 1) and only one final label (i.e., n, with σ (n) = ϕ (n) = ∅), but we also may
assume that if a computation has reached the final label n, then the obtained sentential form is
terminal, i.e., it must not contain any non-terminal symbol.

As a special technical detail, without loss of generality we may assume any right-hand side
w (m) to contain at most one terminal symbol. Finally, again without loss of generality we
may also assume that in the case of a string language, the terminal symbols are generated by G
exactly in the correct sequence as they form a terminal word. All these features of a normal form
for graph-controlled grammars, for example, follow from the constructions and results proved in
[6], Theorem 6.

We now add one more feature to the normal form of graph-controlled grammars given above,
i.e., from such a graph-controlled grammar G we now construct a graph-controlled grammar

G′ =
(
N ′, T, Lab′, S′, R′, {0} , {n + 1})

with N ′ = N ∪{S′, F} and Lab′ = Lab∪{0, n + 1, n + 2}, which has the additional feature that
all failure fields and all success fields in G′ are non-empty:

S′ and F are new non-terminal symbols; S′ is used as the new start symbol only used in the
production assigned to the new label 0, where we take

(
0 : S′ → SF, {1} , {1}) ;

F is used as a kind of trap symbol which remains for entering an infinite loop at label n+2 with

(n + 2 : F → F, {n + 2} , {n + 2}) .

Moreover, if the original final label n was reached, it was clear that only terminal symbols
were present in the current sentential form; hence, to erase the newly added symbol F we add
the new rule

(n : F → λ, {n + 1} , {n + 1}) .

Thus, we finish with a terminal word in the new final label n+1, where for sake of conciseness
we take

(n + 1 : F → F, {n + 1} , {n + 1}) .

In order to obtain all failure fields and all success fields in G′ to be non-empty, we construct
the set of rules R′′ from the set of rules R in the following way:

For every rule (i : p (i) , σ (i) , ϕ (i)) in R we take the rule
(
i : p (i) , σ′ (i) , ϕ (i)′

)
, where

σ′ (i) = σ (i) for σ (i) 6= ∅ and σ′ (i) = {n + 2} for σ (i) = ∅ as well as ϕ′ (i) = ϕ (i) for
ϕ (i) 6= ∅ and ϕ′ (i) = {n + 2} for ϕ (i) = ∅.

In sum, we obtain

R′ = R′′ \ {(n : p (n) , ∅, ∅)}
∪ {(0 : S′ → SF, {1} , {1}) , (n : F → λ, {n + 1} , {n + 1})}
∪ {(n + 1 : F → F, {n + 1} , {n + 1}) , (n + 2 : F → F, {n + 2} , {n + 2})} .

We also assume the reader to be familiar with the basic elements of membrane computing,
e.g., from [15] (details can be found at http://psystems.disco.unimib.it), in particular, with
P systems with active membranes.

For the sake of completeness, we recall the definition of P systems with active membranes
for the case when only rules of types (a) , (b) , and (c) or (cλ) as well as possibly (e) are used;
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in a more general way as in the original definition, we allow the polarizations to be arbitrary
non-negative integers.

A P system system with active membranes (of degree m ≥ 1) is a construct of the form

Π = (O, E, µ, w1, . . . , wm, e1, . . . , em, R) ,

where O is the alphabet of objects, E = {0, ..., n− 1} with n ≥ 1 is the set of electrical
charges (polarizations), µ is the membrane structure (with m membranes, bijectively labelled
with 1, 2, . . . , m; by H we denote the set of labels {1, 2, . . . ,m}), w1, . . . , wm are strings over O
indicating the multisets of objects at the beginning present in the m regions of µ, e1, . . . , em are
the polarizations at the beginning assigned to the membranes 1, . . . , m, and R is a finite set of
rules of the following forms:

(a) [a → v]ih , a ∈ O, v ∈ O∗, h ∈ H, i, j ∈ E

(evolution rules, used in parallel in the region of membrane h, provided that the polariza-
tion of the membrane is i);

(b) a [ ]ih → [b]jh , a, b ∈ O, h ∈ H, i, j ∈ E

(communication rule, sending an object into a membrane, possibly changing the polariza-
tion of the membrane);

(c) [a]ih → [ ]jh b, a, b ∈ O, h ∈ H, i, j ∈ E

(communication rule, sending an object out of a membrane, possibly changing the polar-
ization of the membrane).

We shall also consider the following variant of rule type (c):

(cλ) [a]ih → [ ]jh b, a ∈ O, b ∈ O ∪ {λ} , h ∈ H, i, j ∈ E

(communication rule, sending an object out of a membrane or “killing” it by sending it
through the membrane, possibly changing the polarization of the membrane).

(e) [a]ih → [b]jh [c]kh , a, b, c ∈ O, h ∈ H, i, j, k ∈ E

(division rules for elementary membranes; in reaction with an object, the membrane is
divided into two membranes with the same label, possibly of different polarizations, and
the object specified in the rule is replaced in the two new membranes by possibly new
objects)

Throughout this paper, we shall even use only communication rules [a]ih → [ ]jh b with a = b
or b = λ.

The rules of types (b) , (c) , and (cλ) are considered as involving the membrane, hence, we
assume at most one of such a rule to be used for each membrane in a given step; the use of
rules is maximally parallel, with the rules chosen in a non-deterministic manner. An output is
associated with a halting computation – and only with halting computations – in the form of
the objects sent into the environment during the computation; for the following definitions, we
assume ∅  D ⊆ {a, b, c, cλ, e} :

• If we consider only the number of symbols sent out during a halting computation,
then the set of all such numbers computed by a system Π is denoted by N(Π). By
NOPm (activen, D) we denote the family of all sets N(Π) computed by P systems with at
most m membranes allowing for n polarizations, using rules of the types contained in D.
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• If we distingish the different symbols sent out during a halting computation, the set
of all such vectors of numbers computed by a system Π is denoted by Ps(Π). By
PsOPm (activen, D) we denote the family of all sets Ps(Π) computed by P systems with
at most m membranes allowing for n polarizations, using rules of the types contained in
D.

• If we consider the sequence of symbols sent out during a halting computation and interpret
this sequence as a string, then the set of all such strings computed by a system Π is denoted
by L(Π). By LOPm (activen, D) we denote the family of all languages L(Π) computed by
P systems with at most m membranes allowing for n polarizations, using rules of the types
contained in D.

In this paper, we will use only two polarizations, 0 and 1, and this restriction will be indicated
by writing active2 in the notations defined above.

3 Completeness/Universality with Two Polarizations

Stated in the notations of this paper, Theorem 1 from [10] says that PsOP3 (active3, {a, b, c}) =
PsRE. As announced above, we here not only improve this result with respect to the number of
electrical charges (polarizations), but even with respect to the number of membranes, especially
when allowing rules of type (cλ) instead of rules (c) :

Theorem 3.1 PsOP1 (active2, {a, cλ}) = PsRE.

Proof. We only prove that any recursively enumerable set of vectors of non-negative integers can
be generated by a P system with active membranes using only one membrane, two polarizations,
and rules of the types (a) and (cλ).

We start with a graph-controlled grammar

G′ =
(
N ′, T, Lab′, S′, R′, {0} , {n + 1})

which is in the normal form constructed above and represents the given recursively enumerable
set L of Parikh vectors.

We now construct a P system with active membranes of degree one

Π = (O, {0, 1} , [1 ]1, (S, 0) (F, 0) (1, 0) , 0, RΠ)

using only two polarizations 0 and 1 and rules of the form (a) and (cλ) such that PsP (Π) = L.
The simulation of derivations in the graph-controlled grammar G′ by derivations in the P

system Π uses a colouring technique opening a “window” of length three for the application of
the current rule (i : p (i) , σ (i) , ϕ (i)) to be applied. Basically, the labels k ∈ Lab occur in the
variants (k, l) and the non-terminal symbols B ∈ N ′ occur in the variants (B, l) , 0 ≤ l ≤ 3n.

In the following, the label m runs from 1 to n.

• As long as membrane 1 (the skin membrane) has polarization 0, the index l of the non-
terminal symbols B ∈ N ′ in (B, l) may be incremented:

[(B, l) → (B, l + 1)]01 , B ∈ N ′, 0 ≤ l ≤ 3n.

• For each m, the index l of m ∈ Lab in (m, l) is incremented until the index 3m − 3 is
reached:

[(m, l) → (m, l + 1)]01 , 0 ≤ l < 3m− 3.
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• Then we check whether p (m) can be applied to the current contents of membrane 1; by
polarizing the membrane we first prohibit the incrementation of the index l in the variables
of the form (B, l) :

[(m, 3m− 3) → (m, 3m− 2) E]01
In the next step, all objects (B, 3m− 2) , B ∈ N ′, in membrane 1 evolve to (B, 3m− 1) ,
whereas (m, 3m− 2) evolves to (m, 3m− 1) by applying the following rule:

[(m, 3m− 2) → (m, 3m− 1)]01
At the same time, E passes the skin membrane thereby changing its polarization from 0
to 1 :

[E]01 → [ ]11 λ

• With the polarization of the membrane being 1, the symbols now remain unchanged, only
one suitable object – if possible – has to pass the membrane resetting the polarization to
0:

[(A (m) , 3m− 1)]11 → [ ]01 λ

At the same time, the object (m, 3m− 1) evolves according to the following rule:

[(m, 3m− 1) → m′]11

• In the next step m′ evolves according to the polarization of the skin membrane (the
polarization has stored the one-bit information whether A (m) was present or not):

If the polarization is still 1, then m′ evolves in two further steps to m′′′, where the symbol
E generated in the first step then resets the polarization to 0 in the second step by passing
the skin membrane:

[m′ → m′′E]11 ,

[m′′ → m′′′]11 ,

[E]11 → [ ]01 λ

• As the polarization is 0 again, the symbols (B, 3m− 1) , B ∈ N ′, may evolve to (B, 3m),
whereas m′ and m′′′, respectively, evolve to different symbols with index 3m :

[m′ → (m̄, 3m)]01
[m′′′ → (m̂, 3m)]01

• The symbols (m̄, 3m) and (m̂, 3m) until the end of a simulation cycle evolve in the same
way as the basic objects (m, l) by incrementing the second parameter:

[(m̄, l) → (m̄, l + 1)]01 , 3m ≤ l < 3n;

[(m̂, l) → (m̂, l + 1)]01 , 3m ≤ l < 3n.

• At the end of a complete cycle, we finally extract the information stored in the symbols
m̄ and m̂, respectively, and start a new cycle:

[(B, 3n) → (B, 3n + 1)]01 and

[(B, 3n + 1) → (B, 0)]01 for all B ∈ N ′;

[(m̂, 3n) → (m̂, 3n + 1)]01 or

[(m̄, 3n) → (m̄, 3n + 1)h (w (m))]01 , respectively, where
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h : N ′ ∪ T → (N ′, 3n + 1) ∪ T is the morphism with

h (B) = (B, 3n + 1) for all B ∈ N ′ and

h (a) = a for all a ∈ T ;

observe that due to our assumptions about G′, h (w (m)) cannot contain more than one
terminal symbol a, which may leave the skin membrane by using the following rule:

[a]01 → [ ]01 a

The next cycle of simulating a derivation in G′ by Π starts after the application of one of
the following rules:

[(m̄, 3n + 1) → (k, 0)]01 for every k ∈ σ (m) \ {n + 1, n + 2} ;

[(m̂, 3n + 1) → (k, 0)]01 for every k ∈ ϕ (m) \ {n + 1, n + 2} .

In case that the label of the “trap” n + 2 is reached then we can immediately enter an
infinite loop due to the fact that the additional symbol F then still will be present in its
indexed variants (F, l) , 0 ≤ l ≤ 3n + 1 :

[(m̄, 3n + 1) → λ]01 for every m with n + 2 ∈ σ (m) ;

[(m̂, 3n + 1) → λ]01 for every m with n + 2 ∈ ϕ (m) .

• The simulation of a derivation in G′ by Π may successfully end if we can apply

[(m̄, 3n + 1) → λ]01 for n + 1 ∈ σ (m) or

[(m̂, 3n + 1) → λ]01 for n + 1 ∈ ϕ (m) .

Due to our assumptions for G′, after applying such a rule in Π no non-terminal symbol
can appear any more (observe that in that case the additional symbol F has disappeared,
too); hence, in case of termination we finish with an empty membrane.

The construction given above completely describes the set of rules RΠ of the P system with
active membranes Π.

For sake of completeness, we finally list all objects from O obtained according to the con-
struction given above:

• E;

• a for all a ∈ T ;

• (B, l) for all B ∈ N, 0 ≤ l ≤ 3n + 1;

• (m, l) for all 1 ≤ m ≤ n, 0 ≤ l < 3m;

• (m̄, l) , (m̂, l) for all 3m ≤ l ≤ 3n + 1, 1 ≤ m ≤ n;

• m′,m′′, m′′′ for all 1 ≤ m ≤ n.

From the explanations given above, it is obvious that the P system with active membranes Π
defined above exactly generates the same set of objects as the given graph-controlled grammar
in the special normal form exhibited in this section, which observation completes the proof. 2

We could also consider P systems with extensions, i.e., in the constructions above we could
read every λ there representing the empty word as a special non-terminal symbol not being taken
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into account when considering the resulting Parikh sets; in such a case, using rules of the form
(c) only instead of rules of the form (cλ) would already yield computational completeness. Yet
we do not follow this direction in the following, as the related results are obvious and directly
follow from the proofs given in this section. Instead, we prove that even with the original types
of rules (a) and (c) we only need one additional membrane being only used for filtering out the
non-terminal symbols having passed the inner membrane:

Theorem 3.2 PsOP2 (active2, {a, c}) = PsRE.

Proof. Again we only prove that any recursively enumerable set of numbers can be generated
by a P system with active membranes now using two membranes, two polarizations, and rules
of the types (a) and (c).

We again start with a graph-controlled grammar

G′ =
(
N ′, T, Lab′, S′, R′, {0} , {n + 1})

in the normal form as constructed above which generates the given recursively enumerable set
L of Parikh vectors.

We now construct a P system with active membranes of degree two

Π = (O, {0, 1} , [1[2 ]2]1, (S, 0) (F, 0) (1, 0) , λ, 0, 0, RΠ)

using only two polarizations 0 and 1 and rules of the form (a) and (c) which generates L.
The simulation of derivations in the graph-controlled grammar G′ by derivations in the P

system Π again uses the same colouring technique as described in the previous proof; the simula-
tion of a derivation step is carried out in membrane 2 by opening a “window” of length three for
the application of the current rule (i : p (i) , σ (i) , ϕ (i)) to be applied. The non-terminal symbols
sent out through membrane 2 remain unchanged in the region enclosed by the skin membrane.
On the other hand, the terminal symbols having passed membrane 2 in the succeeding step leave
the system by immediately passing through the skin membrane.

In the following, the labels k ∈ Lab occur in the variants (k, l) and the non-terminal symbols
B ∈ N ′ occur in the variants (B, l) , 0 ≤ l ≤ 3n; the label m runs from 1 to n :

• As long as the second membrane has polarization 0, the index l of the non-terminal symbols
B ∈ N ′ in (B, l) may be incremented:

[(B, l) → (B, l + 1)]02 , B ∈ N ′, 0 ≤ l ≤ 3n.

• For each m, the index l of m ∈ Lab in (m, l) is incremented until the index 3m − 3 is
reached:

[(m, l) → (m, l + 1)]01 , 0 ≤ l < 3m− 3.

• Then we check whether p (m) can be applied to the current contents of membrane 2; by
polarizing membrane 2 we first prohibit the incrementation of the index l in the variables
of the form (B, l) :

[(m, 3m− 3) → (m, 3m− 2) E]02
In the next step, all objects (B, 3m− 2) , B ∈ N ′, in membrane 2 evolve to (B, 3m− 1) ,
whereas (m, 3m− 2) evolves to (m, 3m− 1) by applying the following rule:

[(m, 3m− 2) → (m, 3m− 1)]02
At the same time, E passes membrane 2 thereby changing its polarization from 0 to 1 :

[E]02 → [ ]12 E
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• With the polarization of membrane 2 being 1, the symbols now remain unchanged, only
one suitable object – if possible – has to pass the membrane resetting the polarization to
0:

[(A (m) , 3m− 1)]12 → [ ]02 (A (m) , 3m− 1)

At the same time, the object (m, 3m− 1) evolves according to the following rule:

[(m, 3m− 1) → m′]12

• In the next step m′ evolves according to the polarization of the membrane (the polarization
has stored the one-bit information whether A (m) was present or not):

If the polarization is still 1, then m′ evolves in two further steps to m′′′, where the symbol
E generated in the first step then resets the polarization to 0 in the second step by passing
the membrane:

[m′ → m′′E]12 ,

[m′′ → m′′′]12 ,

[E]12 → [ ]02 E

• As the polarization is 0 again, the symbols (B, 3m− 1) , B ∈ N ′, may evolve to (B, 3m),
whereas m′ and m′′′, respectively, evolve to different symbols with index 3m :

[m′ → (m̄, 3m)]02
[m′′′ → (m̂, 3m)]02

• The symbols (m̄, 3m) and (m̂, 3m) until the end of a simulation cycle evolve in the same
way as the basic objects (m, l) by incrementing the second parameter:

[(m̄, l) → (m̄, l + 1)]02 , 3m ≤ l < 3n;

[(m̂, l) → (m̂, l + 1)]02 , 3m ≤ l < 3n.

• At the end of a complete cycle, we finally extract the information stored in the symbols
m̄ and m̂, respectively, and start a new cycle:

[(B, 3n) → (B, 3n + 1)]02 and

[(B, 3n + 1) → (B, 0)]02 for all B ∈ N ′;

[(m̂, 3n) → (m̂, 3n + 1)]02 or

[(m̄, 3n) → (m̄, 3n + 1)h (w (m))]02 , respectively, where

h : N ′ ∪ T → (N ′, 3n + 1) ∪ T is the morphism with

h (B) = (B, 3n + 1) for all B ∈ N ′ and

h (a) = a for all a ∈ T ;

observe that due to our assumptions about G′, h (w (m)) cannot contain more than one
terminal symbol a, which may pass membrane 2 by using the rule

[a]02 → [ ]02 a

and, in the immediately following step, then leaves the skin membrane by using the fol-
lowing rule:

[a]01 → [ ]01 a
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The rules of the form [a]01 → [ ]01 a are the only rules affecting the skin membrane (without
changing its polarity); moreover, there are no evolution rules in region 1, i.e., the other
(non-terminal) symbols coming through membrane 2 are never changed in region 1, they
remain there as a kind of “garbage”.

The next cycle of simulating a derivation in G′ by Π starts after the application of one of
the following rules:

[(m̄, 3n + 1) → (k, 0)]02 for every k ∈ σ (m) \ {n + 1, n + 2} ;

[(m̂, 3n + 1) → (k, 0)]02 for every k ∈ ϕ (m) \ {n + 1, n + 2} .

In case that the label of the “trap” n + 2 is reached then we can immediately enter an
infinite loop due to the fact that the additional symbol F then still will be present in its
indexed variants (F, l) , 0 ≤ l ≤ 3n + 1 :

[(m̄, 3n + 1) → λ]02 for every m with n + 2 ∈ σ (m) ;

[(m̂, 3n + 1) → λ]02 for every m with n + 2 ∈ ϕ (m) .

• The simulation of a derivation in G′ by Π may successfully end if we can apply

[(m̄, 3n + 1) → λ]02 for n + 1 ∈ σ (m) or

[(m̂, 3n + 1) → λ]02 for n + 1 ∈ ϕ (m) .

Due to our assumptions for G′, after applying such a rule in Π no non-terminal symbol
can appear any more (observe that in that case the additional symbol F has disappeared,
too); hence, in case of termination we finish with region 2 being empty, whereas region 1
still contains all the “garbage” (of non-terminal symbols passed through membrane 2).

• Obviously, we could remove this “garbage” by using the following evolution rules in
region 1 :

[E → λ]01 and [(A (m) , 3m− 1) → λ]01

The construction given above completely describes the set of rules RΠ of the P system with
active membranes Π.

For sake of completeness, we finally define the set of objects O obtained according to the
construction given above (in fact, it is identical with the set O constructed in the proof of the
preceding theorem):

O = {E} ∪ T ∪ {(B, l) | B ∈ N, 0 ≤ l ≤ 3n + 1}
∪ {(B, l) | B ∈ N, 0 ≤ l ≤ 3n + 1}
∪ {(m, l) | 1 ≤ m ≤ n, , 0 ≤ l < 3m}
∪ {(m̄, l) , (m̂, l) | 1 ≤ m ≤ n, 0 ≤ l < 3m}
∪ {m′m′′,m′′′ | 1 ≤ m ≤ n}

From the explanations given above, it is obvious that the P system with active membranes Π
defined above exactly generates the same set of objects as the given graph-controlled grammar
in the normal form constructed in this section, which observation completes the proof. 2

The following two corollaries are immediate consequences of the two preceding theorems, i.e.,
obviously also when considering only the number of symbols sent out through the skin membrane
without distinguishing between different symbols we obtain the corresponding results:

Corollary 3.1 NOP1 (active2, (a, cλ)) = NRE.
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Proof. The result directly follows from Theorem 3.1. 2

Even when taking the original definitions from [15], we can considerably improve the
result stated in Theorem 7.2.1 there, which in the notations defined in this paper says
NOP3 (active3, {a, b, c}) = NRE, i.e., we can improve the result with respect to the number of
polarizations as well as to the number of membranes, too.

Corollary 3.2 NOP2 (active2, {a, c}) = NRE.

Proof. The result directly follows from Theorem 3.2. 2

So far, the terminal symbols – as the result of a successful computation – have been sent out
the skin membrane without regarding the order of their appearance; regarding the sequence of
symbols sent out during a successful (i.e., halting) computation as a string we obtain languages
of strings:

Corollary 3.3 LOP1 (active2, {a, cλ}) = RE.

Proof. We only prove that any recursively enumerable language can be generated by a P system
with active membranes using only one membrane, two polarizations, and rules of the form (a)
and (cλ). The proof follows from Theorem 3.1 by going into the details of the proof of Theorem 6
in [6]: There a graph-controlled graph grammar is constructed in such a way that the symbols
of a terminal string are generated symbol by symbol in the same order as they form this string.
Hence, in the simulating P system the terminal symbols pass the skin membrane in just the
same sequence as they are generated by the graph-controlled grammar. This observation already
completes the proof. 2

Corollary 3.4 LOP2 (active2, {a, c}) = RE.

Proof. The proof follows from Theorem 3.2 in the same way as the proof of Corollary 3.3
followed from Theorem 3.1: In the same sequence as they are generated by the graph-controlled
grammar, the terminal symbols pass the second membrane of the simulating P system and one
step later are sent out through the skin membrane. 2

In addition to the generative P systems with active membranes sending out the results of
their (halting) computations through the skin membrane, we could also define the following
variants:

• P systems with active membranes with internal output keep the output in the innermost
elementary membrane; in this case, the results proved in Theorems 3.1 and 3.2 as well as
Corollaries 3.1 and 3.2 still remain valid.

• Accepting P systems with active membranes accept multisets of objects given in a specified
input membrane by halting computations; again similar results as proved in Theorems 3.1
and 3.2 as well as Corollaries 3.1 and 3.2 hold true for accepting P systems with active
membranes.

• Computing P systems with active membranes start with multisets of objects given in
a specified input membrane and then (in halting computations) compute functions, the
results appearing as external or internal output in halting computations. Again similar
results as those presented so far in this section hold true.
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Without going into the very details of the proofs we just mention that for accepting P
systems with active membranes as well as for computing P systems with active membranes we
may take the universal model of deterministic graph controlled grammars to be simulated by
the P systems with active membranes. In deterministic graph controlled grammars each success
field and each failure field contains exactly one element. The input values are given as multisets
over an input alphabet which is considered to be a subset of the non-terminal alphabet of the
deterministic graph controlled grammar. According to the constructions given in the proofs
of Theorems 3.1 and 3.2, the simulation of the deterministic graph-controlled grammar by the
corresponding (accepting, computing) P systems with active membranes is deterministic, too,
which is a very important feature in the area of P systems (e.g., see [7]).

At the end of this section, we list the problems left open despite the possibly optimal results
(with respect to computational completeness) proved above:

• What happens if we allow only rules of the types (a) and (c) in one membrane,
but possibly an unbounded number of polarizations, i.e., how can we characterize
PsOP1 (activen, {a, c}) for n ≥ 1?

• How can we characterize PsOPm (active1, {a, cλ}) , m ≥ 1?

• Can we at least characterize PsOP1 (active1, {a, c}) or PsOP1 (active1, {a, cλ})?

4 Deterministically Solving SAT in Linear Time

In this section we now show that only two polarizations are needed for P systems with active
membranes and global rules of types (a) , (c) , and (e). As we have the same set of rules for all
membranes, in this section we shall omit the membrane labels. Moreover, throughout this section
we consider recognizing P systems with active membranes, i.e., the initial input in addition is
put into membrane 1.

Theorem 4.1 SAT can be deterministically solved in linear time by P systems with active mem-
branes with two polarizations and global rules of types (a) , (c) , and (e), constructed in a uniform
manner.

Proof. Let us consider a propositional formula in conjunctive normal form:

β = C1 ∧ · · · ∧ Cm,

Ci = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where
yi,k ∈ {xj ,¬xj | 1 ≤ j ≤ n} , 1 ≤ i ≤ m, 1 ≤ k ≤ li.

The instance β (to which the size (m,n) is associated) is encoded as a multiset over

V (n,m) =
{
xi,j,j , x

′
i,j,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

The object xi,j,j represents the variable xj appearing in the clause Ci without negation, and
object x′i,j,j represents the variable xj appearing in the clause Ci with negation. Thus, the input
multiset is

w = {xi,j,j | xj ∈ {yi,k | 1 ≤ k ≤ li} , 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {

x′i,j,j | ¬xj ∈ {yi,k | 1 ≤ k ≤ li} , 1 ≤ i ≤ m, 1 ≤ j ≤ n
}

,
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which has to be put into membrane 2 in addition to the initial symbol d0 in the recognizing P
system Π (n,m)we are going to construct for any given (n,m) ∈ N2 (where N denotes the set of
positive integers):

Π (n,m) = (O (n,m) , {0, 1} , [1[2 ]2]1, t0, d0, 0, 0, R),
O (n,m) =

{
xi,j,k, x

′
i,j,k | 1 ≤ i ≤ m, 0 ≤ k ≤ j ≤ n

} ∪ {z, o, yes, no}
∪ {ci,j | 0 ≤ i ≤ m, 0 ≤ k ≤ n} ∪ {ci | 0 ≤ i ≤ m}
∪ {di, ei | 0 ≤ i ≤ n + 1} ∪ {ti | 0 ≤ i ≤ n + 2m + 4} ;

R contains the following rules (we also give explanations about the use of these rules; again
observe that we omit the labels of the membranes, because the rules are global):

Global control in skin membrane

• [ ti → ti+1 ]0, 0 ≤ i ≤ n + 2m + 2;

the control variables ti only occur in exactly one copy in the skin membrane. As we shall see
at the end of the description of the whole algorithm, after n + 2m + 3 derivation steps in the
corresponding P system Π (n,m) the answer yes appears outside the skin membrane if the given
satisfiability problem has a solution, whereas in the case that no solution exists, one step later
the answer no appears in the environment.

The main task of the algorithm is accomplished in the generation phase of the algorithm
where for each possible truth assignment to the n variables one elementary membrane is gen-
erated which after n + 1 steps will contain all the informations needed to decide whether it
represents a solution to the given problem or not:

Generation phase

• [ di ]e → [ di+1 ]0[ di+1 ]1, e ∈ {0, 1}, 0 ≤ i < n− 1;

• [ xi,j,k → xi,j,k−1 ]e,

[ x′i,j,k → x′i,j,k−1 ]e, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ k ≤ j ≤ n;

• [ xi,j,0 → λ ]0,

[ xi,j,0 → ci,j ]1,

[ x′i,j,0 → ci,j ]0,

[ x′i,j,0 → λ ]1, 1 ≤ i ≤ m, 1 ≤ j ≤ n;

• [ ci,j → ci,j+1 ]1, e ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j < n;

• [ dn → dn+1z ]1,

[ dn → dn+1 ]0.

During each of the first n steps, every elementary membrane is duplicated, in order to
examine all possible truth assignments to the variables x1, · · · , xn.

Now let us consider step i of the generation phase: One of the membranes resulting from
the application of the rule

[ di ]e → [ di+1 ]0[ di+1 ]1
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is with polarization 0, corresponding to assigning the truth value false to xi (and in this case
the clauses where ¬xi appears are satisfied), and the other membrane is with polarization 1,
corresponding to assigning the truth value true to xi (and in this case those clauses where xi

appears without negation are satisfied). Rather important for the correct answer to the decision
problem is the application of the rules

[ xi,j,0 → λ ]0, [ xi,j,0 → ci,j ]1, [ x′i,j,0 → ci,j ]0, [ x′i,j,0 → λ ]1,

which in the corresponding step of the derivation act according to the truth value assigned to xi

in the underlying elementary membrane, i.e., only those variables “survive” which correspond
to the correct truth assignment at the moment the last index has reached the ground level 0.

After the end of this first phase of the algorithm, 2n elementary membranes (each of them
with label 2) have been produced, each of them containing dn+1 and objects ci,n for all clauses
Ci that are satisfied. Every membrane with polarization 1 also contains an object z. This
procedure described so far in total takes n + 1 step.

Transition phase

• [ z ]1 → [ ]0o;

• [ dn+1 → e1 ]e, e ∈ {0, 1};
• [ ci,n → ci ]e, e ∈ {0, 1}, 1 ≤ i ≤ n.

The objects z are only needed to reset the polarization of the membranes polarized by
1 to zero again by passing through the surrounding membrane; the application of the rule
[ z ]1 → [ ]0o yields the “garbage” symbol o within the skin membrane. After this single step of
the transition phase all the elementary membranes now have the polarization 0 and contain e1

as well as ci for every satisfied clause Ci.

Checking phase

• [ c1 ]0 → [ ]1o;

• [ ei → ei+1z ]0, 1 ≤ i < m;

• [ c1 → λ ]1;

• [ ci → ci−1 ]1, 2 ≤ i ≤ m;

• [ em → em+1 ]0;

• [ em+1 ]1 → [ ]1yes.

All clauses are satisfied if and only if all objects c1, · · · , cm are present in some membrane.
If in some odd step of the procedure described in the following, no symbol c1 is present, then
the polarization of the membrane will not change to 1, so finally em+1 will appear, but the
polarization of the elementary membrane will still be 0, so the rule [ em+1 ]1 → [ ]1yes will
not be applicable. If in some odd step of the checking phase c1 is present, then one copy exits
into the outer region as o, changing the polarization of the membrane from 0 to 1. At the same
time, the index of ei is incremented and (for i < m) z is produced. In the succeeding even step,
other copies of c1 are erased, the indices i of all objects ci with 1 < i ≤ m are decremented,
preparing the system for checking whether the next clause is satisfied or not. At the same time,
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z exits the membrane (thereby resetting the polarization to 0 again) and appears as o in the
skin membrane, and then the process continues.

In the case that all clauses are satisfied, then, at the end all objects ci, 1 ≤ i ≤ m, have been
sent out into the skin membrane. While checking the last clause, no object z is produced from
em by applying the rule

[ em → em+1 ]0,

hence, em+1 will be present in a membrane with polarization 1 thus allowing for the application
of the rule

[ em+1 ]1 → [ ]1yes

indicating that the corresponding elementary membrane represented a solution of the given
satisfiability problem. In total, this phase takes 2m steps.

Output phase

• [ yes ]0 → [ ]1yes;

• [ tn+2m+3 ]0 → [ ]0no.

Every elementary membrane which after the first n + 1 steps had represented a solution of
the given satisfiability problem, after n + 1 + 1 + 2m steps has sent a copy of yes into the skin
membrane, and in the next step one of these copies exits into the environment by using the rule

[ yes ]0 → [ ]1yes

thus giving the positive result yes and changing the skin polarization to 1 in order to prevent
further output. If, on the other hand, the given satisfiability problem has no solution, after
n + 2m + 3 steps the polarization of the skin membrane will still be 0, hence, the rule

[ tn+2m+3 ]0 → [ ]0no

sends out the correct answer no.

We illustrate the construction elaborated above by the following example:
γ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

t0 d0x1,1,1x1,2,2x
′
2,1,1x

′
2,2,2

0

2

0

1

⇒
t1 d1x1,1,0x1,2,1x

′
2,1,0x

′
2,2,1

0

2

d1x1,1,0x1,2,1x
′
2,1,0x

′
2,2,1

1

2

0

1

⇒

t2 d2x1,2,0c2,1x
′
2,2,0

0

2

d2x1,2,0c2,1x
′
2,2,0

1

2

d2c1,1x1,2,0x
′
2,2,0

0

2

d2c1,1x1,2,0x
′
2,2,0

1

2

0

1

⇒

t3 d3c2,2c2,2
0

2

d3zc1,2c2,2
1

2

d3c1,2c2,2
0

2

d3zc1,2c1,2
1

2

0

1

⇒

t4 e1c2c2
0

2

o e1c1c2
0

2

e1c1c2
0

2

o e1c1c1
0

2

0

1

⇒

t5 e2zc2c2
0

2

oo e2zc2
1

2

o e2zc2
1

2

oo e2zc1
1

2

0

1

⇒

t6 e3zc2c2
0

2

ooo e2c1
0

2

oo e2c1
0

2

ooo e2
0

2

0

1

⇒

t7 e3zc2c2
0

2

oooo e3
1

2

ooo e3
1

2

ooo e3
0

2

0

1

⇒
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t8 e3zc2c2
0

2
oooo 1

2yes
ooo 1

2yes

ooo e3
0

2

0

1

⇒
t9 e3zc2c2

0

2
oooo 1

2
ooo 1

2yes

ooo e3
0

2

1

1

yes.

Due to the explanations given above one can easily verify that in any case the given algorithm
will correctly decide a given satisfiability problem in n variables and m clauses in n + 2m + 4
steps, i.e., in linear time. 2

In Theorem 4.1 we have shown that the NP-complete problem SAT can be decided by a P
system with active membranes in linear time with only two polarizations and global rules of
types (a) , (c) , and (e) . There remains the open question whether the general form of these
rules can be further restricted, e.g., is it possible to replace the rules of type (c) by rules of
type (c0) , where the application of such a rule does not depend on the polarization of the
involved membrane and as well the application of such a rule never changes the polarization of
the membrane?
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[13] A. Păun, On P Systems with Global Rules, Proc. 7th Intern. Meeting on DNA Based
Computers (N. Jonoska, N.C. Seeman, eds.), Tampa (2001), 43–52.
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