
On the Power of Deterministic EC P Systems

Artiom ALHAZOV

Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tárraco 1, 43005 Tarragona, Spain
E-mail: artiome.alhazov@estudiants.urv.es

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

Abstract. It is commonly believed that a significant part of the computational
power of membrane systems comes from their inherent non-determinism. Re-
cently, R. Freund and Gh. Păun have considered deterministic P systems, and
formulated the general question whether the computing (generative) capacity
of non-deterministic P systems is strictly larger than the (recognizing) capacity
of their deterministic counterpart.

In this paper, we study the computational power of deterministic P systems
in the evolution–communication framework. It is known that, in the genera-
tive case, two membranes are enough for universality. For the deterministic
systems, we obtain the universality with three membranes, leaving the original
problem open.

1 Introduction

We assume the reader familiar with membrane computing (see http://psystems.
disco.unimib.it for the bibliography). The evolution–communication P systems, in-
troduced by M. Cavaliere in [2], are the P systems with two types of rules: simple (i.e.,
without targets) rewriting rules, and communication (i.e., symport/antiport rules).

A generative P system starts from a fixed configuration, and (possibly) halts with a
resulting number of objects (or multiset, or a sequence) in a specified region. A recognizing
P system starts from a fixed configuration plus the input number (or multiset), and the
input is accepted if and only if the computation halts.

The purpose of this paper is to prove universality of deterministic recognizing
evolution–communication (in short, EC) P systems. In the non-deterministic genera-
tive case, EC P systems are known to be universal even when using only two membranes
(and symport/antiport rules of a rather small weight). At the price of using one further
membrane, we show that the universality holds true also in the deterministic recognizing
case; the symport/antiport rules used in the proof are still of a small weight. We do not
know whether our results can be improved in the number of membranes.

11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51397335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Definitions

A P system is deterministic if for every reachable non-halting configuration the next con-
figuration is unique.

In what follows, we consider P systems which accept numbers: to accept a number N ,
the system starts with the initial configuration, to which N copies of a specified object a
are added in a specified region. The number is accepted if and only if the computation
halts. The set of numbers accepted by a system Π is denoted by N(Π). The system being
deterministic, there is only one computation (either halting, or non-halting) possible for
every input.

Let the P system have m membranes and the set O of objects. In this paper, the
evolution–communication systems are considered, so the rules (applied in the maximally-
parallel manner) are of the following forms:

1. a → x,
associated to region i, 1 ≤ i ≤ m, where a ∈ O, w ∈ O∗,

2. (x, out), (y, in), (x, out; y, in),
associated to membrane i, where 1 ≤ i ≤ m, x, y ∈ O+.

Thus, the recognizing P system can be denoted as

Π = (O,µ, w1, · · · , wm, R1, · · · , Rm, R′
1, · · · , R′

m, i0),

where µ is the membrane structure, wi is the starting multiset of objects in region i, Ri

is the set of rules of the first form (evolution), R′
i is the set of rules of the second form

(communication), and i0 is the input region.
By NOPm(ncoo, symp, antiq) we denote the family of sets N(Π) generated by EC P

systems with at most m membranes, using non-cooperative evolution rules, symport rules
of weight at most p, and antiport rules of weight at most q. When dealing with recognizing
(accepting) systems, we add the subscript a to the front N , while, moreover, a D is added
in the case of using only deterministic systems. As usual, NRE is the family of Turing
computable sets of numbers.

3 The Power

It is known from [1] and [4] that NOP2(ncoo, sym1, ant1) = NOP2(ncoo, sym2) = NRE.
We now present the deterministic counterparts of these results, using 3 membranes.

Theorem 3.1 DNaOP3(ncoo, sym1, ant1) = NRE.

Proof. Given a set M ∈ NRE, consider a deterministic register machine G =
(m, einit, ehalt, P ) with m registers, initial label einit, halting label ehalt, instruction set
P , and set Lab(P ) of labels, accepting M . We construct the following P system (object
ai represents the the value of the ith register of G)

Π = (O,µ = [1[2[3]3]2]1, w1 = λ,w2 = einit, w3 = λ,R1, R2, R3, R
′
1 = ∅, R′

2, R
′
3, 2),

O = {e, e0, e1, e2, e3, e4, e5, e6 | e ∈ Lab(P )}
∪ {ar | 1 ≤ r ≤ m} ∪ {s1, s2, s3, q, z},

12



R1 = {s1 → s2} ∪ {ar → λ | 1 ≤ r ≤ m}
∪ {e3 → e4 | (e : dec(r), f, g) ∈ P},

R2 = {s3 → λ} ∪ {e → arf | (e : inc(r), f) ∈ P}
∪ {e → s1e0, e0 → e1, e1 → e2, e2 → e3, e4 → e5q, e5 → e6, e6 → z

| (e : dec(r), f, g) ∈ P},
R3 = {s2 → s3, q → λ} ∪ {e3 → f | (e : dec(r), f, g) ∈ P},
R′

2 = {(s1, out), (ar, out; s2, in)}
∪ {(e3, out; s2, in), (e4, in) | (e : dec(r), f, g) ∈ P},

R′
3 = {(s2, in), (s3, out; q, in)} ∪ {(f, out) | (e : dec(r), f, g) ∈ P}
∪ {(s3, out; e3, in) | (e : dec(r), f, g) ∈ P}.

The P system above recognizes a number N if and only if the computation, starting
with aN

1 (the input register of G is the first one) placed in region 2, halts. Below are the
simulations of individual instructions.

Instruction (e : inc(r), f) is simulated in the following way:

[1[2ew[3]3]2]1 ⇒ [1[2arfw[3]3]2]1.

The object e (corresponding to the instruction label) simply evolves into arf , thus changing
instruction label from e to f and adding one to the counter r.

Instruction (e : dec(r), f, g) (in case register r is non-zero) is simulated as follows:

[1[2earw[3]3]2]1 ⇒ [1[2s1e0arw[3]3]2]1 ⇒ [1s1[2e1arw[3]3]2]1
⇒ [1s2[2e2arw[3]3]2]1 ⇒ [1ar[2s2e3w[3]3]2]1 ⇒ [1[2e3w[3s2]3]2]1
⇒ [1[2e3w[3s3]3]2]1 ⇒ [1[2s3w[3e3]3]2]1 ⇒ [1[2w[3f ]3]2]1 ⇒ [1[2fw[3]3]2]1.

The object e (corresponding to the instruction label) evolves into e0 (changing in 3 steps
into e3) and s1, which goes in region 1, then changes into s2, and then returns in region
2 in exchange for ar (which is then erased). Then, s2 travels into region 3, changes to s3

and returns to region 2 (where it is then erased) in exchange for e3. Finally, e3, being in
region 3, changes into f and return in region 2, finishing the simulation of the instruction.

Instruction (e : dec(r), f, g) (in case register r is zero) is simulated as follows:

[1[2ew[3]3]2]1 ⇒ [1[2s1e0rw[3]3]2]1 ⇒ [1s1[2e1w[3]3]2]1
⇒ [1s2[2e2w[3]3]2]1 ⇒ [1s2[2e3w[3]3]2]1 ⇒ [1e3[2s2w[3]3]2]1

⇒ [1e4[2w[3s2]3]2]1 ⇒ [1[2e4w[3s2]3]2]1 ⇒ [1[2e5qw[3s2]3]2]1
⇒ [1[2e6ws2[3q]3]2]1 ⇒ [1[2zw[3]3]2]1.

(Note that |w|ar = 0.) Like in the previous case, the object e evolves into e0 (changing in
3 steps into e3) and s1, which goes in region 1, and then changes into s2. Now there is no
object ar in region 2 to bring s2 to region 2, so s2 remains in region 3 until the next step,
when it is exchanged with e3. Then s2 travels to region 3 and changes into s3. Now, e3,
being in region 1, changes into e4, returns to region 2, where it evolves into e5 (changing
it two steps into z) and q, which exchanges with s3 and then both q and s3 are erased.

2

In the next theorem, symport of weight two is used instead of antiport of weight one,
leading to one more universality result.

13



Theorem 3.2 DNaOP3(ncoo, sym2) = NRE.

Proof. Given a set M ∈ NRE, consider a deterministic register machine G =
(m, einit, ehalt, P ) as above, accepting M . We construct the following P system:

Π = (O,µ = [1[2[3]3]2]1, w1 = λ,w2 = einit, w3 = λ,R1, R2, R3, R
′
1 = ∅, R′

2, R
′
3, 2),

O = {e, e0, e1, e2, e3, e4, e5, e6 | e ∈ Lab(P )}
∪ {ar | 1 ≤ r ≤ m} ∪ {s1, s2, s3, q, z},

R1 = {q → λ, s2 → λ} ∪ {e0 → e1 | (e : dec(r), f, g) ∈ P}
∪ {ar → λ | 1 ≤ r ≤ m},

R2 = {s1 → s2} ∪ {e → s1e0, e1 → e2q, e2 → e3, e3 → f | (e : dec(r), f, g) ∈ P}
∪ {e → arf | (e : inc(r), f) ∈ P},

R3 = {s2 → λ} ∪ {e0 → z | (e : dec(r), f, g) ∈ P},
R′

2 = {(qs2, out)} ∪ {(e0ar, out), (e1, in) | (e : inc(r), f) ∈ P},
R′

3 = {(s2e0, in), (z, out) | (e : dec(r), f, g) ∈ P )}.

The P system above recognizes a number N if and only if the computation, starting
with aN

1 (the first register is the input one of G) placed in region 2, halts. Below is the
simulation of the instructions of G.

Instruction (e : inc(r), f) is simulated like in the previous theorem:

[1[2ew[3]3]2]1 ⇒ [1[2Rfw[3]3]2]1.

Instruction (e : dec(r), f, g) is simulated in the following way: The object e evolves in
e0 (used to subtract) and s1 (which changes into s2, the helper).

[1[2earw[3]3]2]1 ⇒ [1[2s1e0arw[3]3]2]1 ⇒ [1e0ar[2s2w[3]3]2]1
⇒ [1e1[2s2w[3]3]2]1 ⇒ [1[2e1s2w[3]3]2]1 ⇒ [1[2e2qs2w[3]3]2]1
⇒ [1qs2[2e3w[3]3]2]1 ⇒ [1[2fw[3]3]2]1.

If ar is present in region 2, then (one copy of) ar goes to region 1 (where it is erased)
together with e0, which changes into e1, returns to region 2, and then evolves into e2

(which changes into f in two steps) and q, which exists to region 1 together with s2, where
both q and s2 are erased.

[1[2ew[3]3]2]1 ⇒ [1[2s1e0w[3]3]2]1 ⇒ [1[2s2e0w[3]3]2]1
⇒ [1[2w[3s2e0]3]2]1 ⇒ [1[2w[3z]3]2]1 ⇒ [1[2zw[3]3]2]1.

(Note that |w|ar = 0.) If ar is not present in region 2, then e0 waits for s2, they both come
to region 3, where s2 is erased, while e0 changes to z and returns to region 2, finishing the
simulation of the instruction. 2

4 Conclusions

This paper gives two three-membrane constructions for the universal deterministic
evolution–communication P systems, one using symport of weight at most two, and the

14



other one using symport and antiport of weight one. These results are incomparable with
the existing (nondeterministic) universality results with two membranes, as the proofs rely
on having three regions where evolution rules take place. It is an open question whether the
EC P systems with two membranes are universal in the deterministic way with symport
of weight at most two, or with symport and antiport of weight one.

Acknowledgements. The author acknowledges IST-2001-32008 project “Mol-
CoNet”, as well as the Moldovan Research and Development Association (MRDA) and
the U.S. Civilian Research and Development Foundation (CRDF), Award No. MM2-3034
for providing a challenging and fruitful framework for cooperation.

References

[1] A. Alhazov, Minimizing Evolution-Communication P Systems and EC P Automata,
Brainstorming Week on Membrane Computing (M. Cavaliere, C. Mart́ın-Vide, Gh.
Păun, eds.), Rovira i Virgili University, Technical Report 26/03, Tarragona, 2003,
23–31, and New Generation Computing, accepted for publication.

[2] M. Cavaliere, Evolution-Communication P Systems, Membrane Computing. Interna-
tional Workshop, WMC-CdeA 2002, Curtea de Argeş (Gh. Păun, G. Rozenberg, A.
Salomaa, C. Zandron, eds.), Springer-Verlag, LNCS 2597, Berlin, 2003, 134–145.

[3] R. Freund, Gh. Păun, On Deterministic P Systems, submitted, 2003.

[4] S.N. Krishna, A. Păun, Some Universality Results on Evolution-Communication P
Systems, Brainstorming Week on Membrane Computing (M. Cavaliere, C. Mart́ın-
Vide, Gh. Păun, eds.), Rovira i Virgili University, Technical Report 26/03, Tarragona,
2003, 207–215.

[5] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.

15


