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Abstract

Theusual distance betweenpairs of vertices in a graphnaturally gives rise to the notion of an interval
between a pair of vertices in a graph. This in turn allows us to extend the notions of convex sets, convex
hull, and extreme points in Euclidean space to the vertex set of a graph. The extreme vertices of a
graph are known to be precisely the simplicial vertices, i.e., the vertices whose neighborhoods are
complete graphs. It is known that the class of graphs with the Minkowski–Krein–Milman property,
i.e., the property that every convex set is the convex hull of its extreme points, is precisely the class
of chordal graphs without induced 3-fans.We define a vertex to be a contour vertex if the eccentricity
of every neighbor is at most as large as that of the vertex. In this paper we show that every convex
set of vertices in a graph is the convex hull of the collection of its contour vertices. We characterize
those graphs for which every convex set has the property that its contour vertices coincide with its
extreme points. A set of vertices in a graph is a geodetic set if the union of the intervals between pairs
of vertices in the set, taken over all pairs in the set, is the entire vertex set. We show that the contour
vertices in distance hereditary graphs form a geodetic set.
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1. Introduction

The study of abstract convexity began in the early fifties with the search for an axiom
system that defines a convex set and in some way generalizes the classical concept of a
Euclidean convex set. Numerous contributions to this topic have been made. An extensive
survey of this subject can be found in[20].
Among the wide variety of structures that have been studied under abstract convexity are

metric spaces, ordered sets or lattices and graphs, the last being the focus of this paper. We
now give a brief introduction to abstract convexity as it pertains to graphs. LetV be a finite
set andM a finite collection of subsets ofV . ThenM is analignmentof V if and only ifM
is closed under intersection and contains bothV and the empty set. IfM is an alignment of
V , then the elements ofM are calledconvex setsand the pair(V ,M) is called analigned
space. If S ⊆ V , then the convex hull ofS, denoted byCH(S), is the smallest convex set that
containsS. SupposeX ∈ M. Then,x ∈ X is anextreme pointfor X if X − {x} ∈ M. The
collection of all extreme points ofX is denoted by ex(X). A convex geometryon a finite set
is an aligned space with the additional property that every convex set is the convex hull of
its extreme points. This property is referred to as theMinkowski–Krein–Milman property.
Several abstract convexities associated with the vertex set of a graph are well known (see
[10]). Their study is of interest in computational geometry and has some direct applications
to other areas such as, for example, game theory (see[4]).
For graph terminology we follow[14]; except that we use vertex instead of point and

edge instead of line. All graphs considered here are connected, finite, simple, unweighted
and undirected. Thedistancebetween a pair of verticesu, v ofG is the length of a shortest
u–v path inG and is denoted bydG(u, v) or d(u, v) if G is clear from context. Theinterval
between a pairu, v of vertices in a graphG is the collection of all vertices that lie on some
shortestu–v path inG and is denoted byIG[u, v] or I [u, v] if G is understood. Intervals
in graphs have been studied extensively (see[2,17,18]) and play an important role in the
study of several classes of graphs such as the Ptolemaic graphs (see[16]) or block graphs.
A subsetS of vertices of a graph is said to beg-convexif it contains the interval between
every pair of vertices inS. It is not difficult to see that the collection of allg-convex sets is
an alignment ofV . We thus refer to theg-convex sets simply as convex sets. A vertex in a
graph issimplicial if its neighborhood induces a complete subgraph. It can readily be seen
thatp is an extreme point for a convex setS if and only if p is simplicial in the subgraph
induced byS. It is true, in general, that the convex hull of the extreme points of a convex
setS is contained inS, but equality holds only in special cases. In[10] it is shown that a
graph has the Minkowski–Krein–Milman property if and only if it has no induced cycles
of length bigger than 3 and has no induced 3-fan (seeFig. 1). For another more recent and
excellent reference text containing material on graph convexity see[6].
If a graphG has the Minkowski–Krein–Milman property andS is a convex set ofV (G),

then we can rebuild the setS from its extreme vertices using the convex hull operation.
Since this cannot be done with every graph, using only the extreme vertices of a given
convex setS, it is natural to ask if it is possible to extend the set of extreme vertices ofS to
a set that allows us to rebuildS using the vertices in this extended set and the convex hull
operation. In Section 2 we answer this question in the affirmative using the collection of
‘contour vertices’ of a set. To this end, letS be a set of vertices in a graphG and recall that
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Fig. 1. A 3-fan.

theeccentricity inS of a vertexu ∈ S is given by eccS(u) = max{d(u, v) : v ∈ S} and a
vertexv ∈ S for which d(u, v) = eccS(u) is called aneccentric vertexfor u in S. In case
S = V (G), we denote eccS(u) by ecc(u). A vertexu ∈ S is said to be acontour vertexof
S if eccS(u)�eccS(v) for every neighborv of u in S. The set of all contour vertices ofS
is called thecontourset ofS and is denoted by Ct(S). If S = V (G), the subgraph induced
by the contour set ofS is called thecontourofG and is denoted by Ct(G). In Section 3 we
establish structural properties of contour vertices and characterize those graphs that are the
contour of some other graph using a construction similar to the one used in[3].
In order to find the convex hull of a setS one begins by taking the union of the intervals

between pairs of vertices ofS, taken over all pairs of vertices inS. We denote this set by
IG[S] or I [S], i.e.,I [S] = ⋃

{u,v}⊆S I [u, v] and call it thegeodetic closureof S. One then
repeats this procedure with the new set and continues until, for the first time, one reaches a
setT for which the geodetic closure is the set itself , i.e.,T = I [T ]. This then is the convex
hull of S. If this procedure only has to be performed once, we say that the setS is ageodetic
set for its convex hull. In general a subsetS of a convex setT is ageodetic setfor T if
I [S] = T . The notion of a geodetic set for the vertex set of a graph was first defined in[7].
InSection 4we focusongeodetic sets in ‘distancehereditary graphs’.Wefirst discuss here

how these graphs are related to the graphswith theMinkowski–Krein–Milman property and
how the results of Section 4 extend results known for the last class. Howorka[15] defined
a connected graphG to bedistance hereditaryif for every connected induced subgraph
H of G and every two verticesu, v in H , dH (u, v) = dG(u, v). In the same paper several
characterizations for this class of graphs are given. We state here only one of these which
we will use in this paper.

Theorem 1. A connected graphG is distance hereditary if and only if every cycle inG
of length at least5 has a pair of crossing chords.

Further useful characterizations for this class of graphs were established in[1,9,13].
Apart fromhaving elegant characterizations, distance hereditary graphs possess other useful
properties. It is a class of graphs for which several NP-hard problems have polynomial
solutions. For example the Steiner problem for graphs, which is known to be NP-hard
(see[11]), can be solved in polynomial time in distance hereditary graphs (see[5,8,12]).
Moreover, these graphs are Steiner distance hereditary as was shown in[9]; i.e., the Steiner
distance of a set of vertices is the same, in any connected induced subgraph that contains
it, as it is in the graph itself.
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The class of distance hereditary graphs also properly contains the graphs that possess the
Minkowski–Krein–Milman property since a graph is chordal without an induced 3-fan if
and only if it is a distance hereditary graph without an induced 4-cycle. It was shown in[10]
that in a chordal graph every non-simplicial vertex lies on a chordless path between two
simplicial vertices. IfG is a chordless graph without an induced 3-fan, thenG is distance
hereditary and thus every induced path is necessarily a shortest path. Hence the simplicial
vertices for a convex setS in a graph with the Minkowski–Krein–Milman property is a
geodetic set forS. In Section 4 we show that the contour vertices of a distance hereditary
graph form a geodetic set for the graph. In[19] it shown that the contour vertices can be
used to find minimum Steiner geodetic sets for distance hereditary graphs.

2. The contour set of a graph

In this section we will show that the contour set of a convex setS of vertices in a graph
G can be used to rebuild the set by finding its convex hull, in the same way that extreme
vertices are used in chordal graphs in[10]. Moreover, we characterize those graphs having
the property that the extreme vertices and the contour vertices of every convex set coincide.
First we show that the contour set ofG contains all the extreme vertices.

Lemma 2. LetG be a graph andS ⊆ V (G). ThenCt(S) contains all extreme vertices
of S.

Proof. Let u ∈ S be an extreme vertex forS. Thenu is a simplicial vertex forS. We now
show thatu is a contour vertex ofS. Let v be a neighbor ofu in S andve ∈ S an eccentric
vertex forv in S, i.e., d(v, ve) = eccS(v). Suppose thatd(u, ve) = d(v, ve) − 1 and let
P be a shortestu–ve path. Then the vertex followingu on P , sayw, is notv. Sinceu is
simplicial, v andw must be adjacent. However, thend(u, ve)�d(v, ve), a contradiction.
So eccS(u)�d(u, ve)�d(v, ve)= eccS(v) and thereforeu is a contour vertex forS. �

The relationship between contour vertices and extreme vertices is even closer for the class
of distance hereditary graphs without induced 4-cycles. The next result is a characterization
of contour vertices in graphs with the Minkowski–Krein–Milman property that resembles
the characterization of simplicial vertices.

Proposition 3. LetG be a distance hereditary graph without induced4-cycles. A vertex
x ∈ V (G) is a contour vertex forG if and only if each neighborv ofx which is on a shortest
path betweenx and some eccentric vertex forx satisfiesN [x] ⊆ N [v].

Proof. If G is complete, the result is immediate. Suppose now thatG is not complete. Then
no contour vertex ofG can have eccentricity 1. So ifx is a contour vertex andxe is an
eccentric vertex forx, thend(x, xe)�2. LetP : (x=)y0y1 . . . yk(=xe) be a shortestx–xe
path. Supposeu 
= y1 is a neighbor ofx. Thenu is not onP anduP cannot be a shortest
u–xe path; otherwise, ecc(u)>ecc(x) which is not possible sincex is a contour vertex.
SinceG is distance hereditary, the subgraph induced byu and the vertices ofP contains a
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shortestu–xe path. Hence there is a chord betweenu and some vertex onP whose distance
from x is less than or equal to 2. Ifuy1 is a chord, thenu ∈ N(y1) as desired. Ifu is a
neighbor ofy2, then the 4-cyclexy1y2ux must have a chord. Souy1 is an edge and again
u ∈ N(y1).
Conversely, suppose thatx has the property that each of its neighborsv which is on a

shortest path betweenx and some eccentric vertex forx satisfiesN [x] ⊆ N [v]. Supposex
has a neighbory such that ecc(x)<ecc(y). Thenx lies on a shortest pathP betweeny and
an eccentric vertexye for y. Soye is also an eccentric vertex forx. By our hypothesisy is
a neighbor of the vertex adjacent tox in P − y. This is not possible asP is a shortesty–ye
path. So ecc(y)�ecc(x) andx is a contour vertex forG. �

Remark 4. The above result does not hold for all chordal graphs. Take for example the
3-fan ofFig. 1. For this graph both the neighbors, of either one of the two simplicial vertices,
lie on some shortest path to an eccentric vertex but their closed neighborhoods are not equal.
However, the converse of the above result holds for all connected graphsG, i.e., if a vertex
x ∈ V (G) has the property that for each neighborv of x which is on a shortest path between
x and some eccentric vertex forx,N [x] ⊆ N [v], thenx is a contour vertex.

The following result shows that the convex hull of the contour set of a convex set of
vertices in a graph is the entire set, without any restriction on the graph. So this result is
similar to the Minkowski–Krein–Milman property and holds for all graphs.

Theorem 5. LetG be a graph andS a convex subset of vertices. ThenS = CH(Ct(S)).

Proof. Suppose, to the contrary, thatS 
= CH(Ct(S)). SinceS is a convex set, CH(Ct(S)) ⊆
S. So, by our assumption,S − CH(Ct(S)) 
= ∅. Let u ∈ S − CH(Ct(S)) be such that
ecc(u)�ecc(v) for all v ∈ S − CH(Ct(S)). Sinceu /∈Ct(S), there exists a neighborv
of u in S such that eccS(v)>eccS(u) and, by our choice ofu, the vertexv belongs to
CH(Ct(S)).
Let ve ∈ S be an eccentric vertex forv in S, i.e.,d(v, ve) = eccS(v). Note that in this

case eccS(ve)�eccS(v)>eccS(u) andve ∈ CH(Ct(S)). Therefored(u, ve)�eccS(u)<
eccS(v)= d(v, ve) and sod(u, ve)+ 1�d(v, ve).
LetP be a shortestve–u path inS. ThenP followed by the edgeuv, is ave–v path whose

length isd(u, ve)+ 1�d(v, ve). So it is a shortest path betweenve andv that containsu.
This contradicts the fact thatu /∈CH(Ct(S)). �

In graphs with the Minkowski–Krein–Milman property, the set of extreme vertices for a
convex setS is minimal in the sense that any extreme point ofS is not in the convex hull
of a subset ofS that does not contain it. Unfortunately the contour set does not share this
property in general as can be seen in the example ofFig. 1. In this case the contour is the
set{a, b, c, d}, but CH({a, b, d})= CH({a, b, c, d}).
However, there are examples where the contour vertices are a minimal set in a similar

way that extreme vertices are. In the graph ofFig. 2 with S = V (G), the contour set is
Ct(S) = {a, b, c, d} and the convex hull of any proper subset of Ct(S) is a proper subset
of S.
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Fig. 2. Graph with a minimal contour.
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Fig. 3. A dart.

We now characterize those connected graphs for which every convex set has the property
that its contour vertices coincide with its extreme points.

Theorem 6. A connected graphG has the property thatCt(S)= ex(S) for all convex sets
S of vertices ofG if and only ifG has the Minkowski–Krein–Milman property and does not
contain a dart as induced subgraph(see Fig.3).

Proof. SupposeG has the property that Ct(S)=ex(S) for all convex setsS of vertices ofG.
LetS be any convex set ofG. Then we know thatS is the convex hull of its contour vertices.
Since Ct(S)=ex(S) it follows thatS is also the convex hull of its extreme vertices. HenceG

has theMinkowski–Krein–Milmanproperty.ThereforeG is chordalwithout induced3-fans.
HenceG is distance hereditary without induced 4-cycles. SupposeG has a dart as induced
subgraph.Label theverticesof suchadart as inFig. 3. LetX be thevertices inI [u, v]−{u, v}.
Then the subgraph〈X〉 induced byX is complete; otherwise,G has an induced 4-cycle,
contradicting the fact thatG is chordal.Also ifx′ ∈ X, then〈{u,w, y, x′, v}〉 is a connected
subgraph ofG and sinceG is distance hereditary it contains a shortestw–v path as well as
a shortesty–v path. Hencewx′, yx′ are edges ofG. Sow andy are adjacent to every vertex
in X. Sinced(w, y) = 2, it follows that〈I [y,w] − {w, y}〉 is a complete graph. Suppose
I [w, y] contains vertices not inX ∪ {u}, sayu′ ∈ I [w, y] − (X ∪ {u}). Thend(u′, v)= 2.
SinceG contains no induced 4-cycles〈I [u′, v] − {u′, v}〉 is complete. IfI [u′, v] 
= X,
then there is some vertexr such thatur /∈E(G) but u′r, rv ∈ E(G). Henceuu′rv is an
inducedu–v path of length 3. This contradicts the fact thatG is distance hereditary. Thus
S =CH({u, v,w, y, x})= I [w, y] ∪ I [u, v]. Hence all vertices ofS except those inX are
contour vertices ofS. This contradicts the hypothesis sinceu is a contour vertex ofS that
is not an extreme point ofS, i.e.,u is not simplicial.
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For the converse, supposeG has the Minkowski–Krein–Milman property and does not
contain a dart as induced subgraph. SupposeS is a convex set that has a contour vertex
u that is not simplicial. Then〈S〉 is not complete andu is adjacent with a pairw, y of
non-adjacent vertices. LetX=N(u)∩ I [u, v]. SinceG has the Minkowski–Krein–Milman
property it can be shown that〈X〉 is complete. Sow andy cannot both belong toI [u, v]. If
r ∈ (N(u)−I [u, v]), thenr must be adjacent to every vertex inX sinceu is a contour vertex
ofG and sinceG is distance hereditary. So neitherw nory belongs toX. If uu1u2 . . . ue=v
is a shortestu–v path inG, thene�2 and neitherw nor y is adjacent withu2. Hence
〈{u,w, y, u1, u2}〉 is isomorphic to a dart, contrary to hypothesis. Thus Ct(S)=ex(S). �

Characterizing graphsG for which Ct(G) = ex(G) appears much more difficult. Any
connected graphH is an induced subgraph of a graphG with this property. To see this,
take|V (H)| pairwise vertex disjoint, non-trivial cliques and pair off each vertex ofH in a
one-to-one manner with one of these cliques. Now identify each vertex ofH with exactly
one vertex in the clique that it has been paired off with and letG be the resulting graph. Then
G has the property that Ct(G)= ex(G). It follows that those graphs for which the contour
set and the collection of extreme points coincide can have induced cycles of arbitrarily large
order. However, not every graph with this property can be constructed in this manner. Take
for example the graph obtained from the 6-cyclev1, v2, . . . , v6, v1 by joining a leafu1 to
v1 and a leafu4 to v4. Then the resulting graphG has the property that Ct(G)= ex(G) but
G is not obtained by the above construction.

3. Graphs with a given contour set

In this sectionwecharacterize thosegraphswhichare thecontourof someothergraph.The
obvious relationshipbetweencontour andperipheral verticesallowus touse theconstruction
used in[3] to also characterize those graphs that are the contour of some graph.

Lemma 7. LetG be a connected graph andC a component of its contour. Then all vertices
in C have the same eccentricity.

The following result tells us which graphs are not the contour of any graph.

Proposition 8. If H is a connected, non-complete graph with radius1, thenH is not the
contour of any graph.

Proof. Let H be a connected, non-complete graph with radius 1. Then some vertexu ∈
V (H) is a neighbor of every other vertex inH . SinceH is not complete there are two non-
adjacent verticesv andv′. Suppose thereexistsagraphGsuch thatH is thesubgraph induced
by its contour. ThenGmust be connected, sinceH is connected. So, using Lemma 7, every
vertex inH has the same eccentricity, sayk. Note that ecc(v)�2, becausedG(v, v′) = 2,
sok�2.
Let w ∈ V (G) be such that ecc(u) = d(u,w) = k. Thenw /∈Ct(G), since k�2.

So there exists a neighborw1 of w such that ecc(w1)>ecc(w)�k. Againw1 /∈Ct(G),
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Fig. 4. A disconnected contour set.

because its eccentricity is bigger thank. So there exists a neighborw2 of w1 such that
ecc(w2)>ecc(w1)> k. This process cannot continue indefinitely sinceG is a finite graph.
However, then the last vertex picked should be a contour vertex. Since its eccentricity is
bigger thank we have a contradiction.�

Suppose thatH is a graph with radius greater than 1. We now describe a graphG such
that its contour isH , using the construction given in[3]. LetG be the join ofH andK1.
Then every vertex ofH has eccentricity 2 and the vertex ofG− V (H) has eccentricity 1.
Hence the vertices ofH are precisely the contour vertices ofG.
A slightly different construction allows us to obtain a graph with given disconnected

contour set such that the eccentricities of the vertices in every component are given numbers
at least 2. More precisely, letH be a disconnected graphwith components,H1, H2, . . . , Hk.
Letn1, n2, . . . , nk bek natural numbers such thatn1=nk =max{n1, n2, . . . , nk} andM =
max{n1, n2, . . . , nk}�2min{n1, n2, . . . , nk}=2m. Note that these are natural restrictions,
becauseM will be the diameter of the graphG andm will be greater than or equal to the
radius. Then there exists a connected graphG such thatH is the contour ofG and the
eccentricity of every vertex in each componentHi of H is equal toni . To construct such
a graphG we begin with the pathv1v2 . . . vM+1 of orderM + 1. Now replacev1 by H1
andvM+1 by Hk so that all vertices inH1 are neighbors ofv2 and all vertices inHk are
neighbors ofvM .
Now, for eachi, 2� i�k−1, there exists a vertexvni on the path such that its eccentricity

is ni − 1. We now addHi to the graph and join all the vertices ofHi to vni (seeFig. 4).
Then ecc(ui)= ni for all ui ∈ Hi , and Ct(G)=H .

4. Contour sets and geodetic sets in distance hereditary graphs

In this section we show that the contour vertices of a distance hereditary graph form a
geodetic set. It is not difficult to see that a setS of vertices is a convex set of a distance
hereditary graphG if and only ifS induces a connected graph and is the union of vertices in
blocks ofGminus any collection of simplicial vertices from the subgraph induced by these
blocks. The results of this section thus show that the contour vertices of all convex sets in
distance hereditary graphs are geodetic sets for such sets.As pointed out in the introduction
this may be viewed as an extension of the result which states that the simplicial vertices of
convex sets in graphs with the Minkowski–Krein–Milman property are a geodetic set for
the convex set.



34 J. Cáceres et al. /Discrete Mathematics 297 (2005) 26–37

The next result shows that ifG is a distance hereditary graph, then every vertex has an ec-
centric vertex that isacontour vertex.Moreover, ifGsatisfies theMinkowski–Krein–Milman
property and ifx is a vertex ofG, with ecc(x)�2, then every eccentric vertex ofx must be
a contour vertex.

Lemma 9. (1) If G is a distance hereditary graph andx ∈ V (G), then there is an eccentric
vertex forx that is a contour vertex.
(2) LetG be a distance hereditary graph without induced4-cycles. Ifx ∈ V (G) is such

thatecc(x)�2, then each eccentric vertex ofx is a contour vertex ofG.

Proof. (1) The result holds for all distance hereditary graphs with diameter at most 2.
Suppose thus that diam(G)�3. Among all eccentric vertices forx let xe be one with
maximum eccentricity. LetP : x = v0v1 . . . vk = xe be a shortestx–xe path. We showxe
is a contour vertex. If this is not the case, thenxe is adjacent with some vertexu whose
eccentricity exceeds that ofxe. Thus ecc(u)>ecc(xe)�ecc(x)= k. So ecc(u)�3.Wemay
assumeu lies onP and thatu= vk−1. Supposeue is an eccentric vertex foru. Then there is
a shortestu–ue pathQ that containsxe. SupposeQ : u=u0u1 . . . ut =ue whereu0=vk−1.
Thenu2 is not onP .Also clearlyuu2 /∈E(G). The only vertex onP thatu2 may be adjacent
to isvk−2. Indeedu2vk−2 is an edge; otherwise, ecc(x)�d(x, u2)> k. Since ecc(vk−1)�3,
u2 must be adjacent to a vertex not onP . If u3 is adjacent with a vertex ofP it can only be
adjacent withvk−3; otherwise, eitherd(vk−1, u3) 
= 3 ord(x, vk) 
= k. However, ifu3vk−3
is an edge, we have a 6-cyclevk−3vk−2vk−1vku2u3without crossing chords, which is not
possible in a distance hereditary graph. Sou3vk−3 /∈E(G) andd(v0, u3)=k. By our choice
of xe = vk,3�ecc(u3)�ecc(vk)<ecc(vk−1). So ecc(vk−1)�4 and henceu4 is not onP .
As before we can argue that the only vertex ofP thatu4 is possibly adjacent to isvk−4. If
u4vk−4 ∈ E(G), then as beforewe obtain a 6-cyclevk−4vk−3vk−2u2u3u4vk−4 which has no
crossing chords. Sou4vk−4 /∈E(G). However, thend(x, u4)= k+ 1>ecc(x) which is not
possible. Sou 
= vk−1. Noteu is not adjacent withvk−i for i�3; otherwise,d(x, xe)< k,
which is not possible.Alsovk−2u ∈ E(G); otherwise, we have a contradiction to our choice
of xe = vk. If vk−1u ∈ E(G), thenu2 is not onP . Note that in this caseu2 is adjacent with
at most one vertex onP , namely,vk−2. Sou3 is not onP . Fori�3,ui cannot be onP since
in this case eitherd(x, vk)< k or d(u, ui)< i, both of which cannot happen. Moreover,
the only vertex onP that ui can be adjacent with (if any) isvk−i ; otherwise, as in the
previous case, we have a contradiction. Ifu3vk−3 ∈ E(G), thenvk−3vk−2vk−1vku2u3vk−3
is a 6-cycle without crossing chords. Sou3vk−3 /∈E(G). In this caseu2vk−3 ∈ E(G) and
d(x, u3)= k. So by our choice ofxe = vk,ecc(u3)�ecc(vk)<ecc(u)�ecc(ut ). So 3< t .
If u4vk−4 ∈ E(G), thenvk−4vk−3vk−2u2u3u4vk−4 is a 6-cycle without crossing chords. So
u4vk−4 /∈E(G). But thend(x, u4)= k+1 contradicting the fact that ecc(x)= k. Hence we
may assumevk−1u /∈E(G).
If u2 
= vk−1, i.e.,u2 is not onP , then at least one ofu2vk−2 andu2vk−1 is an edge ofG.

If u2vk−2 /∈E(G), we have a 5-cycle with out crossing chords. So assumeu2vk−2 ∈ E(G).
For i�3 we may argue, as before, thatui is not onP and thatui is adjacent to at most
one vertex onP , namely,vk−i . But then, as in the previous case, we have a contradiction
to the fact that ecc(v) = k. So we may assumevk−1 = u2. Clearly, u3 
= vk−2 since
d(u, u3)= 3 
= d(u, vk−2). Indeed, fori�3,ui is not onP andui is adjacent with at most
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Fig. 5. Not all eccentric vertices are contour points.

one vertex ofP , namely,vk−i . If u3vk−3 ∈ E(G) we obtain a 6-cycle without crossing
chords. Sod(x, u3) = k. Hence ecc(u3)�ecc(xe)�ecc(u)�ecc(ut ). So againt >3. As
before we now obtain a contradiction.
(2) Letx ∈ V (G) be such that ecc(x)�2 and letxe be an eccentric vertex forx. Suppose

P : x=y0y1 . . . yk =xe is a shortestx–xe path.Assumexe is not a contour vertex ofG. Let
u ∈ N(xe) be such that ecc(u)>ecc(xe). Letue be an eccentric vertex foru. Then there is
a shortestu–ue pathQ : u=v0v1v2 . . . vl=ue that containsxe. Soxe=v1. Thenuyk−1 and
v2yk−1 are edges sincexe is an eccentric vertex ofx. The pathv3v2yk−1yk−2 . . . y0(=x)
has length ecc(x)+ 1. So it must have a chord. Ifv3yk−1 is a chord, then there is a 5-cycle,
namelyv3yk−1v0v1v2v3 without crossing chords, which is not possible. Ifyk−2v2, then
there is again a 5-cycle without crossing chords unlessyk−3u is an edge. But in this case
v0v1v2yk−2v0 is an induced 4-cycle. Soxe must be a contour vertex ofG. �

Remark 10. The condition on the vertex eccentricity in Lemma 9(2) is necessary as is
shown in the following example. In the graph inFig. 5, the vertexx has eccentricity 1, but
q is an eccentric vertex ofx which is not a contour vertex.

Toestablish themain result of this sectionweuse the followingnotation. IfQ : u0u1 . . . ut
is a path, then thereversalofQ is the pathutut−1 . . . u0.

Theorem 11. Let G be a distance hereditary graph. ThenCt(G) is a geodetic set for G.

Proof. It suffices to show that ifv ∈ V (G) − Ct(G), thenv ∈ I [Ct(G)]. Sincev is not
a contour vertex ofG, there is some neighboru1 of G such that ecc(u1)>ecc(v). If u1 is
not a contour ofG, thenu1 has a neighboru2 such that ecc(u2)>ecc(u1). We continue
constructing a sequenceu1, u2, . . . of vertices such that ecc(u1)<ecc(u2)< . . . . Since
the graph is finite the sequence terminates with some vertexut which has the property that
its eccentricity is at least as large as that of its neighbors. Such a vertex must necessarily be
a contour vertex. By Lemma 9(1) we know thatut has an eccentric vertexute that belongs to
the contour ofG. Since ecc(ut )>ecc(ut−1), it follows thatute is also an eccentric vertex for
ut−1 and thusutut−1 followed by a shortestut−1–ute is a shortestu

t–ute path that contains
ut−1. Continuing in this manner we see that the pathutut−1 . . . u1v followed by a shortest
v–ute is a shortestu

t–ute path that containsv. Sinceu
t andute are both contour vertices the

result now follows. �

The graph ofFig. 6shows that Theorem 11 does not hold for graphs in general. Note that
the contour set of this graphG is Ct(G)= {v2, v5, w} andv1 /∈ I [Ct(G)].
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Fig. 6. A graph whose contour set is not geodetic.

Indeed, if we replacev1 by a clique of arbitrarily large order and join every vertex in this
clique withv2, v3 andv8, we see that the ratio|I [Ct(G)]|/|V (G)| can be made arbitrarily
small.

5. Closing remarks

As we mentioned in the introduction, the process of taking geodetic closures starting
from a setS of vertices can be repeated to obtain a sequenceS0, S1, . . . of sets where
S0 = S, S1 = I [S], S2 = I [S1] . . . . SinceV (G) is finite, the process terminates with some
smallestr for which Sr = Sr+1. The setSr is then the convex hull ofS and r is called
thegeodetic iteration number, gin(S), of S. In the graphG of Fig. 6, gin(Ct(G)) = 2. It
remains an open problem to determine if gin(Ct(G)) can be larger than 2 and indeed if
gin(Ct(G)) can be arbitrarily large. However, we do believe that there are other classes of
perfect graphs for which the geodetic iteration number of the set of contour vertices is 1.
In particular we believe that chordal graphs and house, hole, domino free graphs (see[6]
for definitions) have this property. Indeed this may be true for all perfect graphs. Finding
characterizations of contour vertices, for these and other classes of graphs, similar to the
one given in Proposition 3 for distance hereditary graphs with out induced 4-cycles also
remains and open problem.
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