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Abstract. The exact values of the function ex(n;TKp) are known for (@] <p<n
(see [Cera, Didnez, and Marquez, SIAM J. Discrete Math., 13 (2000), pp. 295-301]), where ex(n; TKj)
is the maximum number of edges of a graph of order n not containing a subgraph homeomorphic to
the complete graph of order p. In this paper, for |'2"3+6'| < p < n — 3, we characterize the family of
extremal graphs EX(n;TK)y), i.e., the family of graphs with n vertices and ex(n; TK,) edges not

containing a subgraph homeomorphic to the complete graph of order p.
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1. Introduction. The study of the function ex(n;TK,)—i.e., the maximum
number of edges of a graph of order n not containing a subgraph homeomorphic
to K, where K, is the complete graph with p vertices—is one of the most general
extremal problems, as pointed out by Bollobas in [1]. Exact values for this function
are known only in some cases, as can be seen in Table 1.1.

TaBLE 1.1
Ezact values of the function ex(n; TKp).

D ‘ ex(n; TKp) | Reference |
3 n—1
4 2n —3 3
5 3 -6 4], 8], [9]
[2045] < p < [ 2242 (g)—(fm—ﬁp-l-?)) 2]
(2] <p<n | (5 )-@u-zrn|

The aim of this work is to characterize a family of extremal graphs EX (n; TK,)
for appropriate values of n and p, i.e., the set of graphs of order n, with ex(n; TK),)
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edges and not containing any subgraph homeomorphic to K. Actually, we character-
ize the family EX (n; TK)) for [2%t8] < p <n — 3:

(3n —4p +2)K;3 + (6p — 4n — 3)K, for [26] < p < [3nf2],
EX(n;TK)) = —

Kip—3n—2+ (2n —2p+ 1)K for [222] <p <n-—3.

2. Definitions and notation. Given a graph H and a set {vy,...,v,} of ver-
tices of H, we denote by Hy = H and by Hy for £k = 1,...,q the induced subgraph
in H by the set of vertices V(H) — {v1,...,vr}. We denote by A(H) the maximum
degree of the graph H and by 65 (v) the degree of the vertex v in the graph H. The
complement graph of H will be denoted by H.

Let g and s be a pair of nonnegative integers; C; denotes the set of graphs H such
that there exists a set {v1,...,v,} of vertices of H verifying the following:

(1) bm;_,(v;) = 6m; (vjg1) for j=1,...,¢—1.

(2) For each positive integer h, if there exists k € {1,...,¢} and v € Hj such
that 6p, (v) > h, then 6y, (vjy1) > hforall j =1,... k.

(3) H, has at most s edges (i.e., |E(H,)| < s).

The next results show different conditions to guarantee that a graph belongs to
the family described above (see [2]).

LEMMA 2.1 (see [2]). Let H be a graph with n vertices. Then, for any q < n,
there exists s such that H is in C.

When s = ¢, we know sufficient conditions for the edges of a graph to belong to
the class CJ.

LEMMA 2.2 (see [2]). Let n and q be two positive integers, with ¢ < n. If H is a
graph with n vertices and 2q edges, then

1. Hecf,
2. 6p,(v) <1 forve V(H,).

LEMMA 2.3 (see [2]). Let ¢ and k be two positive integers with k < q—2. Let H
be a graph with 4q — k + 1 vertices and 2q + k + 1 edges. Then H € CJ.

Notation and terminology not given here can be found in [1] and [2].

3. The family of extremal graphs. In this section, we will characterize the
family EX (n; TK,) for [24%] < p < n — 3. This problem is equivalent to charac-
terizing EX (n; TK,_,) for n > 4q + 2 with ¢ > 4 (case [2%2] < p < n — 3) and
n=4q—k+1with ¢ >5,0<k<q—5 (the case [250] < p < [32£2]),

In order to avoid excessive repetition, we define the graphs H(n; TK,,_,):

K, _(ag+2) + (2¢ + 1)K, for n > 4q + 2,
H(n;TK,—q) =
(k+1)K3+ (2(q—k) — 1)K, forn=4¢—k+1,0<k <q—5.

For n > 4¢ + 2, a graph G belongs to the family {H(n;TK,,_,)} if G has n vertices
and G is formed by 2¢ + 1 nonadjacent edges (see Figure 3.1).

Forn=4¢g—k+1withg>5and 0 < k < ¢—5, a graph G belongs to the family
{H(n; TK,—q)} if it has 4¢ — k + 1 vertices and G is formed by k + 1 nonadjacent
triangles and 2(¢ — k) — 1 nonadjacent edges, as Figure 3.2 shows.

In the next two sections, we will prove the following theorem.

THEOREM 3.1. EX(n;TK,) = {H(n;TK,)} for [2%°] <p<n-3.
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2q + 1 nonadjacent edges

n— (4q + 2)
isolated vertices

F1G. 3.1. Structure of G for n > 4q + 2.

k + 1 triangles 2(q — k) — 1 nonadjacent edges

FiG. 3.2. Structure of G forn =4q —k + 1.

4. Case |'3"%4+2-| < p < n—3. The aim of this section is to prove Theorem 3.1
when n and p are related by the expression [%W <p<n-3.

PROPOSITION 4.1. Let n and p be two positive integers such that [%1 <p<
n — 3. It is verified that

EX(n;TK,) ={H(n;TK,)}.

In order to provide this proposition, we need some previous results. First, we
recall the following results about the function ex(n; T K, _,) (see [2]).
THEOREM 4.2 (see [2]). Let n and q be two positive integers. If n > 4q+ 2, then

ex(n; TK,_,) = ( g‘ ) —(2¢+1).

Also, we recall that, given a graph H and v € H, the set of vertices adjacent to
v in H is denoted by I'(v) (see [1]). Given a bipartite graph B whose classes are X
and Y with |X| < |Y|, we say that B has a complete matching if there exists a set
of nonadjacent edges in B with cardinality | X|. If we need to show the existence of a
complete matching in a bipartite graph, then we can use Hall’s condition.

THEOREM 4.3 (see [5]). Given a bipartite graph with classes X andY , if [T'(A)| >
|A] for all A C X, where T'(A) = U,c4 T'(v), then there exists a complete matching.

The next result asserts that for any graph G € EX(n;TK,_,) its complement
graph G is extremal for CZ*! in the sense that G € CI*! and G ¢ C{.

LEMMA 4.4. Let n and q be two nonnegative integers with ¢ > 4 and n > 4q + 2.
For every graph G from the family of graphs EX (n;TK,_4), we have

_ 4
GecCl™ —Cl.
Proof. Let G be a graph such that G € EX(n;TK,,_,). The graph G does not

contain a subgraph homeomorphic to K,,_4, so by Theorem 4.2, we know that

B@l= (5 )@+,
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Hence, |E(H)| = 2q + 1, where H = G.

By Lemma 2.1, there exists an integer s such that H € Cj. This means that
there exists a subset {v1,...,v,} of vertices of G verifying |E(H,)| < s, where H, =
H—{v1,...,v4}. If s <q+1, then H € CI™'. Otherwise (s > ¢+ 1), let H* be the
graph obtained from H by removing one of the edges of the subgraph H,. The graph
H* has n > 4q+ 2 vertices and 2q edges, and applying Lemma 2.2 results in H* € C{.
Furthermore, by the construction of the graph H*, the set of vertices chosen to prove
that H* belongs to the class of graphs C{ is the same as the one we chose previously
in H; thus |E(H,)| < ¢+ 1and H € CI™.

Now we will prove that the number of edges of H, may not be equal to or less
than ¢, i.e., H ¢ Cl. Suppose that H € C. This means there exists a set of vertices
{v1,...,v4} guaranteeing this assertion. Let e; = (a1,b1),...,es = (as,bs) be the
edges of H, with 1 < s <g.

We consider the bipartite graph B whose classes are X = {ey,...,es} and
Y = {vi,...,v4} such that e; is adjacent to v; in B if the path a;v;b; exists in
G. We note that if there exists a complete matching in B, then we have that G con-
tains a subgraph homeomorphic to K,,_,. Now Hall’s condition implies the existence
of a complete matching. Thus, we will prove that [I'(A)| > |A] for each A C X.

Let A = {e;} be a subset of X with |A] =1 for i € {1,...,s}. If T'(A)] =0,
then e; is nonadjacent to any vertex of the set {vq_2,v4—1,v} in B. Hence, no vertex
v € {vg—2,v4-1, 04} is adjacent to both a; and b; in G. Consequently, om, ,(a;) > 2or
6m,_,(b;) > 2 and, furthermore, 6p, ,(a;) > 3 or ém,_,(b;) > 3. Thus, using property
(2) of the definition of C{, we obtain that 6g, ,(v;) > 3 for j = 1,...,¢ — 2 and
6m;_,(v;) > 2 for j = q —1,q. Therefore, since s > 1 we have that

|[E(H)| >3(¢g—2)+2-24+s5>2¢+2

for ¢ > 3. But this is not possible since |E(H)| = 2q + 1.

We consider A = {e;,e;} € X fori,j € {1,...,s} with i # j, and we suppose
IT'(A)| < 1. This means that at least three vertices of the set {vy_3, vq—2,v4-1, 04} are
nonadjacent to e; and to e; in B. Taking into account property (2) of the definition of
Cd, we have that 6g,_,(v;) >3 forj=1,...,¢—3,0n,_,(v;) >2for j=q—2,q—1
and ép, ,(vg) > 1 (see Figure 4.1). Hence,

|E(H)|>3(q—3)+2-2+1+4+5>2¢+2

for ¢ > 4, and this is a contradiction, as in the previous case.
Let m be an integer with 3 < m < s. Let A be the set of vertices

{€iy,-.sei,} C{er, ... e} with i1 <y < -+ < ip. If T (A)] < m — 1, then there
U1 Ug—3 Vg—2 Vg—1 Uq
@ o o [

a; b; aj b;

F1G. 4.1. Possible structure of H for the most unfavorable case for A = {e;,e;}.
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€y Ciy €;

m

FiG. 4.2. Possible structure of H for the most unfavorable case for 3 < m < s.

exists i € {g — (m —1),...,q} in such a way that v; is not adjacent to any vertex of
the set A in the graph B. By applying condition (2) of the definition of CZ, we obtain
that 6p, ., (Vg—(m—1)) > m and, therefore, 6y, 1(’UJ) >mfor1 <j<qg-— (m— 1) (see
Figure 4.2). Furthermore, 6, ,(v;) > 1for g—(m—2) < j < qand |[E(H,)| = s > m.
Consequently,

|E(H)| > m(g—(m—=1)+m—1+s
2mq—m2+3m—1.

Since E(H) = 2¢ + 1, we have that 2¢ +1 > mq — m? + 3m — 1 and, therefore,
g < w <m—1 < m <s, but this is not possible. Therefore, |T'(A)| > |A|
for each A C X. Thus, by Hall’s condition, there exists a complete matching in B
and, thereby, the graph G contains a subgraph homeomorphic to K,,_,. This is not
possible, and the result follows. ]

Now we can prove Proposition 4.1.

Proof of Proposition 4.1. It is equivalent to prove that

EX(n;TK,_g) = {H(n;TK,_4)}

for ¢ > 4 and n > 4q + 2.

Let G be a graph belonging to {H(n;TK,—q)} with n > 4¢ + 2. It is easy to
check that G' does not contain a subgraph homeomorphic to K,,_,. Furthermore, by
denoting |E(G)| as the number of edges of G, we have that

|E(Q)| =ex(n; TK,—y) = ( ;l ) —(2¢+1).
Thus, by Theorem 4.2, GG is maximal on edges and
{H(n;TKp—q)} CEX(n;TKp—g).

In order to prove that EX(n;TK,_,) C {H(n;TK,—,)}, let G be a graph
belonging to EX(n;TK,_,), and we set H = G. By Theorem 4.2 we have that
|E(H)| = 2¢ + 1. By Lemma 2.1, we know there exists s such that H € C;. Let
{v1,...,v4} be aset of g vertices guaranteeing this property. We know that there ex-
ists a vertex v € H, such that 6, (v) > 1, because otherwise H, is empty and H € CJ.
But this is not possible because, by Lemma 4.4, we know that H & C{. If 6(v1) > 2,
then [E(H,)| < 2¢+ 1~ (2+¢— 1) = g and therefore H € C{, a contradlctlon
Therefore, 6(v1) < 1.

Thus, as vy is the vertex of maximum degree in H, we have that §(v) < 1 for all
v € H, and then the graph H is formed by 2¢ + 1 nonadjacent edges. Therefore, the
result follows. d
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5. Case [2";'61 <p< [3"4"'21 . In this section, we will characterize the family
of extremal graphs EX (n;TK,_4) for n =4¢—k+ 1 with 0 < k < ¢—5 in such a
way that we will show that EX(n;TK,,—y) = {H(n;TK,_q)}, applying techniques
based on the same ideas as in the previous section.

THEOREM 5.1. Let n and p be two positive integers with [2%58] < p < [3n£2],

Then

EX(n;TK,) = {H(n; TK,)}.

In order to prove this result, we also need to recall some results about the function
ex(n; TK,_q) (see [2]).

LEMMA 5.2 (see [2]). Let k be a nonnegative integer and H be a graph with
mazximum degree 2 and at least 3k + 1 vertices of mazimum degree. Then there ezist
at least k + 1 nonadjacent vertices with degree 2.

THEOREM 5.3 (see [2]). Let n, k, and q be three nonnegative integers with 0 <
k<q—4andn=4q—k+ 1. It is verified that

ex(n; TK,_,) = ( g‘ ) — (20 +k+2).

Now we will show, as in Lemma 4.4, that if G € EX (n; TK,,_,) withn = 4¢—k+1,
then G € CI™ but G ¢ C.

LeEMMA 5.4. Let k, n, and g be three nonnegative integers such that q¢ > 5,
0<k<g—5,andn=4¢—k+1. IfGe EX(n;TK,,_,), then

Gecrtt —cu.

Proof. Let G be a graph belonging to EX (n; TK,,_,). This graph does not contain
a graph homeomorphic to K,,_,, and by Theorem 5.3 we know that

B@I= () -k

Thus, H = G has 2q + k + 2 edges.

Let H* be the graph obtained from H by removing one edge, similar to what
we have done in Lemma 4.4. Since H* is a graph formed by 4g — k + 1 vertices and
2q + k + 1 edges, then applying Lemma 2.3 yields H* € C{, and then

H e Cith,

Now we will show that H ¢ C{. To the contrary, suppose H € C{ and let
{v1,...,v4} be a set of vertices of H guaranteeing that H € C¢. Let e; = (a1,b1),. ..,
es = (as,bs) be the edges of H, with s < ¢g. We consider the bipartite graph B
constructed as in Lemma 4.4, i.e., the graph whose classes are X = {e1,...,es} and
Y ={v1,...,v,} in such a way that e; is adjacent to v; if the path a,v;b; exists in the
graph G. In this case, if we show the existence of a complete matching in B, then we
would have that G contains a subgraph homeomorphic to K,,_,. Therefore, we will
show that [T'(A)| > |A| for each A C X.

If |A] = m = 1, by reasoning as in the proof of Lemma 4.4, we have that

|[E(H)|>3(q—2)+4+s=3¢+s—2>3¢— 1.



Downloaded 01/22/16 to 150.214.182.82. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

394 M. CERA, A. DIANEZ, AND A. MARQUEZ

Since k < g —4, it is verified that 3¢ —1 > 2¢+k+4—1 > 2¢g+ k+ 2, but this is not
possible.
For m = 2, by considering as done previously, we have that

|[E(H)|>3(q—3)+4+14+s=3¢—4+5>3¢—2.

Taking into account that k < ¢ — 5, it is verified that |E(H)| > 2¢ + k + 2, and this
is a contradiction.

We consider m = 3. Let A = {ej,,€s,, €5} be a subset of vertices of X with
1<y <ig <ig <s. If [T'(A)] <2, then there exists i € {¢ —2,...,q} in such a way
that v; is not adjacent to any vertex of the set A in the graph B. Hence, by applying
property (2) of the definition of C{, we have that 6, _,(v4—2) > 3. Thus,

|E(H)| >3(q—2)+24+5s>3¢—1>2¢+k+2

since k < q — 4.

In general, if 4 < m < s, then we consider A as the set of vertices
{€iy,--sei,,} C {e1,...,es} with i1 < o <+ < dp. If [T'(4A)] < m — 1, then
there exists i € {g — (m —1),...,¢} in such a way that v; is not adjacent to any
vertex of the set A in the graph B. Hence, as in the proof of Lemma 4.4, we have that
0H, n (Vg—(m—-1)) = m and, therefore,

|E(H)| >m(g—(m—1))+m—1+s5>mqg—m*+3m— 1.

But |[E(H)| =2¢+k+2<3q—3for k <q—>5. Thus, 3¢ —3 > mq —m? +3m — 1
and, thereby, ¢ <m — ﬁ < m, but this is not possible.

Thus, using Hall’s condition, there exists a complete matching in B, and con-
sequently, G contains a subgraph homeomorphic to K,_,4, but this is not possible.
Hence, H ¢ C{ and the result follows. O

The next result is devoted to proving the existence of nonadjacent triangles in
graphs with maximum degree 2 and the prescribed number of vertices of maximum
degree.

LEMMA 5.5. Let r be a nonnegative integer, and let H be a graph with mazimum
degree 2. If H has 3r + 3 vertices of degree 2 and r + 1 of them form an independent
set, then H contains r + 1 nonadjacent triangles.

Proof. We apply induction on r. For » = 0 the result is obvious, because the
triangle is the unique graph formed by 3 vertices of degree 2 and all of them are
adjacent among themselves.

Now suppose that 7 + 1 > 2 and the result holds for r. Let H be a graph with
3(r+1)+3 = 3(r+2) vertices of degree 2, and let wy, ..., w42 be r+ 2 nonadjacent
vertices of H.

If there exist ¢, j € {1,...,r + 2} with i # j such that I'(w;) NT'(w;) # 0, then
| U;ﬁ{l“(wk) Uwyg}| < 3(r +2). Thus, there exists w € H with degree 2 nonadjacent
to w; for all ¢. Hence, {w, w1, ..., w,12} is a set of r+ 3 nonadjacent vertices of degree
2, but this is a contradiction. Therefore, I'(w;) NI'(w;) = 0 for all ¢ # j. Furthermore,
if w € H is adjacent to any w; for ¢ € {1,...,r + 2}, then w has degree 2; otherwise,
since the number of vertices of degree 2 is 3(r 4 2), there exists v € H with degree 2
nonadjacent to w; for all 7, and we have seen above that this is not possible.

Now, let a and b be the vertices adjacent to w,io. If the edge (a,b) does not
belong to H, we have that {ws,...,w,+1,a,b} is a set of r + 3 nonadjacent vertices
of degree 2. Thus, the vertices w1, a, and b form a triangle.
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Denote by H* the graph obtained from H, removing the previous triangle. There-
fore, H* is a graph with 3r+ 3 vertices of degree 2, and r + 1 of them are nonadjacent;
by induction hypothesis, H* contains r + 1 nonadjacent triangles. Thus, H contains
r 4+ 2 nonadjacent triangles. 0

To finish this section, we give the proof of Theorem 5.1, using the previous results.

Proof of Theorem 5.1. It is equivalent to show that

EX(n;TKy—q) = {H(n;TKn—q)}

forn=4¢—k+1withqg>50<k<qg-—05.

Let G be a graph belonging to the set {H(n; TK,_4)}. By checking the structure
of this graph G, it is easy to prove that G does not contain a subgraph homeomor-
phic to K,,_4. Since |E(G)| = ex(m;TKn—y) = () — (2¢ + k 4 2), we have that
Ge EX(nTK,_q).

In order to show that EX (n; TK,,_,) C {H(n;TK,_4)}, let G be a graph belong-
ing to EX(n; TK,,—,). We denote by H = G. By Theorem 5.3, |E(H)| = 2q + k + 2.
First, we will prove that A(H) < 2. Suppose the contrary, that A(H) > 3.

By applying Lemma 5.4, we have H € Cg“ — CJ. Hence, there exists a subset of
vertices {v1,...,vq} of H guaranteeing this property. Furthermore, |[E(H,)| =g + 1.
We claim there exists j € {1,...,q} such that A(H;_1) > 3 and A(H;) < 2, because
otherwise we have ég,_, (v;) > 3 for each 1 < i < ¢, and

|E(H)| >3q+ (q+1)>2¢+k+2,

but this is not possible. Now we distinguish the cases j > k+ 1 and j < k.

For j > k+1, we consider the fact that A(H;_1) > 3 and A(H,) < 2. Taking into
account property (2) of the definition of CI** and |E(H,)| > 0, we have 6, , (v;) > 3
for 1 <i<jandéy, ,(v;)>1for j+1<1i<gq.Hence,

[E(Hy)| <2¢+k+2-@j+(¢-j) <q¢-j+1<¢
But this is not possible since |E(H,)| =g + 1.
3

For j < k, we have that 6m, , (vi) for 1 <4 < j. If A(Hg) < 1, then
2 E(H)] < |V (Hy)| and

Ag— 2k + 1= [V(Hy)| > 2|EH)| > 2(q —k +q+1) = 4g — 2k + 2,

and this is a contradiction. Thus, A(Hg) = 2 and 6, ,(v;) > 2 for j+1 < i < k.
Hence,

|E(H)l <2¢+k+2-03j+2(k—j+1)+(¢-k+1)=q-j+1<gq

and this not possible. Thus, A(H) < 2.

Since 2|E(H)| > |V(H)|, we have A(H) > 2 and, consequently, A(H) = 2.

Next we are going to study the structure of H. On the one hand, if H has at
least 3(k+ 1) + 1 vertices of degree 2, then by Lemma 5.2 we have that k + 2 of those
vertices {w1, ..., wk12} are nonadjacent. Let w3, ..., w, be ¢ — (k + 2) vertices of
H such that the set {w1, ..., Wkt2, Wkt3, ..., w,} verifies properties (1) and (2) of the
definition of Cj. For this set of vertices, we have that

[E(Hy)| <2¢+k+2-Q2(k+2)+q—(k+2) =g,



Downloaded 01/22/16 to 150.214.182.82. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

396 M. CERA, A. DIANEZ, AND A. MARQUEZ

and therefore, H € C, a contradiction. Thus, H has at most 3k + 3 vertices of degree
2. On the other hand, if we denote by n; the number of vertices of degree ¢ in H, we
have that

2no+n1 = 2(2¢+ k4 2)
no+ny+nyg =4¢—k+1 )

Thus, no = 3k + 3+ ng > 3k + 3 and the number of vertices of degree 2 in H is
Nng = 3k + 3.

Furthermore, as we have shown previously, H may not have k + 2 nonadjacent
vertices of degree 2. Since H has 3k+3 > 3k+1 vertices of degree 2, by Lemma 5.2 we
have that H has at least k + 1 nonadjacent vertices. Hence, H has maximum degree
2 and 3k + 3 vertices of degree 2, and k + 1 of them are nonadjacent. Therefore, by
applying Lemma 5.5, H contains k + 1 nonadjacent triangles. Additionally, ng = 0,
ny = 4q — 4k — 2, and the result follows. O
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