Diagonal flips in outer-triangulations on closed surfaces

Carmen Cortés ${ }^{\mathrm{a}, 1}$ Clara Grima ${ }^{\mathrm{a}, 1}$ Alberto Marquez ${ }^{\mathrm{a}, 1}$
Atsuhiro Nakamoto ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Departamento of Matemática Aplicada I, Univ. de Sevilla, Sevilla, Spain
${ }^{\mathrm{b}}$ Department of Mathematics, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan

Received 8 February 2000; received in revised form 10 October 2000; accepted 7 May 2001

Abstract

We show that any two outer-triangulations on the same closed surface can be transformed into each other by a sequence of diagonal flips, up to isotopy, if they have a sufficiently large and equal number of vertices. (C) 2002 Elsevier Science B.V. All rights reserved.

Keywords: Triangulation; Outer-triangulation; Diagonal flip

1. Introduction

In this paper, we always suppose that a graph G is embedded in a closed surface, and the vertex set, edge set and face set of G are denoted by $V(G), E(G)$ and $F(G)$, respectively. In addition, all embeddings considered here will be 2 -cell embeddings. A k-cycle means a cycle of length k. A closed curve ℓ on a closed surface F^{2} is said to be 1 -sided if the tubular neighborhood of ℓ is homeomorphic to a Möbius band, and 2 -sided otherwise.

A triangulation on a closed surface F^{2} is a simple graph on F^{2} such that each face is bounded by a 3 -cycle, and any two faces share at the most one edge. A diagonal $f l i p$ in a triangulation G is to replace a diagonal $a c$ with $b d$ in the quadrilateral $a b c d$

[^0]

Fig. 1. A diagonal flip.
formed by two faces $a b c$ and $a c d$ sharing the edge $a c$ (see Fig. 1). As we want to keep the graph simple whenever we carry out diagonal flips, we do not allow this operation if G already has the edge $b d$ (since, in this case, the diagonal flip would create multiple edges between b and d).

Let G and G^{\prime} be two triangulations on the same closed surface. We say that G and G^{\prime} are equivalent to each other if there exists a sequence of triangulations H_{0}, \ldots, H_{k} such that
(i) $G=H_{0}$ and $G^{\prime}=H_{k}$,
(ii) H_{i+1} is obtained from H_{i} by one diagonal flip, for $i=0, \ldots, k-1$.

There are many papers concerning diagonal flips in triangulations. It has been shown that for the sphere [24], the projective plane [21], the torus [7] and the Klein bottle [21], any two triangulations with the same number of vertices are equivalent to each other, up to homeomorphism. Negami has generalized these theorems, as follows.

Theorem 1 (Negami [16]). For any closed surface F^{2}, there exists a natural number $M\left(F^{2}\right)$ such that any two triangulations G and G^{\prime} on F^{2} with $|V(G)|=\left|V\left(G^{\prime}\right)\right| \geqslant$ $M\left(F^{2}\right)$ are equivalent to each other, up to homeomorphism.

This theorem has been extended for triangulations with specified properties [4]. Moreover, a series of theorems have been improved to hold under the condition "up to isotopy" [14]. Note that for the sphere and the projective plane, up to homeomorphism" and "up to isotopy" are equivalent. Recently, Negami [18] has given an upper bound for the minimum value $M\left(F^{2}\right)$ by a linear function with respect to the Euler characteristic of F^{2}. In fact, he has shown that the linear function gives that for the corresponding value $M^{\prime}\left(F^{2}\right)$ for the isotopy version. Moreover, many other researches have been derived from Theorem 1 [10,15,17,19,20].

A very important case with many practical applications is that of triangulations of polygons in the plane (or the sphere). These triangulations agree with maximal
outerplanar graphs. Thus, we shall generalize this concept to other surfaces. A triangulation on a closed surface F^{2} with boundary cycle C (or simply boundary) is an embedding of a simple graph on F^{2} containing C such that
(i) there is a specific face bounded by C, called the outer face, and
(ii) all other faces are bounded by 3-cycles.

We say that the vertices and the edges of a triangulation are outer if they lie on C, and inner otherwise. An outer-triangulation G is a triangulation with boundary which has no inner vertices.

As well as ordinary triangulations, we can define diagonal flips for outertriangulations. However, as any flippable edge must be shared by two triangular faces, we cannot apply diagonal flips for outer edges. Mimicking Negami's argument in [18], one will be able to show that for any two triangulations on a closed surface with the boundary of the same length can be transformed into each other by a sequence of diagonal flips if they have the same and sufficiently large number of inner vertices. However, if we restrict the number of inner vertices, the problem seems to be far more difficult.

In this paper, we focus on outer-triangulations on surfaces. It is easy to show that any two outer-triangulations on the sphere with the same number of vertices are equivalent to each other, up to isotopy. Moreover, the same fact has been shown for the projective plane [8], the torus [5] and Klein bottle [6]. (The cases for the torus and the Klein bottle have been solved, under the condition up to homeomorphism".) In any case, the arguments used in those papers strongly depend on the topology of these individual surfaces and they cannot be applied, in general, for other surfaces. In this paper, we will show the isotopy version of a general result, as follows.

Theorem 2. For any closed surface F^{2}, there exists a natural number $N\left(F^{2}\right)$ such that any two outer-triangulations G and G^{\prime} on F^{2} with $|V(G)|=\left|V\left(G^{\prime}\right)\right| \geqslant N\left(F^{2}\right)$ are equivalent to each other, up to isotopy.

2. Diagonal flips in outer-pseudo-triangulations

Although we have to keep any triangulation simple whenever we carry out a diagonal flip, in order to prove our main result, we will neglect the simpleness of outertriangulations meanwhile, as follows.

An outer-pseudo-triangulation on a closed surface F^{2} is a pseudograph (loops and multiple edges are allowed) on F^{2} such that there exists a specific face, called the outer face, bounded by the cycle in which all the vertices appear, and other faces are bounded by closed walks of length 3. A diagonal flip of an inner edge of an outer-pseudo-triangulation is also defined in the same way as previously, but the diagonal flips need not preserve the simpleness of graphs.

The following theorem can be proved in the same way as in [18]. An inner edge e in an outer-pseudo-triangulation is called self-incident if there is a triangular face f such that e appears twice on the boundary walk of f.

Fig. 2. Self-incident edge e.

Lemma 3. Let P be an outer-pseudo-triangulation on a closed surface F^{2} and let e be a self-incident edge of P. Then, e is a 1 -sided loop whose two ends of e are consecutive in the rotation around the same vertex.

Fig. 2 illustrates a self-incident edge e explained in the above lemma, where \otimes expresses a crosscap.

Proof. Suppose that e appears twice on the boundary 3 -cycle $v_{1} e_{1} v_{2} e_{2} v_{3} e_{3}$ of a face f, where $v_{i} \in V(P)$ and $e_{i} \in E(P)$ for $i=1,2,3$. We may suppose $e_{1}=e_{2}=e$. If $v_{1} \neq v_{2}$, then v_{2} has degree 1 . The vertex v_{2} of degree 1 cannot appear on the boundary of P, a contradiction. Thus, we have $v_{1}=v_{2}$ and hence e is a loop incident to $v_{1}=v_{2}$. Since $e_{1}=e_{2}$, the right-hand neighborhood along e and its left-hand neighborhood are traced consecutively along the boundary walk of f. Therefore, e is 1 -sided and the two ends are consecutive in the rotation around v_{2}.

Theorem 4. Let P and P^{\prime} be two outer-pseudo-triangulations on a closed surface F^{2} with the same number of vertices. Then, they can be transformed into each other, up to isotopy, by a sequence of diagonal flips. Furthermore, this sequence of diagonal flips does not switch any self-incident edge.

Note that by Lemma 3, if an outer-pseudo-triangulation P has a self-incident edge e, then the graph obtained from P by flipping e is obviously isomorphic to P itself. Thus, the last sentence of the following theorem is trivial.

The original theorem concerning psuedo-triangulations T and T^{\prime} (i.e., pseudographs with each face triangular) has been proved, as follows. First, draw T and T^{\prime} on F^{2} simultaneously so that $V(T)$ and $V\left(T^{\prime}\right)$ completely coincide. (Thus, each intersecting point of T and T^{\prime} is either a vertex of them or a crossing of an edge of T and an edge of T^{\prime} at their middle points.) The author of [18] proceeded to fix T on F^{2} and apply diagonal flips for T^{\prime} to eliminate the crossings of edges. In this case, each edge e^{\prime} of T^{\prime} passes through the interior of several triangular faces of T, or coincides with some edge e of T.

Fig. 3. Contraction of an edge.

In case of outer-pseudo-triangulations P and P^{\prime}, fix P and P^{\prime} on F^{2} so that their vertices coincide along their boundaries. Then, we get the same situation that every edge e^{\prime} of P^{\prime} passes through the interior of several triangular faces of P, or coincides some edge e of P. Moreover, every diagonal flip in P^{\prime} preserves this condition. Thus, the same argument follows (see [18] for the details).

3. Irreducible outer-triangulations

Consider an ordinary triangulation G on a closed surface F^{2}. Let $a b c$ and $a c d$ be two faces sharing an edge $e=a c$ in G. The contraction of e (or contracting e) is to identify the end-vertices a and c of e and replace the multiple edges $\{a b, c b\}$ and $\{a d, c d\}$ by two single edges, respectively. We say that e is contractible if the graph obtained from G by contracting e is simple. We also say that a triangulation G is contractible to a triangulation T if G can be transformed into T by a sequence of edge contractions. A triangulation with no contractible edge is said to be irreducible. For the sphere, the projective plane, the torus and the Klein bottle, the complete lists of irreducible triangulations have been determined in [23,1,11,12], respectively. It is well-known that any closed surface admits only finitely many irreducible triangulations, up to homeomorphism. This fact also follows from the affirmative solution of Wagner's conjecture proved by Robertson and Seymour [22]. There are several papers proving directly the finiteness of irreducible triangulations [2,3,9], by bounding the number of vertices of them. The following result gives the best bound for it in the present.

Theorem 5 (Nakamoto and Ota [13]). Let F^{2} be a non-spherical closed surface with Euler characteristic $\chi\left(F^{2}\right)<2$, and r be the Euler genus of F^{2} (i.e., $r=2-\chi\left(F^{2}\right)$). If G is an irreducible triangulation of F^{2}, then $|V(G)| \leqslant 171 r-72$.

Contraction of an edge in an outer-triangulation is defined only for outer edges. See Fig. 3. (If we contract an inner edge, then the boundary of the outer face will be deformed into a closed walk which is not a cycle.) We say that an outer edge e is contractible if its contraction yields a simple graph. We also say that an outertriangulation G is contractible to an outer-triangulation T if G can be transformed into T by a sequence of contractions of outer edges. An outer-triangulation G with no contractible outer edge is said to be irreducible.

Fig. 4. Inserting m vertices of degree 3 .

Lemma 6. For any closed surface, there exist only finitely many irreducible outertriangulations, up to homeomorphism.

In order to prove Lemma 6, we need the following lemma shown in [6].
Lemma 7. Let G be an outer-triangulation on a closed surface F^{2}. Let \tilde{G} be the triangulation on F^{2} obtained from G by adding a vertex in the outer face of G and joining it to all vertices of G. Then, the outer-triangulation G is irreducible if and only if the triangulation \tilde{G} is irreducible.

Now we prove Lemma 6.
Proof of Lemma 6. Combining Theorem 5 and Lemma 7, if G is an irreducible outertriangulation on a closed surface F^{2}, then $|V(G)| \leqslant(171 r-72)-1=171 r-71$. Thus, the proposition follows.

Let G be an outer-triangulation on a closed surface F^{2} and let $x y z$ be a face of G such that $x y$ is an outer edge. Subdividing $x y$ by a single vertex v and adding an edge $v z$, we obtain an outer-triangulation G^{\prime} with $\left|V\left(G^{\prime}\right)\right|=|V(G)|+1$. In this case, we say that G^{\prime} is obtained from G by inserting a vertex of degree 3 on $x y$. Lemmas 8 and 9 have already been proved in $[5,6]$.

Lemma 8. Let G be an outer-triangulation on a closed surface F^{2} with boundary C, and let $e, e^{\prime} \in E(C)$. Let G_{e} (resp., $G_{e^{\prime}}$) be the outer-triangulation on F^{2} obtained from G by inserting a vertex of degree 3 on e (resp., e^{\prime}). Then, G_{e} and $G_{e^{\prime}}$ are equivalent to each other, up to isotopy.

Let $G+\Sigma_{m}$ denote the outer-triangulation obtained from G by adding m vertices of degree 3, as shown in Fig. 4. By Lemma 8, since we can move an inserted vertex of degree 3 to any outer edge by diagonal flips, any two outer-triangulations with the notation $G+\Sigma_{m}$ can be transformed into each other by diagonal flips (i.e., independent of the choice of the edges subdivided by the m vertices of degree 3).

Fig. 5. Strip extension along e.

Lemma 9. Let G and T be two outer-triangulations on a closed surface F^{2}. If G is contractible to T, then G can be transformed into $T+\Sigma_{m}$, up to isotopy, by a sequence of diagonal flips, where $m=|V(G)|-|V(T)|$.

4. From outer-pseudo-triangulations to outer-triangulations

In this section, we show how to use the equivalence of outer-pseudo-triangulations described in Section 2.

Let P be an outer-pseudo-triangulation on a closed surface F^{2} with boundary C. Let $e=u v$ be an inner edge of P. We consider the following operation for P. We now regard the outer face of P as a hole of F^{2} (i.e., we regard C as the boundary of the surface). We denote the punctured surface with boundary C by \tilde{F}^{2}. Now cut \tilde{F}^{2} along $e=u v$ from v to u, and denote the right- and left-side images of e by e_{R} and e_{L}, respectively (then the resulting surface has the boundary $C \cup e_{\mathrm{R}} \cup e_{\mathrm{L}}$, which might be disconnected). Suppose that e_{R} (resp., e_{L}) starts from a vertex v_{R} (resp., v_{L}) and terminates in a vertex u_{R} (resp., u_{L}). Join v_{R} and v_{L} by a path $v_{\mathrm{R}} v^{\prime} v_{\mathrm{L}}$ of length 2 , join u_{R} and u_{L} by a path $u_{\mathrm{R}} u^{\prime} u_{\mathrm{L}}$ of length 2 , and add an edge $v^{\prime} u^{\prime}$. Regarding each of the 4 -cycles $v_{\mathrm{R}} u_{\mathrm{R}} u^{\prime} v^{\prime}$ and $v^{\prime} u^{\prime} u_{\mathrm{L}} v_{\mathrm{L}}$ as a quadrilateral region, we finally add two diagonals $u_{\mathrm{L}} v^{\prime}$ and $u^{\prime} v_{\mathrm{R}}$ (as shown in Fig. 5), or $u^{\prime} v_{\mathrm{L}}$ and $u_{\mathrm{R}} v^{\prime}$. In particular, if e is a self-incident edge, then by Lemma 3, we may assume that $u_{\mathrm{L}}=v_{\mathrm{R}}$ and $v_{\mathrm{L}} \neq u_{\mathrm{R}}$. In this case, we add diagonals $v_{\mathrm{L}} u^{\prime}$ and $v^{\prime} u_{\mathrm{R}}$, not to make multiple edges between v^{\prime} and u_{L} and between v^{\prime} and u_{L}. Here, $u_{\mathrm{L}}=v_{\mathrm{R}}$ and $v_{\mathrm{L}}=u_{\mathrm{R}}$ do not happen simultaneously, and hence we can add these diagonals without breaking the simpleness of graphs.

Clearly, the resulting embedding is also an outer-pseudo-triangulation on F^{2}. We call this operation the strip extension along e.

We call the union of the two quadrilateral regions the strip, denoted \tilde{e}, corresponding to e, and call each of e_{R} and e_{L} the brim of the strip.

Let P be an outer-pseudo-triangulation on a closed surface F^{2}. Apply the strip extensions for all inner edges of P. We call the resulting outer-pseudo-triangulation the brick graph of P, and denote it by $B(P)$.

Lemma 10. Given an outer-pseudo-triangulation P on a closed surface F^{2}, the brick graph $B(P)$ is an outer-triangulation (i.e., simple).

Proof. By construction, it is clear that any edge in a strip except brims is neither a loop nor multiple edges. So, consider a brim in a strip \tilde{e} coming from an edge $e=u v$ of G and first suppose that it is a loop in $B(G)$. Then, e is also a loop at a vertex $u=v$ in G. If the two ends of e are not consecutive in the rotation around $u=v$, then the strip extension along edges between the two ends of e split $u=v$ into two or more distinct vertices and neither e_{L} nor e_{R} can be a loop in $B(G)$, a contradiction. On the other hand, if there is no edge between the two ends of e around $u=v$, the loop e must be 1 -sided; otherwise, it would bound a monogonal face. In this case, the two edges e_{L} and e_{R} form together a path of length 2 and both of them are not a loop in G, a contradiction again. Since even in this case, we can add diagonals not to make multiple edges as described in the definition of the strip extension, $B(G)$ has no loop.

Now suppose that $B(G)$ includes a pair of multiple edges, which are brims coming from two edges e_{1} and e_{2} of G. Then e_{1} and e_{2} also form a pair of multiple edges between u and v in G. As well as a loop, strip extension cannot transform them into a pair of multiple edges in $B(G)$ unless their ends form consecutive pairs in the rotations around u and v and unless e_{1} and e_{2} form a 2-sided 2-cycle. However, in the exceptional case, the 2-cycle $e_{1} \cup e_{2}$ would bound a diagonal face, a contradiction. Thus, $B(G)$ has no multiple edges.

Lemma 11. Let G be an outer-triangulation on a closed surface F^{2}. Then, the brick graph $B(G)$ is contractible to G.

Proof. Let e be an inner edge of G. The outer-triangulation obtained from G by a strip extension along e is clearly contractible to G. Thus, the lemma follows.

Let G and G^{\prime} be two outer-triangulations on the same closed surface F^{2}. When G and G^{\prime} are equivalent to each other, up to isotopy, keeping the simpleness of graphs, then we simply denote $G \sim G^{\prime}$. Combining Lemmas 9 and 11 , we have the following:

Lemma 12. Let F^{2} be a closed surface with Euler characteristic $\chi\left(F^{2}\right)$, and let G be an outer-triangulation on F^{2}. Then,

$$
B(G) \sim G+\Sigma_{4\left(|V(G)|-3 \chi\left(F^{2}\right)+3\right)} .
$$

Proof. By Euler's formula, we have $|E(G)|=2|V(G)|-3 \chi\left(F^{2}\right)+3$. Thus, the number of inner edges of G is equal to

$$
|E(G)|-|V(G)|=|V(G)|-3 \chi\left(F^{2}\right)+3 .
$$

Since each strip extension increases the number of vertices by four, we have

$$
|V(B(G))|-|V(G)|=4\left(|V(G)|-3 \chi\left(F^{2}\right)+3\right) .
$$

Fig. 6. A sequence of diagonal flips from $B(P)+\Sigma_{4}$.

Since $B(G)$ is contractible to G, we have $B(G) \sim G+\Sigma_{4\left(|V(G)|-3 \chi\left(F^{2}\right)+3\right)}$, by Lemmas 9 and 11.

Lemma 13. Let P and P^{\prime} be two outer-pseudo-triangulations on a closed surface F^{2} such that P^{\prime} can be obtained from P by flipping one edge. Then, two outertriangulations $B(P)+\Sigma_{4}$ and $B\left(P^{\prime}\right)+\Sigma_{4}$ are equivalent.

Proof. Let $Q=a b c d$ be a quadrilateral in P formed by two triangular faces $a b d$ and $b c d$. Suppose that the edge $b d$ is flipped to obtain P^{\prime}. Since strip extensions to construct $B(P)$ and $B\left(P^{\prime}\right)$ are performed along the inner edges in P and P^{\prime}, the proof naturally falls into four cases, depending on the number of inner edges on the cycle $a b c d$, but we shall show the lemma only when every edge in Q is an inner edge because the remaining cases may be handled in the same way.

See Fig. 6. We label the vertices of $B(P)$ corresponding to a, b, c and d as in the figure. The left-hand figure represents the local structure of $B(P)+\Sigma_{4}$ corresponding to the face $a b c d$ in P. By Lemma 8, we may suppose that a_{2}, a_{3} and c_{3}, c_{4} are the inserted vertices of degree 3. By Theorem 4, we do not apply any diagonal flip of a self-incident edge, and hence we may suppose that the faces $a b d$ and $b c d$ are different in P. Thus, the vertices $a_{1}, \ldots, a_{5}, b_{1}, \ldots, b_{5}, c_{1}, \ldots, c_{5}, d_{1}, \ldots, d_{5}$ are all distinct. Thus, the sequence of diagonal flips transforming the left-hand figure into the right-hand figure keeps the simpleness of graphs. From the right-hand figure, applying diagonal flips in the region bounded by $a_{2} a_{3} a_{4} b_{4} b_{3} b_{2}$ and the region bounded by $d_{2} d_{3} d_{4} c_{4} c_{3} c_{2}$, we can put edges $a_{2} b_{i}$ and $b_{4} a_{i}$ for $i=2,3,4$ and edges $d_{2} c_{i}$ and $c_{4} d_{i}$ for $i=2,3,4$. The resulting graph can easily be transformed into $B\left(P^{\prime}\right)+\Sigma_{4}$, similarly to the sequence from the left-hand to the right-hand in Fig. 6.

Lemma 14. Let F^{2} be a closed surface with Euler characteristic $\chi\left(F^{2}\right)$, and let G and G^{\prime} be any two outer-triangulations on F^{2} with the same number of
vertices. Then,

$$
G+\Sigma_{4\left(|V(G)|-3 \chi\left(F^{2}\right)+4\right)} \sim G^{\prime}+\Sigma_{4\left(\left|V\left(G^{\prime}\right)\right|-3 \chi\left(F^{2}\right)+4\right)} .
$$

Proof. By Theorem 4, if we neglect the simpleness of graphs, G and G^{\prime} are equivalent up to isotopy, that is, there exists a sequence $G=T_{0}, T_{1}, \ldots, T_{\ell}=G^{\prime}$ such that
(i) T_{0} and T_{l} are outer-triangulations (i.e., simple),
(ii) for $i=1, \ldots, \ell-1, T_{i}$ is an outer-pseudo-triangulation, and
(iii) for $j=0, \ldots, \ell-1, T_{j+1}$ is obtained from T_{j} by one diagonal flip.

Now take the brick graphs of T_{0}, \ldots, T_{ℓ} with four extra inserted vertices of degree 3 added, that is, $B\left(T_{0}\right)+\Sigma_{4}, \ldots, B\left(T_{\ell}\right)+\Sigma_{4}$. Then, by Lemma 10 , since $B\left(T_{i}\right)$ is simple, so is $B\left(T_{i}\right)+\Sigma_{4}$ for $i=0, \ldots, \ell$. Moreover, by Lemma 13, $B\left(T_{j}\right)+\Sigma_{4} \sim B\left(T_{j+1}\right)+\Sigma_{4}$ for $j=0, \ldots, \ell-1$. On the other hand, by Lemma 12, $B\left(T_{0}\right) \sim T_{0}+\Sigma_{4\left(\left|V\left(T_{0}\right)\right|-3 \chi\left(F^{2}\right)+3\right)}$ and $B\left(T_{\ell}\right) \sim T_{\ell}+\Sigma_{4\left(\left|V\left(T_{t}\right)\right|-3 \chi\left(F^{2}\right)+3\right)}$, and hence we have $B\left(T_{0}\right)+\Sigma_{4} \sim T_{0}+\Sigma_{4\left(\left|V\left(T_{0}\right)\right|-3 \chi\left(F^{2}\right)+4\right)}$ and $B\left(T_{\ell}\right)+\Sigma_{4} \sim T_{\ell}+\Sigma_{4\left(\left|V\left(T_{\ell}\right)\right|-3 \chi\left(F^{2}\right)+4\right)}$. Thus, we have

$$
\begin{aligned}
G & +\Sigma_{4\left(|V(G)|-3 \chi\left(F^{2}\right)+4\right)} \sim B\left(T_{0}\right)+\Sigma_{4} \sim \cdots \sim B\left(T_{\ell}\right)+\Sigma_{4} \sim G^{\prime} \\
& +\Sigma_{4\left(\left|V\left(G^{\prime}\right)\right|-3 \chi\left(F^{2}\right)+4\right)} .
\end{aligned}
$$

Therefore, the lemma follows.

5. Proof of the main theorem

Now we have prepared all to prove Theorem 2.
Proof of Theorem 2. By Lemma 6, F^{2} admits only finitely many irreducible outertriangulations, up to homeomorphism. Let $\left\{\tilde{I}_{1}, \ldots, \tilde{I}_{p}\right\}$ be the set of irreducible outertriangulations on F^{2}, up to homeomorphism. Now, let I_{j} be an outer-triangulation represented by \tilde{I}_{j}, fixed up to isotopy, for $j=1, \ldots, p$. Note that though any outertriangulation G is contractible to one of I_{1}, \ldots, I_{p}, up to homeomorphism, G might be contractible to none of them, up to isotopy.

Without loss of generality, we may suppose that $\left|V\left(I_{1}\right)\right| \geqslant\left|V\left(I_{2}\right)\right| \geqslant \cdots \geqslant\left|V\left(I_{p}\right)\right|$. Let $m_{i}=\left|V\left(I_{1}\right)\right|-\left|V\left(I_{j}\right)\right|$ for $j=1, \ldots, p$, and put $I_{j}^{\prime}=I_{j}+\Sigma_{m_{j}}$ for $j=1, \ldots, p$. By Lemma 14, since $\left|V\left(I_{1}^{\prime}\right)\right|=\cdots=\left|V\left(I_{p}^{\prime}\right)\right|$, we have

$$
I_{1}^{\prime}+\Sigma_{4\left(\left|V\left(I_{1}^{\prime}\right)\right|-3 \chi\left(F^{2}\right)+4\right)} \sim I_{2}^{\prime}+\Sigma_{4\left(\left|V\left(I_{2}^{\prime}\right)\right|-3 \chi\left(F^{2}\right)+4\right)} \sim \cdots \sim I_{p}^{\prime}+\Sigma_{4\left(\left|V\left(I_{p}^{\prime}\right)\right|-3 \chi\left(F^{2}\right)+4\right)} .
$$

Moreover, by Lemma 14 again, for any $j \in\{1, \ldots, p\}$ and any homeomorphism $h: F^{2} \rightarrow F^{2}$, we also have

$$
h\left(I_{j}\right)+\Sigma_{4\left(\left|V\left(I_{j}\right)\right|-3 \chi\left(F^{2}\right)+4\right)} \sim I_{j}+\Sigma_{4\left(\left|V\left(I_{j}\right)\right|-3 \chi\left(F^{2}\right)+4\right)} .
$$

Now put

$$
\begin{aligned}
N\left(F^{2}\right) & =\left|V\left(I_{1}^{\prime}\right)\right|+4\left(\left|V\left(I_{1}^{\prime}\right)\right|-3 \chi\left(F^{2}\right)+4\right) \\
& =5\left|V\left(I_{1}^{\prime}\right)\right|-12 \chi\left(F^{2}\right)+16 .
\end{aligned}
$$

Then, putting $k_{i}=N\left(F^{2}\right)-\left|V\left(I_{i}\right)\right|$ for $i=1, \ldots, p$,

$$
I_{1}+\Sigma_{k_{1}} \sim I_{2}+\Sigma_{k_{2}} \sim \cdots \sim I_{p}+\Sigma_{k_{p}}
$$

Let G be an outer-triangulation on F^{2} with $|V(G)| \geqslant N\left(F^{2}\right)$. Since G is contractible to an irreducible outer-triangulation, we may suppose that G is contractible to a homeomorphic image of I_{t}, denoted by $h\left(I_{t}\right)$. Hence, by Lemma 9, we have $G \sim h\left(I_{t}\right)+\Sigma_{m}$, where $m=|V(G)|-\left|V\left(I_{t}\right)\right|$. Since $|V(G)| \geqslant N\left(F^{2}\right)$, we have $m^{\prime}=m-k_{t} \geqslant 0$. Thus, we have, by Lemmas 8 and 9,

$$
\begin{aligned}
G & \sim h\left(I_{t}\right)+\Sigma_{m} \\
& \sim I_{t}+\Sigma_{m} \\
& \sim I_{t}+\Sigma_{k_{t}}+\Sigma_{m^{\prime}} \\
& \sim I_{1}+\Sigma_{k_{1}}+\Sigma_{m^{\prime}} \\
& \sim I_{1}+\Sigma_{k_{1}+m^{\prime}} .
\end{aligned}
$$

Similarly, if G^{\prime} is an outer-triangulation on F^{2} with $|V(G)|=\left|V\left(G^{\prime}\right)\right| \geqslant N\left(F^{2}\right)$, then we have $G^{\prime} \sim I_{1}+\Sigma_{k_{1}+m^{\prime}}$. Thus, $G \sim G^{\prime}$.

The following corollary is an immediate consequence of this.
Corollary 15. $N\left(F^{2}\right) \leqslant 1371-867 \chi\left(F^{2}\right)$.
Proof. In the proof of Theorem 2, we have $N\left(F^{2}\right)=5\left|V\left(I_{1}^{\prime}\right)\right|-12 \chi\left(F^{2}\right)+16$. The number $\left|V\left(I_{1}^{\prime}\right)\right|=\left|V\left(I_{1}\right)\right|$ can be bounded by $\left|V\left(I_{1}\right)\right| \leqslant 171\left(2-\chi\left(F^{2}\right)\right)-71$. (This inequality was obtained in the proof of Lemma 6.) Thus,

$$
N\left(F^{2}\right) \leqslant 5\left(171\left(2-\chi\left(F^{2}\right)\right)-71\right)-12 \chi\left(F^{2}\right)+16=1371-867 \chi\left(F^{2}\right)
$$

References

[1] D.W. Barnette, Generating the triangulations of the projective plane, J. Combin. Theory Ser. B 33 (1982) 222-230.
[2] D.W. Barnette, A.L. Edelson, All orientable 2-manifolds have finitely many minimal triangulations, Israel J. Math. 62 (1988) 90-98.
[3] D.W. Barnette, A.L. Edelson, All 2-manifolds have finitely many minimal triangulations, Israel J. Math. 67 (1989) 123-128.
[4] R. Brunet, A. Nakamoto, S. Negami, Diagonal flips of triangulations on closed surfaces preserving specified properties, J. Combin. Theory Ser. B 68 (1996) 295-309.
[5] C. Cortés, A. Nakamoto, Diagonal flips in outer-torus triangulations, Discrete Math. 216 (2000) 71-83.
[6] C. Cortés and A. Nakamoto, Diagonal flips in outer-Klein bottle triangulations, Discrete Math. 222 (2000) 41-50.
[7] A.K. Dewdney, Wagner's theorem for the torus graphs, Discrete Math. 4 (1973) 139-149.
[8] P.H. Edelman, V. Reiner, Catalan triangulations of the Möbius band, Graphs and Combin. 13 (1997) 231-243.
[9] Z. Gao, L.B. Richmond, C. Thomassen, Irreducible triangulations and triangular embeddings on a surface, CORR 91-07, University of Waterloo.
[10] H. Komuro, A. Nakamoto, S. Negami, Diagonal flips of triangulations on closed surfaces with minimum degree at least 4, J. Combin. Theory Ser. B 76 (1999) 68-92.
[11] S. Lawrencenko, The irreducible triangulations of the torus, Ukrain. Geom. Sb. 30 (1987) 52-62; (Engl. transl.) J. Soviet Math. 51 (1990) 2537-2543 (in Russian).
[12] S. Lawrencenko, S. Negami, Irreducible triangulations of the Klein bottle, J. Combin. Theory Ser. B 70 (1997) 265-291.
[13] A. Nakamoto, K. Ota, Note on irreducible triangulations of surfaces, J. Graph Theory 20 (1995) 227-233.
[14] A. Nakamoto, K. Ota, Diagonal transformation of graphs and Dehn twists on surfaces, J. Combin. Theory Ser. B 70 (1997) 292-300.
[15] S. Negami, Crossing number of an embedding pair of graphs on closed surfaces, J. Graph Theory, 36 (2001) 8-23.
[16] S. Negami, Diagonal flips in triangulations of surfaces, Discrete Math. 135 (1994) 225-232.
[17] S. Negami, Diagonal flips in triangulations on closed surfaces, estimating upper bounds, Yokohama Math. J. 45 (1998) 113-124.
[18] S. Negami, Diagonal flips in pseudo-triangulations of surfaces, Discrete Math., to appear.
[19] S. Negami, Note on frozen triangulations on closed surfaces, Yokohama Math. J. 47 (1999) 191-202.
[20] A. Nakamoto, S. Negami, Triangulations on closed surfaces covered by vertices of given degree, Graphs and Combin. 17 (2001) 529-537.
[21] S. Negami, S. Watanabe, Diagonal transformations of triangulations on surfaces, Tsukuba J. Math. 14 (1990) 155-166.
[22] N. Robertson, P.D. Seymour, Graph Minors XVI, Wagner's conjecture, preprint.
[23] E. Steinitz, H. Rademacher, Vorlesungen üder die Theorie der Polyeder, Springer, Berlin, 1934.
[24] K. Wagner, Bemekungen zum Vierfarbenproblem, J. der Deut. Math. Ver. 46(1) (1963) 26-32.

[^0]: * Corresponding author.

 E-mail addresses: ccortes@cica.es (C. Cortés), grima@cica.es (C. Grima), almar@cica.es (A. Marquez), nakamoto@cc.osaka-kyoiku.ac.jp (A. Nakamoto)
 ${ }^{1}$ Partially supported by Proyecto DGICYT PB96-1374 and Proyecto PAI FQM-0164.

