
Improving the Universality Results of Enzymatic
Numerical P Systems

Cristian Ioan Vasile1, Ana Brânduşa Pavel1, and Ioan Dumitrache1

Department of Automatic Control and Systems Engineering
Politehnica University of Bucharest
Splaiul Independenţei 313, 060042 Bucharest, Romania
{cvasile, apavel, idumitrache}@ics.pub.ro

Summary. This paper provides the proof that Enzymatic Numerical P Sytems with
deterministic, but parallel, execution model are universal, even when the production
functions used are polynomials of degree 1. This extends previous known results and
provides the optimal case in terms of polynomial degree.

1 Enzymatic Numerical P Systems

Numerical P Systems (NP Systems) are a type of P systems [8], inspired by the
cell structure, in which numerical variables evolve inside the compartments by
means of programs; a program (or rule) is composed of a production function and
a repartition protocol. The variables have a given initial value and the produc-
tion function is a multivariate polynomial. The value of the production function
for the current values of the variables is distributed among variables in certain
compartments according to a repartition protocol. Formal definition of NPS can
be found in [7] where the authors introduce this type of P systems with possible
applications in economics.

NP systems were designed both as deterministic and non-deterministic systems
[7]. Non-deterministic NPS allow the existence of more rules per each membrane
and the best rule is selected by an “oracle”, while the deterministic NPS can have
only one or no rule per each membrane. NP Systems were used as a naturally
parallel and distributed modeling tool for the design of robot controllers [1], [5],
[6]. Designing robot controllers requires deterministic mechanisms. Therefore, an
extension of NPS, Enzymatic Numerical P systems (EN P Systems), in which
enzyme-like variables allow the existence of more than one program (rule) in each
membrane, while keeping the deterministic nature of the system, were introduced
in [3]. Due to their properties, EN P Systems represent a more powerful modeling
tool for robot behaviors than classical N P Systems [5], [6].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51396958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

208 C.I. Vasile, A.B. Pavel, I. Dumitrache

2 The power of Enzymatic Numerical P Systems

In [9] the authors prove and analyze the universality of EN P Systems. The main
results in [7] and [9] regarding the power of NP Systems and ENP Systems are the
following:

Theorem 1. NRE = N+P8(poly
5(5), seq) = N+P7(poly

5(6), seq) =
NP7(poly

5(5), enz, seq) = NtP∗(poly
1(11), enz, oneP) =

NP254(poly
2(253), enz, allP, det).

The family of sets of numbers N+(Π) computed by NP Systems with at most
m membranes, production functions which are polynomials of degree at most n,
with integer coefficients, with at most r variables in each polynomial, is denoted
by N+Pm(polyn(r), seq), m ≥ 1, n ≥ 0, r ≥ 0, where the fact that they work in
the sequential mode (in each step, only one program is applied), is indicated by
seq. If one of the parameters m,n, r is not bounded, then it is replaced by ∗. (Both
in N+(Π) and in N+Pm(polyn(r), seq), the superscript + indicates the fact that
as the result of a computation we only consider positive natural numbers, zero
excluded. If any value of xj0,i0 is accepted, then the superscript + is removed.)
When tissue-like systems are used, we write NtPm(polyn(r), α, β).

In the next section, the authors present an improvement of the universality
results of EN P Systems by reducing the number of membranes, the polynomial
degree of the production functions and the number of variables of the production
functions.

3 Improving the universality results

The main result proposed here is the following theorem about the power of EN
P Systems. The theorem extends previous results about the benefits of adding
the enzymatic mechanism in terms of the computational power of the model. It
also provides the optimal result regarding the polynomial degree of the produc-
tion functions, namely 1. The execution model considered in the theorem is a
deterministic, but parallel one, in which all active rules are executed in parallel.
Rules, which share variables, will use the current value of the variable and execute
independently of each other.

Theorem 2. NRE = NP4(poly
1(6), enz, allP, det).

Proof. The proof is done by constructing a membrane system which enumerates
the positive values of some polynomial with integer coefficients corresponding to
tuples of natural numbers. It is proven in [2], that polynomials of degree at most
5 with 5 variables are sufficient to imply the universality of the models. This
technique is used to show that standard NP Systems are universal [7]. The following
system is a modified version of the one used in [9] (it is also shown in graphical
form in figure 1):

Improving the Universality Results of Enzymatic Numerical P Systems 209

Π = (4,H, µ, (V arGenerate, P rGenerate, V arGenerate(0))

(V arCompute, P rCompute, V arCompute(0), enum),

(V arPow5, P rPow5, V arPow5(0)),

(V arMult, P rMult, V arMult(0))),

H = {Generate, Compute, Pow5,Mult},
µ = [

Generate
[
Compute

[
Pow5

[
Mult

]
Mult

]
Pow5

]
Compute

]
Generate

,

V arGenerate = {xi, ej , ezk, eri, n, et, g, gc : 1 ≤ i ≤ 5, 1 ≤ i ≤ 7, 1 ≤ k ≤ 5},
P rGenerate = {n → 1|n, et → 1|gc,

1 + x1|e1 → 1|er1, −1 + g|e1 → 1|x1, 1 + n+ x1|e1 → 1|x1}
∪ {j · ej → 1|ej+1 + (j − 1)|et : 1 ≤ j ≤ 5}
∪ {1 + xi|e1 → 1|ezi, 1− i+ et|eri−1 → 1|xi : 2 ≤ i ≤ 5}
∪ {g + (ezi + eri−1)|ei → 1|eri, 2− i+ n+ et|eri → 1|xi

: 2 ≤ i ≤ 5}

∪ {2 + et|er5 →
5∑

i=1

1|xi + 1|n, er5|e6 → 1|gc, e6 → 1|e7,

e7 → 1|ec1}
∪ {g + 2 · xi|e7 → 1|xi + 1|xc

i : 1 ≤ i ≤ 5},
V arGenerate(0) = (5, 5, 5, 5, 5, 1, 0, . . . , 0, 5, 0, 0, 0),

V arCompute = {xc
i , e

c
j , t, g

∗, ept, fQ, enum, aux, ef : 1 ≤ i ≤ 5, 1 ≤ j ≤ 506},

P rCompute = {g∗ +

(
5∑

i=1

ai,k · xc
i + a6,k

)
|ec2k−1

→ 1|s1,

3 · ec2k−1 → 1|ec2k + 2|ep1, ec2k|ept → 1|ec2k+1,

g∗ − 2 · βkt|ec2k+1
→ 1|aux+ 1|ef : 1 ≤ k ≤ 252}

∪ {2 · ec505 → 1|ef + 1|ec506, aux|ef → 1|fQ, −fQ|g∗ → 1|enum,

−(fQ + ec506) → 1|ef , enum+ fQ + ept → 1|gc, ec506 → 1|e1}
V arCompute(0) = (0, 0, . . . , 0),

V arPow5 = {s1, s2, epi, eM , gc∗, z : 1 ≤ i ≤ 7},
P rPow5 = {z + 3 · s1|ep1 → 1|a+ 1|b+ 1|s1, z + 2 · s2|ep3 → 1|a+ 1|b,

z + s1|ep5 → 1|a, z + s2|ep5 → 1|b, z + s2|ep7 → 1|t,
ep7 → 1|ept, eM → 1|gc∗}

∪ {3 · ep2k−1 → 1|ep2k + 2|es, ep2k|eM → 1|ep2k+1, 1 ≤ k ≤ 3}
V arPow5(0) = (0, 0, . . . , 0),

V arMult = {a, b, z∗, d, u, es},
P rMult = {z∗ + 1.5 · a|b → 2|a+ 1|s2, z∗ − (1 + d)|b → 1|d, d → 1|b

210 C.I. Vasile, A.B. Pavel, I. Dumitrache

es + b|u → 1|eM , a+ b|u → 1|gc∗}
V arMult(0) = (0, 0, 0, 0, 1, 0).

The proposed membrane system is mainly composed of two parts: the 5-tuple
generation part and the computation of the polynomial’s value. The generating
part, implemented in the Generate membrane, is the same as in the proof from [9].
Only the last rule of the membrane, e7 → 1|ec1, was changed in order to synchronize
it with the Computation membrane. The 5-tuple generation process is described in
detail in [9]. The five variables forming the tuple are regarded as a single number
with 5 digits in a certain base. The algorithm counts down from the highest 5-digit
number to zero. Therefore, if the current base is b+1, the membrane will generate
the numbers from bbbbb to 00000. When the null tuple is reached the variables
are reset to the highest 5-digit number of the next base. The algorithm start with
base 6 from the tuple (5, 5, 5, 5, 5) and generates (5, 5, 5, 5, 4), . . . , (5, 5, 5, 5, 0),
(5, 5, 5, 4, 5), . . . , (0, 0, 0, 0, 0). At this point it will move to the tuple (6, 6, 6, 6, 6)
which corresponds to the highest 5-digit number in base 7. The process repeats
indefinitely, thus generating all 5-tuples of natural numbers in a deterministic way.

For the next part of the proof it is important to recall that every polynomial
f of degree 5 with 5 variables can be put in the following form (lemma from [9]):

f(x1, . . . , x5) =
m∑
i=1

βi · (a1,ix1 + . . .+ a5,ix5 + a6,i)
5 (1)

where m is 252 and represents the maximum number of terms of f in the general
form, βi are polynomial specific coefficients and aj,i are some constants. This form
of the polynomial is used in order to compute the values corresponding to the
generated 5-tuples in the first part of the procedure in the Generate membrane.

The Compute membrane was rewritten such that only polynomials of degree
one are used as production functions. This is achieved by noting that the only part
where polynomials of degree greater than one are needed is when the 5-th power
of a number is computed, more specifically a natural number [9]. Computing the
power of a number can be done using only multiplication; computing the 5-th
power of x can be done by first computing a = x · x = x2, then b = a · a = x4 and
finally c = x · b = x5. Since x in the system is a natural number, multiplication
can be performed as a repeated addition, a · b = a+ . . .+ a︸ ︷︷ ︸

b

. This procedure is

implemented in the Pow5 membrane which repeatedly uses the Mult membrane
to compute the products of natural numbers. Thus the degree of the polynomials
in all production functions is reduced to 1, the optimal value.

Also, the number of membranes needed in the computation was reduced by
reusing some membranes, Pow5 and Mult. Instead of using m = 252 Pow5 mem-
branes in order to compute the m terms of the polynomial (in the form from
equation 1), the membrane is used repeatedly to compute each term. Therefore,
the number of membranes is reduced to 4. ⊓⊔

Improving the Universality Results of Enzymatic Numerical P Systems 211'

&

$

%

Generate

xi[5], 1 ≤ i ≤ 5, e1[1], ej [0], 2 ≤ j ≤ 7, ezk[0], 1 ≤ k ≤ 5, eri[0], 1 ≤ i ≤ 5

n[5], et[0], g[0], gc[0]

n → 1|n
et → 1|gc
1 + xi|e1 → 1|ezi, 2 ≤ i ≤ 5

1 + x1|e1 → 1|er1
−1 + g|e1 → 1|x1

1 + n+ x1|e1 → 1|x1

j · ej → 1|ej+1 + (j − 1)|et, 1 ≤ j ≤ 5

1− i+ et|eri−1 → 1|xi, 1 ≤ i ≤ 5

g + (ezi + eri−1)|ei → 1|eri, 2 ≤ i ≤ 5

2− i+ n+ et|eri → 1|xi, 2 ≤ i ≤ 5

2 + et|er5 →
∑5

i=1 1|xi + 1|n
er5|e6 → 1|gc
e6 → 1|e7
g + 2 · xi|e7 → 1|xi + 1|xc

i , 1 ≤ i ≤ 5

e7 → 1|ec1

'

&

$

%

Compute

xc
i [0], 1 ≤ i ≤ 5,

ecj [0], 1 ≤ j ≤ 506,

t[0], g∗[0], ept[0], fQ[0],

enum[0], aux[0], ef [0]

g∗ +
∑5

i=1 ai,k · xc
i + a6,k|ec

2k−1
→ 1|s1

3 · ec2k−1 → 1|ec2k + 2|ep1
ec2k|ept → 1|ec2k+1

g∗ − 2 · βkt|ec
2k+1

→ 1|aux+ 1|ef
1 ≤ k ≤ 252
2 · ec505 → 1|ef + 1|ec506
aux|ef → 1|fQ
−fQ|g∗ → 1|enum
−(fQ + ec506) → 1|ef
enum+ fQ + ept → 1|gc
ec506 → 1|e1

'

&

$

%

Pow5

s1[0], s2[0], epi[0], 1 ≤ i ≤ 7,

eM [0], gc∗[0], z[0]

z + 3 · s1|ep1 → 1|a+ 1|b+ 1|s1
z + 2 · s2|ep3 → 1|a+ 1|b
z + s1|ep5 → 1|a
z + s2|ep5 → 1|b
3 · ep2k−1 → 1|ep2k + 2|es
ep2k|eM → 1|ep2k+1

1 ≤ k ≤ 3
z + s2|ep7 → 1|t
ep7 → 1|ept
eM → 1|gc∗'

&

$

%

Mult

a[0], b[0], z∗[0], d[0], u[1], es[0]

z∗ + 1.5 · a|b → 2|a+ 1|s2
z∗ − (1 + d)|b → 1|d
d → 1|b
es + b|u → 1|eM
a+ b|u → 1|gc∗

Fig. 1. The EN P system from the proof of Theorem 2

212 C.I. Vasile, A.B. Pavel, I. Dumitrache

Parts of the proposed membrane system, Generate membrane and Pow5 mem-
brane, were simulated and verified using SimP, an EN P Systems simulator pro-
posed in [4].

4 Remarks

In the proof of theorem 2 a method of reusing membranes was used in order to
reduce the number of membranes in the system. It is, however, important to notice
that it also constrained the system to perform most important computations in a
serial manner. In practice, it may be more convenient to have more membranes
that compute in parallel, because it allows the underlying runtime environment
to perform optimizations based on available hardware and software platform. It is
also important to note that there are more rules dedicated to program control flow
in the membrane system from theorem 2 than there are in the one from theorem 4
in [9].

Another important observation is that even though computation can be done
with polynomial production functions of degree 1, in some cases it is more conve-
nient to use higher degree polynomials. However, most rules used for program flow
control are of degree 1 and also, most rules with higher degree polynomial produc-
tions functions have few terms. These observations are relevant for optimizing the
data structures and algorithms used for simulating EN P Systems.

Acknowledgments

This paper is supported by the Sectorial Operational Program Human Resources
Development, financed from the European Social Fund and by the Romanian Gov-
ernment under the contract number SOP HRD/107/1.5/S/82514.

References

1. Buiu, C., Vasile, C.I., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences (in press), doi: 10.1016/j.ins.2011.10.007

2. Minsky, M. (ed.): Computation: Finite and Infinite Machines. Prentice-Hall (1967)
3. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class of

membrane computing systems. In: The IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA 2010) Liverpool. pp. 1331–
1336 (September 2010)

4. Pavel, A.B.: Membrane controllers for cognitive robots. Master’s thesis, Department
of Automatic Control and System Engineering, Politehnica University of Bucharest,
Romania (February 2011)

5. Pavel, A.B., Buiu, C.: A software tool for modeling and simulation of numerical P
systems. Natural Computing (in press), doi: 10.1007/s11047-011-9286-5

6. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot localization implemented with enzy-
matic numerical P systems (submitted)

Improving the Universality Results of Enzymatic Numerical P Systems 213

7. Păun, G., Paun, A.: Membrane Computing and Economics: Numerical P Systems.
Fundamenta Informaticae pp. 213–227 (2004)

8. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

9. Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, G.: On the Power of Enzymatic Nu-
merical P Systems (submitted)

