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Summary. In this paper, we show a new example of bridging Algebraic Topology,
Membrane Computing and Digital Images. In [24], a new algorithm for thinning multi-
dimensional black and white digital images by using cell complexes was presented. Such
cell complexes allow a discrete partition of the space and the algorithm preserves topolog-
ical and geometrical properties of the image. In this paper, we present a parallel adapta-
tion of such algorithm to P systems, by introducing some concepts of Algebraic Topology
in the Membrane Computing framework. The chosen model for the implementation is
tissue-like P systems with promoters, inhibitors and priorities.

1 Introduction

Computer vision [36] is one of the challenges for Computer Science in the next
years. From a biological point of view, vision is an extremely complex process
involving the transformation of the light energy into a signal which leaves the eye
by way of the optic nerve and arrives to the brain, where is interpreted. From
the computational side, a 2D digital image can be roughly defined as a function
from a two dimensional surface which maps each point from the surface onto a
set of attributes as bright or color. Analogously, a 3D image maps a region of
a tridimensional space onto a set of attributes. The different treatments of such
mappings provide a big amount of current applications in computer vision as
biometrics [1], surveillance [11] or medical imaging [2].

Many problems in the processing of 2D or 3D digital images have features
which make it suitable for techniques inspired by nature. The subset of the integer
plane or space taken to be the support of the image and the set of possible features
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associated to each 2D or 3D point can be considered finite and hence, the trans-
formation of an image into another can be made in a discrete way. Other of such
features is that the treatment of the image can be parallelized and locally modi-
fied. Regardless how large is the picture, the process can be performed in parallel
in different local areas of it. Another interesting feature is that the information
of the image can also be easily encoded in the data structures used in Natural
Computing.

In the literature, we can find many examples of the use of Natural Computing
techniques for dealing with such problems. One of the classic examples is the use
of cellular automata [33, 35]. Other efforts are related to artificial neural networks
as in [18, 38].

In Membrane Computing, there is a large tradition in the study of dealing
information structured as two dimensional objects (see, e.g., [5, 6, 12, 23]). The
main motivation for these studies is to bring together Membrane Computing and
Picture Grammars. From a technical point of view, arrays are two-dimensional
objects placed inside the membranes as strings are one-dimensional objects in the
model of P systems with string objects [19, 31].

Recently, a new research line has been open by applying well-known membrane
computing techniques for solving problems from digital imagery. For example, the
segmentation problem, [8, 10, 13, 14], thresholding [7] or smoothing [29]. Special
attention deserves Gimel’farb et al. [20], where the symmetric dynamic program-
ming stereo (SDPS) algorithm [21] for stereo matching was implemented by using
simple P modules with duplex channels.

In this paper, we focus on the problem of skeletonizing a 2D or 3D image. Skele-
tonization is one of the approaches for representing a shape with a small amount
of information by converting the initial image into a more compact representation
and keeping the meaning features. The conversion should remove redundant in-
formation, but it should also keep the basic structure. There are many different
definitions of the skeleton of a black and white image and many skeletonizing al-
gorithms1, but in general, the image B is a skeleton of the image A, if it has fewer
black pixels than A, preserves its topological properties and, in some sense, keeps
its meaning. The most important features concerning a shape are its topology (rep-
resented by connected components, holes, etc.) and its geometry (elongated parts,
ramifications, etc.), thus these terms have to be preserved. When the skeletonizing
process is made by the iterative removal of non-significant elements of the image,
the process is known as thinning.

In this paper, we present an implementation of the Liu’s algorithm [24] for
thinning images based on Membrane Computing techniques. The basic notion of
this algorithm is the cell complex. It can be seen as a mathematical abstraction of
a space unit. This space unit is built in some n dimensional space and embedded
in a space of higher dimension, as a 2-dimensional square can be embedded in a
3D space. All these concepts will be formalized below.

1 A detailed description of skeletonizing algorithms is out of the scope of this paper. For
a survey in this topic, see e.g., [34].
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In Liu’s work [24], a cell complex is processed in order to obtain another com-
plex with the same topology, and the same geometry. We will start from a black
and white 2D or 3D digital image by building a cell complex from it. This com-
plex will be, then, processed by consecutive parallel removal of certain cells. The
removal process does not change the topology nor the geometry of the starting cell
complex. At the end of this process, the set of non-removed cells will make the
skeleton.

For implementing these ideas in the Membrane Computing framework, we
present a family of tissue-like P systems endowed with priorities among rules,
promoters and inhibitors. This paper follows the research line open with [9], but,
to the best of our knowledge, this is the first work which put together Membrane
Computing, Cells Complexes and thinning processes.

The paper is organized as follows. In the first section, all technical require-
ments of Algebraic Topology are reviewed. Next, the basics for understanding the
proposed algorithm are introduced, followed by the presentation of the Membrane
Computing framework and the bioinspired 2D and 3D black and white image thin-
ning algorithm. Next, an overview of the computation is presented, finishing with
conclusions and future work.

2 Cubical Complexes

As pointed above, cubical complexes are mathematical abstractions to handle
structured portions of a n dimensional space. On such abstractions, we can define
several operators as the border one, which associates, for example, a 3D cell (cube)
with six 2D cells (squares), or properties to define free cells or isolated cells.

We follow T. Kaczyński, K. Mischaikow and M. Mrozek [22] in the description
of a kind of combinatorial structure on a topological space.

Definition 1. [22] An elementary interval is a closed interval I ⊂ R of the form
I = [l, l + 1] or I = [l, l] for some l ∈ Z. The former are called nondegenerated,
while the latter are called degenerated. The interval [l, l] that contains only one
point will be denoted by [l].

Degenerated elementary intervals are simply points with 0 dimensions. Nonde-
generated elementary intervals are segments (objects with one dimension). Next,
we generalize this notion to any dimension.

Definition 2. An elementary cube σ is a finite product of elementary intervals:

σ = I1 × I2 × · · · × Id ⊂ Rd

where each Ij is an elementary interval, j ∈ {1, . . . , d}. The set of all elementary
cubes in Rd is denoted by Kd. The set of all elementary cubes is

K =

∞⋃
d=1

Kd
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For example {(0, 0, 0)}, {(x, 0, 0) | 0 ≤ x ≤ 1}, {(x, y, 0) | 0 ≤ x, y ≤ 1} and
{(x, y, z) | 0 ≤ x, y, z ≤ 1} are elementary cubes. Given an elementary cube σ =
I1×I2×· · ·×Id in Rd, its embedding number d is denoted by emb σ. The dimension
of σ is defined to be the number of nondegenerated intervals in its definition and is
denoted by dimσ. In this way, for the elementary cube Q ≡ {(x, y, 0) | 0 ≤ x, y ≤
1}, emb Q is 3 and dim Q is 2.

The set of all elementary cubes with dimension p is denoted by Kp. The set of
all elementary cubes in Rd with dimension p is denoted by Kdp.

The following definition gives sense to the decomposition of elementary cubes
into lower-dimensional objects.

Definition 3. Let δ and σ be two elementary cubes of any dimension. If δ ⊂ σ,
then δ is a face of σ. If δ is a face of σ and δ 6= σ, then δ is a proper face of
σ. δ is a primary face of σ if it is a face of σ and dim δ = dimσ − 1. Given an
elementary cube σ ∈ Kdp, the set of all primary faces of σ is called the border of σ
and it is denoted by ∂ σ.

For example, let us consider the elementary cubes σ1 = {(x, 0, 0) | 0 ≤ x ≤ 1},
σ2 = {(x, y, 0) | 0 ≤ x, y ≤ 1} and σ3 = {(x, y, z) | 0 ≤ x, y, z ≤ 1}. Notice that
σ1 ⊆ σ2 ⊆ σ3 holds, and hence σ1, σ2 and σ3 are faces of σ3; σ1 and σ2 are
proper faces of σ3; σ1 is a primary face of σ2 and σ2 is a primary face of σ3.
We also have that ∂ σ2 = {σ1, σ

′
1, σ
′′
1 , σ
′′′
1 } with σ′1 = {(x, 1, 0) | 0 ≤ x ≤ 1},

σ′′1 = {(0, x, 0) | 0 ≤ x ≤ 1}, σ′′′1 = {(1, x, 0) | 0 ≤ x ≤ 1}.

Definition 4. Let I be an elementary interval. The associated elementary cell is

I =

{
(l, l + 1) if I = [l, l + 1],
[l] if I = [l].

Let σ = I1×I2×· · ·×Id ⊂ Rd be an elementary cube, the associated elementary
cell is

σ = I1 × I1 × · · · × Id

The dimension of an elementary cell σ is defined as dimσ, i.e., the dimension
of the associated elementary cube. The border for an elementary cell σ can also
be defined as the set ∂ σ = {δ : δ ∈ ∂ σ}.

Definition 5. A cubical complex is a set of elementary cells such that, given an
elementary cell σ in the complex, all of its principal faces (the cells in ∂ σ) are in
the complex.

For the sake of simplicity, hereafter we will say cells instead of elementary cells,
bearing in mind that we refer to such kind of objects.

For example, Figure 1 (left) shows the cubical complex

K = {ABCD,AC,CD,BD,AB,BE,A,B,C,D,E}
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This cubical complex has 1 cell of dimension 2 (ABCD), 5 cells of dimension 1
(AC,CD,BD,AB,BE) and 5 cells of dimension 0 (A,B,C,D,E).

When a cell is not a proper face of any cell in a given cell complex, it will be
called isolated cell. A cell that is a proper face of exactly one cell in the complex is
called free face. The following proposition links the concepts of free faces, proper
faces and dimension. The proof can be found in [22].

Proposition 1. Let δ be a free face in a cell complex and assume δ is a proper
face of σ. Then σ is an isolated cell and dim δ = dimσ − 1.

As we are interested in obtaining a simpler representation for a cell complex
whilst the topology is preserved. In the following definition, a way to reduce the
number of cells in a cell complex is presented. This process reduces the number of
cells by two and it does not change the topology of the cell complex.

For example, let us consider the cell complex of Figure 1 (left). The cells ABCD
and BE are isolated. The cells AC, CD, BD AB and E rare free faces, but A,
B, C and D are not free faces, since they are proper faces of more than 1 cell
complex.

Definition 6. Let K be a cubical complex and δ a free cell in K. Let σ be the only
cell in K such that δ is a proper face of σ. Let K ′ = K \ {δ, σ}. K ′ is obtained
from K via a process called elementary collapse of σ by δ.

Let us consider again the cell complex K of Figure 1 (left). The cell E is a
free face of BE and, hence, we can consider the elementary collapse of BE by E.
The effect of such elementary collapse is the removal of E and BE from the cell
complex K. Analogously, AC is a free face of ABCD. The elementary collapse of
ABCD by AC is the removal of both cells (ABCD and AC) from K. Figure 1
(right) shows the final cubical complex obtained after both collapses.

Definition 7. Let K be a cubical complex. A pair of cells 〈δ, σ〉 is said to be a
simple pair if following conditions hold:

• δ is a free cell in K.
• σ is the only cell such that δ ∈ ∂ σ.

The cell σ is called the facet of the simple pair.

As shown in related literature [22, 37], simple pairs removal does not change
the topology of the given cell complex.

3 Cell Complex Thinning

Skeletonization is usually considered as a pre-process in pattern recognition al-
gorithms, but its study is also interesting by itself for the analysis of line-based
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Fig. 1. Elementary collapse example: E collapses onto BE and AC collapses onto ABDC
in the image at the left, producing the image at the right.

images as texts, line drawings, human fingerprints or cartography. Skeletoniza-
tion is a common transformation in Image Analysis. The concept of skeleton was
introduced by Blum in [3], under the name of medial axis transform.

Let K be a cubical2 cell complex and let ∂ be its border operator. As seen in
the previous section, if only simple pairs of cells are removed, the topology is kept.
For geometry preservation it is necessary to require some additional properties to
those cells to be removed.

The basic idea of the algorithm is to define an iterative process where outer
cells are removed. Here, the idea of outer cells makes reference to simple pairs,
since in a simple pair 〈δ, σ〉 the cell δ is a “terminal” cell as it does not lie in the
border of any other one rather than σ.

In the process of iterative thinning, given a cell σ, we will denote the later
iteration when σ is the facet of a simple pair by R(σ). The earlier iteration when
σ becomes isolated will be denoted by I(σ). Liu et al. describe in [25] the relation
between I(σ) and R(σ), and the maximum isotropic elongation in p + 1 and p

2 In the original work by Liu, [24], the thinning algorithm is designed for cell complexes
of any kind, however we restrict to cubical complexes.
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directions, respectively, since dimσ = p. Thus, if σ is a p-cell in a cell complex,
I(σ) measures the shortest discrete distance from σ to the object boundary. This
gives an idea of the size of the maximum disk centered at σ and inscribed in the
object. On the other hand, R(σ) measures the longest distance from σ to the object
boundary going along the skeleton (p− 1)-cells.

From the observation of the behaviour of previous measures, Liu defined two
difference measures. The absolute one, R(σ)− I(σ), is called absolute medial per-
sistence and is denoted by MPabs. On the other hand, relative medial persistence

is defined as 1− I(σ)
R(σ) and denoted by MPrel. Both of them measure the duration

in which a cell remains isolated during thinning process.
The cell complex thinning algorithm is shown in algorithm 1. It starts by

initializing the isolated cells. Next, the thinning iterations start. In each iteration,
all simple pairs are selected, all the pairs where the facet cell has one of the medial
persistence measures less than given thresholds are chosen. Finally, the cells in
selected simple pairs are removed from the cell complex. Otherwise, the cells are
removed and the thinning iterations stop, else, the iteration counter increases
and the thinning iterations continue. When the algorithm halts, a cell complex
representing the skeleton for the initial one is obtained.

Algorithm 1 Cell complex thinning algorithm

Require: K cell complex, εa, εr > 0
for all σ ∈ K isolated do
I(σ)← 0

end for
iter← 1
repeat

Let S = {〈δ, σ〉 : 〈δ, σ〉 is a simple pair}
for all σ ∈ π2(S) do
R(σ)← iter

end for
Let S′ = {〈δ, σ〉 ∈ S : MPabs(σ) < εa ∧MPrel(σ) < εr}
K = K \ {σ, δ : 〈δ, σ〉 ∈ S′}
for all σ ∈ K new isolated cell do
I(σ)← iter

end for
iter← iter + 1

until S′ = ∅
Here π2(〈δ, σ〉) = σ is the second projection for the pair 〈δ, σ〉.

4 Formal Framework

The chosen P system model for a Membrane Computing implementation of the
algorithm is the tissue-like P systems model endowed with some extra ingredients.
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As it is well-known, the biological inspirations of this model are intercellular
communication and cooperation between neurons [26, 27]. The communication
among cells is based on symport/antiport rules3. Tissue-like P systems have been
widely used to solve computational problems in other areas (see e.g. [15, 16]),
but recently, they have been also used in the study of digital images (e.g., [4, 8,
10, 17, 28, 29]). In this paper, we use a variant of tissue-like P systems where the
application of the rules are regulated by promoters and inhibitors. These promoters
have a clear biological inspiration. The rule is applied if the reactants are present,
but it is also necessary the presence of all the promoters and none of the inhibitors
in the corresponding cell. The promoters are not consumed nor produced by the
application of the rule, but if they are not in the cell, the rule cannot be applied. In
one step, each reactant in a membrane can only be used for one rule, but if several
rules need the presence of the same promoter, then the presence of one unique copy
of the promoter suffices for the application of the rules. In the general case, if there
are several possibilities, the rule is non-deterministically chosen, but sometimes we
will consider a priority relation between rules, so we need the concept of priority
in our P systems. Next, we recall the formal definition of these P systems.

Definition 8. A tissue-like P system with promoters, inhibitors and priorities of
degree q ≥ 1 is a tuple of the form

Π = (Γ,Σ, E , w1, . . . , wq,R, P ri, iin, iout)

where q is the number of cells (or membranes) of the P system and

1. Γ is a finite alphabet, whose symbols will be called objects. These objects can
be placed in the cells or in the surrounding space (called the environment).

2. Σ ⊆ Γ is the input alphabet. The input of the computation performed by the
P system is encoded by using this alphabet.

3. E ⊆ Γ is a finite alphabet representing the set of the objects in the environment.
Following a biological inspiration, the objects in the environment are available
in an arbitrary large amount of copies;

4. w1, . . . , wq are strings over Γ representing the multisets of objects placed inside
the cells at the starting of the computation;

5. R is a finite set of rules of the following form:

(pro¬inh | i, u/v, j), for 0 ≤ i 6= j ≤ q, pro, inh, u, v ∈ Γ ∗

6. Pri is a finite set of relations Ri > Rj, where Ri and Rj are rules from R. It
means that if Ri and Rj can be applied, then the application of Ri has priority
on the application of Rj.

7. iin ∈ {1, 2, . . . , q} denotes the input cell, i.e., the cell where the input of the
computation will be placed.

8. iout ∈ {1, 2, . . . , q} denotes the output cell, i.e., the cell where the output of the
computation will be placed.

3 Introduced in Membrane Computing in [30].
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Informally, a tissue-like P system with promoters, inhibitors and priorities of
degree q ≥ 1 can be seen as a set of q cells labeled by 1, 2, . . . , q. The cells are the
nodes of a virtual graph, where the edges connecting the cells are determined by
the communication rules of the P system, i.e., as usual in tissue-like P systems,
the edges linking cells are not provided explicitly: If a rule (pro¬inh | i, u/v, j)
is given, then cells i and j are considered linked. The application of a rule
(pro¬inh | i, u/v, j) consists of trading the multiset u (initially in the cell i) against
the multiset v (initially in j). After the application of the rule, the multiset u dis-
appears from the cell i and it appears in the cell j. Analogously, the multiset v
disappears from the cell j and it appears in the cell i. The trade can also be be-
tween one cell and the environment, labeled by 0. The rule is applied if in the cell
with label i the objects of pro are present in the cell i (promoters), while any of
the objects in inh do not appear in the cell (inhibitors). The promoters or the
inhibitors are not modified by the application of the rule. If the promoters and
inhibitors are empty, we will write (i, u/v, j) instead of (∅¬∅| i, u/v, j). Finally, we
write (pro |i, u/v, j) or (¬inh |i, u/v, j) when only promoters or inhibitors appear,
respectively.

As usual, we also consider that some objects not belonging to E can arrive
to the environment during a computation. So, in a configuration (not initial) we
could find two types of objects in the environment: Firstly, those which belong
to the environment and appear in an arbitrary large number of copies. Secondly,
those which not belong to the environment but are been sent to the environment
by the application of a rule.

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). A configuration is
an instantaneous description of the P system and it is represented as a tuple
(w0, w1, . . . , wq), where ‘W0 is the multiset of objects from Γ − E placed in the
environment (initially, w0 = ∅). Given a configuration, we can perform a com-
putation step and obtain a new configuration by applying the rules in a parallel
manner as it is shown above. A configuration is halting when no rules can be ap-
plied to it. A computation is a sequence of computation steps such that either it
is infinite or it is finite and the last step yields a halting configuration (i.e., no
rules can be applied to it). Then, a computation halts when the P system reaches
a halting configuration. The output of a computation is collected from its halting
configuration by reading the objects contained in the output cell.

4.1 Image Algebra

Next, we recall some basic definitions from Image Algebra used in thi paper4.
For a point set X ⊂ Z2, a neighborhood function is a function N : X → 2Z

2

.
For each point x ∈ X, N(x) ⊂ Z2. The set N(x) is called a neighborhood for
x. There are two neighborhood function on subsets of Z2 which are of particular
importance in image processing, the von Neumann neighborhood and the Moore

4 A detailed introduction can be found in [32].
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neighborhood. The first one, N : X → 2Z
2

, is defined by N(x) = {y : y =
(x1 ± j, x2) or y = (x1, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2.

While the Moore neighborhood M : X → 2Z
2

is defined by M(x) = {y : y =
(x1 ± j, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2. The von Neumann
and Moore neighborhood are also called the four neighborhood (4-adjacency) and
eight neighborhood (8-adjacency), respectively.

Fig. 2. Neighbors of a voxel in a cube

In Z3 two voxels are said to be 26-adjacent if they are distinct and each co-
ordinate of one differs from the corresponding coordinate of the other by at most
1. Two voxels are 18-adjacent if they are 26-adjacent and differ in at most two of
their coordinates; and two voxels are 6-adjacent if they are 26-adjacent and differ
in at most one coordinate. That is to say each voxel has three kinds of neighbors:
6-neighbors which are also called face neighbors, 18-neighbors which are face and
edge neighbors and 26-neighbors which are face, edge, and vertex neighbors, as
they are shown in Figure 2. For n = 4; 8; 6; 18 or 26 an n-neighbor of a voxel p is
a point that is n-adjacent to p.

The point sets with the usual operations has an algebra structure (see [32]).
A Z-valued image on X is any element of ZX . Given a Z-valued image I :

X → Z, we will refer to Z as the set of possible range values of I, and to X as
the spatial domain of I. The graph of an image is also referred to as the data
structure representation of the image. Given the data structure representation
I = {(x, I(x)) : x ∈ X}, then an element (x, I(x)) is called a picture element or
resel5. The first coordinate x of a resel is called the resel location or image point,
and the second coordinate I(x) is called the resel value of I at location x.

For example,X could be a subset of Z2 where x = (i, j) denotes spatial location,
and Z could be a subset of N, N3, etc. We call to the image set of the function I
with domain X the set of colors or alphabet of colors and the image point of each
resel is called associated color.

5 The elements of a two-dimensional image are usually called pixels; the elements of
a three dimensional image are usually called voxels, and the elements of a four-
dimensional image are usually called doxels (resel in general).
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5 Description of the Algorithm

In previous sections two kinds of objects has been reviewed. On one side, cell com-
plexes achieves an useful link between continuous spaces and discrete structures
where combinatorial algorithms may be developed using well-established proper-
ties and results by continuous topology. On the other hand, it has been settled
a theoretical framework for working with images, considering them as a function
from a topological discrete space to a set of “colors”.

Our main goal is, starting from a k-dimensional binary image, build another
image which represents a skeleton for the original one. In this process we will get a
cell complex from the original image, skeletonize it and build back an image from
the last skeleton. In this process no topological or shape information will be lost.

The set of points for our source images will be the set [0, n)k = {0, 1, . . . , n −
1}k ⊂ Zk equipped with a cubic neighbourhood function, described as follows: Two
resels i = (i1, . . . , ip, . . . , ik) and j = (j1, . . . , jp, . . . , jk) are to be said 2k-adjacent
if il = jl for l 6= p and |ip − jp| = 1. More formally, the neighbourhood function is
given by

N(i1, . . . , ik) =

{
(j1, . . . , jk) ∈ [0, n)k : jl =

{
il if l 6= p
il ± 1 if l = p

; 1 ≤ p ≤ k
}

This neighborhood function, when restricted to k = 2, gives the 4-adjacency, and
8-adjacency when k = 3.

Let I : [0, n)k → {0, 1} be a k-D binary image of size nk, where the set of points
in the object (or black points) is I−1(1). Let K = K(I) be the cubic cell complex
built from I. In K, the 0-cells represent points in the object, the 1-cells represent
pairs of 2k-adjacent points, the 2-cells represent unit squares where its edges are
pairs of 2k-adjacent points, and so on. In general, each p-cell is a p-dimensional
unit hypercube whose edges are pairs of 2k-adjacent points.

The cubical complex K built from an image I can be encoded using tuples in
[0, 2n− 1)k. The 0-cell (i1, . . . , ip) is encoded using the tuple (2i1, . . . , 2ip). Higher
dimension cells are encoded using tuples in [0, 2n−1)k with many odd coordinates
as the dimension of the cell. The way a p-cell is encoded using only one tuple is
based in the idea of barycenter. Exactly, let σ be a p-cell with vertices given by
i1, . . . , i2p, and let us suppose that the vertices are sorted by lexicographic order.
The set {vj = ij − i1 : 2 ≤ j ≤ 2p} can be thought as a set of vectors in Rk.
From this set, we can extract a basis formed by vectors from the canonical one.
Let {u1, . . . ,up} be that basis. In such situation, the cell σ is encoded by the tuple

2i1 +

p∑
j=1

up

As the vectors uj have all the coordinates 0, except one of them with value 1,
and all of them are linearly independent, the dimension of cell σ is the number of
odd coordinates in its encoded tuple, as we have said before.
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The operator ∂ : [0, 2n− 1)k → 2[0,2n−1)
k

given by

∂(i1, . . . , ik) =

=

{
(j1, . . . , jk) ∈ [0, 2n− 1)k : jl =

{
il ± 1 if il ≡ 1(mod 2) ∧ l = p
il in other case

; 1 ≤ p ≤ k
}

gives all the possible cells in the border of the one represented by (i1, . . . , ik).
When we would like to find the border cells for one in a complex K, we may use
the restricted border operator given by

∂|K i = ∂ i ∩K

In the definition of the rules for the family of tissue-like P systems which solves
the proposed skeletonization problem, the use of the inverse border operator will
be useful. It is defined as follows.

∂−1(i1, . . . , ik) =

=

{
(j1, . . . , jk) ∈ [0, 2n)k : jl =

{
il ± 1 if il ≡ 0(mod 2) ∧ l = p
il in other case

; 1 ≤ p ≤ k
}

There is no difficult in observing that, for any j ∈ ∂i is i ∈ ∂−1j. So the use of
the name “inverse border operator” is plenty justified.

The tissue-like P systems presented in this paper have six membranes. The
first membrane is used as input and for marking the isolated cells before starting
the thinning iterations. The second membrane is used to mark simple pairs. The
third membrane selects the cells to be removed. The fourth membrane marks new
isolated cells and update the counter I. The fifth membrane updates counter R
and the sixth one is used as output membrane. Next, the P system is formally
described.

Let I be a k-D binary image of size nk, let K be the cubical cell built from I,
let εabs ∈ {1, 2, . . . , n} and εrel ∈ {τ1, . . . , τm} ⊂ (0, 1) ∩ Q, where τj < τj+1 for
1 ≤ j < m. For every tuple 〈n, εabs, εrel〉 we will define a tissue-like P system with
promoters, inhibitors, priorities and input, denoted by Π(n, εabs, εrel) and defined
as follows:

Π(n, εabs, εrel) = (Γ,Σ, E , w1, . . . , w6,R, P ri, iin, io)

where:

• Γ = {i : i ∈ [0, 2n− 1)k} ∪ {(I, i) : i ∈ [0, 2n− 1)k}∪
{(R, i, d) : i ∈ [0, 2n−1)k, 1 ≤ d ≤ n}∪{(I, i, D) : i ∈ [0, 2n−1)k, 0 ≤ D ≤ n}∪
{Si : i ∈ [0, 2n− 1)k}∪ {Ui : i ∈ [0, 2n− 1)k} ∪ {R}

• Σ = {i ∈ [0, 2n− 1)k : i ∈ K}
• w1 = {(R, i, 1) : i ∈ K} ∪ {(I, i, 0) : i ∈ K}
• w2 = . . . = w6 = ∅
• E = Γ \Σ
• R is the set of rules:
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– R1 ≡
(
{i}¬∂−1i|1, λ/(I, i), 0

)
for i ∈ [0, 2n− 1)k

These rules mark isolated cells before starting thinning iterations.
– R2 ≡ (1, i (R, i, 1) (I, i, 0)/λ, 2)

for i ∈ [0, 2n− 1)k

– R3 ≡ (1, (I, i)/λ, 2)
for i ∈ [0, 2n− 1)k

These rules move objects to the second membrane for starting the thinning
iterations.

– R4 ≡
(
{i, j}¬

(
∂−1j \ {i} ∪ {Si, Sj}

)
|2, λ/Si Sj, 0

)
for i ∈ [0, 2n− 1)k and j ∈ ∂i.
These rules mark simple pairs.

– R5 ≡ (2, i (R, i, d) (I, i, D)/λ, 3)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R6 ≡ (2, (I, i)/λ, 3)
for i ∈ [0, 2n− 1)k.

– R7 ≡ (2, Si Sj/λ, 3)
for i, j ∈ [0, 2n− 1)k.
These rules move objects to the third membrane for marking cells to be
removed.

– R8 ≡ ({Si, Sj, (R, i, d), (I, i, D)}¬{Ri, Rj}|3, λ/RRiRj, 0)
for i ∈ [0, 2n− 1)k, j ∈ ∂i,
0 ≤ d,D ≤ n, d 6= 0,
d−D < εabs and 1− D

d < εrel
These rules will mark for removal only those simple pairs whose higher
dimension cell has not enough shape signification. Shape signification is
calculated using medial persistence measures from [24, 25] . A cell is sig-
nificant enough if both medial persistence measures are greater than some
thresholds, given by εabs and εrel for MPabs and MPrel, respectively.

– R9 ≡ ({Ri}|3, i (R, i, d) (I, i, D)/λ, 0)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R10 ≡ ({Ri}|3, (I, i)/λ, 0)
for i ∈ [0, 2n− 1)k.

– R11 ≡ ({Ri, Rj}|3, S Si Sj/λ, 0)
for i ∈ [0, 2n− 1)k and j ∈ ∂i
These rules remove those simple pairs which are not significant enough.

– R12 ≡ (¬{Ri}|3, i (R, i, d) (I, i, D)/λ, 4)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R13 ≡ (¬{Ri}|3, (I, i)/λ, 4)
for i ∈ [0, 2n− 1)k.

– R14 ≡ (¬{Ri, Rj}|3, Si Sj/λ, 4)
for i ∈ [0, 2n− 1)k and j ∈ ∂i
These rules send objects to the fourth membrane for marking new isolated
cells.
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– R15 ≡
(
{i, (R, i, d)}¬(∂−1i ∪ {(I, i)}|4, (I, i, D)/(I, i) (I, i, d), 0

)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.
These rules mark new isolated cells and update counter I.

– R16 ≡ (4, i (R, i, d) (I, i, D)/λ, 5)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R17 ≡ (4, (I, i)/λ, 5)
for i ∈ [0, 2n− 1)k.

– R18 ≡ (4, S Si Sj/λ, 5)
for i ∈ [0, 2n− 1)k and j ∈ ∂i
These rules send objects to the fifth membrane for updating counter R.

– R19 ≡ ({R}¬{Ui}|5, (R, i, d)/(R, i, d+ 1)Ui, 0)
for i ∈ [0, 2n− 1)k and 1 ≤ d ≤ n
These rules update counter R.

– R20 ≡ ({Ui}|5, i (R, i, d) (I, i, D)/λ, 2)
for i ∈ [0, 2n− 1)k and 0 ≤ d,D ≤ n.

– R21 ≡ ({Ui}|5, (I, i)/λ, 2)
for i ∈ [0, 2n− 1)k.
These rules move objects back to the second membrane for starting the
next thinning iteration.

– R22 ≡ ({Ui, Uj}|5, R Si Sj/λ, 0)
for i ∈ [0, 2n− 1)k and j ∈ ∂i.

– R23 ≡ (5, Ui/λ, 0)
for i ∈ [0, 2n− 1)k.
These rules remove unnecessary objects.

– R24 ≡ (¬{R}|5, i/λ, 6)
for i ∈ [0, 2n− 1)k.
These rules send the skeletonized cell complex to the output membrane,
when no cell has been removed in prior steps.

• Pri = {R1 > Rp : p = 2, 3} ∪ {R4 > Rp : 5 ≤ p ≤ 7}∪
{R15 > Rp : 16 ≤ p ≤ 18} ∪ {Rp > R23 : 19 ≤ p ≤ 22}∪
{R8 > Rp : 12 ≤ p ≤ 14}

• iin = 1 is the input cell.
• iout = 6 is the output cell.

6 Overview of the Computation

Let K ⊂ [0, 2n− 1)k be a cubical cell complex encoded as described above. Next,
we will describe the behaviour of the P systems in the family Π when the input is
set to K with thresholds set to εabs and εrel respectively. From now, Cc will denote
the c-th configuration for the P system.

In order to make this overview more understandable, the process will be illus-
trated by the thinning process of image shown in figure 3.
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Fig. 3. Example image to show the thinning process, on the left. On the right is the cell
complex representation for the image. Blue squares represent 2-cells, green lines represent
1-cells and red dots represent 0-cells.

In the initial state C0, the first membrane stores one object i for each cell in K.
The initial values for counters R and I, given by objects (R, i, 1) and (I, i, 0), are
also stored in the first membrane. In this situation, only rules R1, R2 or R3 can be
applied. For priority reasons, the rules R1 are the only one that can be selected.
After apply the selected rules from R1, in C1, the first membrane contains objects
i (for cells in K), counters R and I, and isolation marks (I, i) for each isolated
cell i.

In the configuration C1, only the rules R2 and R3 can be selected, moving the
cell objects i, along with the isolation marks (I, i) and counters (R, i, 1) and (I, i, 0),
to the second membrane. The application of these rules gives as result the next
configuration, C2. In this situation, only the rules establishing communications
with the second membrane can be selected. Hence, the P system must select rules
from {R4, R5, R6, R7}. However, for priority reasons, only the rules R4 can be
selected and applied, arising to the next configuration, where simple pairs 〈j, i〉
are marked by the presence of objects Sj and Si in the second membrane.

In the current configuration, C3, only rules R5, R6 and R7 can be selected.
The application of them gives as result the configuration C4, where objects have
been moved from the second to the third membrane. In the third membrane the
simple pairs are going to be examined in order to detect those to be marked for
removal, when they were not significant enough. In this situation, only rules R8

can be selected and their application arises to the next configuration, C5, where
those simple pairs 〈j, i〉 that can be removed are marked by Rj and Ri.

In the previous configuration, only rules Rp, for 9 ≤ p ≤ 14, can be selected.
The application of these rules makes the P system evolve to the configuration C6,



182 R. Reina-Molina et al.

where selected simple pairs have been removed, along with the auxiliary objects,
and the remaining objects have been moved from the third to the fourth membrane.

In the configuration C6, for priority reasons again, only the rules R15 can be
selected, and their application marks the new isolated cells and updates the counter
(I, i, D). Now, all available objects are updated in the fourth membrane, in the
configuration C7. Then, only rules R16, R17 and R18 can be applied, resulting in
the configuration C8 where all the objects in the fourth membrane are moved to
the fifth one.

If no simple pairs have been marked for removal in configuration C9, there is
no marker R in the fifth membrane. In this situation, the only rules that can be
applied are those in R24. The application of these rules leaves the P system in the
configuration C10 which also is a halting configuration.

Let us Ssppose there have been some simple pairs marked for removal in con-
figuration C8, which ensures the presence of marker R in the P system. Then, the
application of rules in R19 updates the counter R, leaving the P system in the
configuration C9. In this situation, only rules in R20, R21 and R22 can be applied.
The former move objects to the second membrane, where the thinning iterations
restart, the latter removes auxiliary objects from the fifth membrane. In this situ-
ation, the P system is in the configuration C10. The result for the example image
is shown in Figure 4 (Right).

Fig. 4. (Left) Cell complex representation for cells in membrane 2 after the first thinning
iteration. (Right) The thinned cell complex.

In previous situation, only the rules in R4 and R23 can be applied. The former
marks simple pairs in the second membrane, while the latter remove auxiliary re-
maining objects in the fifth membrane, leaving the P system in the configuration
C11. From this point, the P system will evolve as above until it reaches the con-
figuration C16 whether the halting condition may be reached in next configuration
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C17, or not, depending on the presence of marker R. In the first case, the P system
will start a new thinning iteration. In the second situation, the P system sends
out the skeleton to the output membrane.

In any case, the P system will reach the halting configuration in 7t + 3 steps,
where t stands for the thinning iterations performed. If we start from a k-D binary
image of size nk where all the resels are black, and we do not pay attention to the
shape significance, we perform a full thinning in a number of thinning iterations
which, in addition, is the maximum. We have found that, in situation above, the
greater number of thinning iterations is given by k(n + 1). Hence, we can ensure
that the P system halts in, at most, 7k(n+ 1) + 3 computation steps.

In Figure 4 (Right), the resulting image, representing the cell complex in the
sixth membrane when the halting condition is reached, is shown.

The required computational resources for the family of tissue-like P systems
defined in this paper is given in the table 1.

k-D binary image thinning problem

Complexity

Number of steps of computation ≤ 7k(n+ 1) + 3

Resources needed

Size of the alphabet O(nk+1)
Initial number of cells 6
Initial number of objects 3|K|
Number of rules O(nk+2)
Upper bound for the length of the rules 3

Table 1. Complexity aspects, where the size of the input data is O(nk), |K| is the
number of cells in the input cell complex K.

7 Conclusions and Future Work

In this paper, we bring together Membrane Computing and Cell Complexes. Both
disciplines deal with compartments of the Euclidean space on their foundations,
but their inspiration and motivation are quite different. The former is a computa-
tion model inspired in the functioning of living cells and tissues and the latter is
born as a tool for handle concepts of Algebraic Topology.

In this paper, we use Membrane Computing techniques to implement a cell
complex based algorithm for thinning images and show a new proof that the Mem-
brane Computing framework is flexible enough to adapt to unexpected situations.
In this way, this is a pioneer work that open a new research line that can be
followed at different levels.

Firstly, we can study if other P system models (cell-like P systems, SN P
systems, a most restrictive model of tissue-like P systems, . . . ) are better than
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the one used in this paper to implement the Liu’s algorithm in the Membrane
Computing framework. Better should be considered here in a broad sense, since it
can mean with a lower amount of resources, with less ingredients in the P system
model o more efficient in some sense.

Another line to follow is to study if other problems in Algebraic Topology al-
ready studied with Cells Complexes can be considered in the framework of Mem-
brane Computing. This research line can open a flow of inquiries and solutions in
both directions enriching both disciplines with new points of view.

Finally, a more general question is the study of links on the foundations of
Membrane Computing and Cell Complexes. As pointed out above, both disciplines
shares a compartmental view of the Euclidean space and this can be a starting
point for a deeper study of their common properties.
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