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Summary. This paper presents an integrated approach for model simulation, property
extraction and formal verification of P systems, illustrated on a tissue P system with
active membranes solving the 3-colouring problem. The paper focuses on this problem
and reports the invariants and the properties extracted and verified using a series of tools
(Daikon, MeCoSim, Maple, Spin, ProB) and languages (P–Lingua, Promela, Event-B).
Appropriate tools and integration plugins, which facilitate and even automate the steps
involved in the aforementioned approach, have also been developed. The case study chosen
is complex (it involves an exponential growth of the number of states through the use of
membrane division rules) and the properties obtained are non-trivial.

1 Introduction

Inspired by the behaviour and structure of the living cell, P systems have emerged
in recent years as powerful computational tools [21]. Many variants of P systems
have been introduced and a number of theoretical aspects have been intensely
studied: the computational power of different variants, their capabilities to solve
hard problems, like NP-complete ones, decidability, complexity aspects and hier-
archies of classes of languages produced by these devices [23]. In the last years
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there have also been significant developments in using the P systems paradigm to
model, simulate and formally verify various systems [5, 23].

Up to now, two main areas concerning P system formal verification have been
investigated: property verification through model checking and property extrac-
tion. However, there is no approach which integrates these two aspects (or other
related aspects such as simulation). Initial research on P system model check-
ing has tackled the problem of identifying decidable (or undecidable) problems
[7, 8]. Verifying properties for P systems implies defining and implementing an
operational semantics of the P system and using a corresponding model-checker.
Among the tools used we mention: Maude [2], the probabilistic model-checker
Prism [24, 4], the symbolic model verifier NuSMV [17], the Spin [19, 18] and ProB
model checkers [16].

Property extraction using Daikon, a dynamic invariant detector, and further
verification of the P systems was tackled in [4, 15]. In [4] a simple example involv-
ing a regulatory network is presented, along with the properties (preconditions,
postconditions, invariants) inferred by Daikon. The relationships discovered re-
gard the boundaries of the number of objects (e.g., 0 ≤ prot ≤ 205) and relations
between objects, such as rna < orig(rep) or (rna = 0) → (prot = 0). They have
been checked using the Prism probabilistic model checker. In [15] simple cell like
P systems have been used and invariants like 2∗ c−d = 0, (b = 0)→ (orig(b) = 0)
have been obtained and further verified using NuSMV.

In this paper, we propose an integrated methodology for modelling, simulation,
analysis, property extraction (invariant detection) and verification through model
checking for P systems. The approach integrates a modelling and simulation envi-
ronment (P–Lingua and MeCoSim) with model checkers, property extraction tools
(Daikon) and tools for mathematical and symbolic calculus (Maple). Appropriate
integration tools (plugins) have also been developed (see Fig. 1).

Starting from a problem, this process involves: the modelling of the problem by
means of P systems, the model transcription into a language like P–Lingua [14],
understandable by a machine; the definition of a visual interface, to enter the
needed inputs and show the desired outputs from the computation; the simula-
tion of the model under different initial parameters; the data extraction from the
simulation; the invariants detection from the extracted data, and the analysis and
verification of the detected properties. A detailed description of the methodology
has been provided in section 4, applying the process until the invariants detection
for the 3–Col problem in subsection 4.4. The approach is illustrated on a case
study involving the tissue P system model for the well-known 3-colouring (3-Col)
problem [10, 12].

The paper is structured as follows. We start by presenting in Section 2 the
notation and main concepts to be used in the paper. Section 3 presents a set of
initial properties for the 3-colouring problem, which have been verified using Spin
and ProB model checker. In the next two sections are presented a methodology
for properties extraction (invariants detection), its integration with the MeCoSim
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platform [20] and the empirical detection and validation of additional properties.
Finally, conclusions are drawn in Section 6.
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Fig. 1. Methodology Overview

2 Background

Before presenting our approach, let us establish the notations used and define the
class of P systems addressed in the paper.

Given a finite alphabet V = {a1, ..., ap}, a multiset is either denoted by a
string u ∈ V ∗ (in which the order is not important, the string notation is only
used as a convention), or by an associated vector of non-negative integers, ΨV (u) =
(|u|a1

, ..., |u|ap
), where |u|ai

denotes the number of ai occurrences in u, for each
1 ≤ i ≤ p.

The following definition refers to a model of tissue P systems with cell division,
introduced in [22]. This model can be seen as a network of cells, whose structure
is not static: it is inspired by the way cells are duplicated in a natural way via
mitosis.

Definition 1. Formally, a tissue P system with cell division of degree q ≥ 1 is a
tuple of the form

Π = (Γ,w1, . . . , wq, ε, R, i0),

where:

1. q ≥ 1 is the initial degree of the system; the system contains q cells, labelled
with 1, 2, . . . ,m; 0 represents the environment.
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2. Γ is a finite alphabet (called working alphabet), whose symbols will be called
objects.

3. w1, . . . , wq are strings over Γ , describing the multisets of objects placed in the
q cells of the system.

4. ε ⊆ Γ is the set of objects present in the environment in arbitrarily many
copies each.

5. R is a finite set of developmental rules of the following form:
a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗.

When applying a rule (i, u/v, j), the objects of the multiset represented by
u are sent from region i to region j and simultaneously the objects of the
multiset v are sent from region j to region i.

b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ . The
cell with label i is divided in two cells with the same label; in the first copy
the object a is replaced by b, in the second copy the object a is replaced by
c; all other objects are replicated and copies of them are placed in the two
new cells.

6. i0 ∈ {0, 1, 2, . . . , q} denotes the output region (which can be the region inside
a membrane or the environment).

Rules are applied as usual in a maximally parallel way, with only one restriction:
when a cell is divided, the division rule is the only one which is applied for that
cell in that step; the objects inside that cell do not evolve in that step.

This class of P systems can be further extended, for solving NP-complete prob-
lems, to recognizer P systems. A recognizer tissue P system with cell division is
a tuple (Γ,Σ,w1, . . . , wq, ε, R, iin, i0), which has, in addition to a tissue P system
with cell division:

• Two distinguished objects yes, no ∈ Γ , present in at least one copy in
w1, w2, . . . , wq, but not present in ε.

• An input alphabet Σ strictly contained in Γ .
• An input cell iin ∈ {1, . . . , q}.
Also, it must satisfy the followings:

• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

3 Verifying a first set of properties for the 3-colouring
problem

In this section we will introduce a simplified version of a tissue P system solving the
3-colouring problem, we will present some of its properties and their verification
using the Spin and ProB model checkers.
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3.1 A P system for the 3-colouring problem

In order to illustrate our approach regarding property extraction and verification
for P systems, we have considered a simplified version of the 3-colouring problem
from [9, 11].

The k-colouring problem is formulated as follows: given an undirected graph
G = (V,E), decide whether or not G is k-colourable; that is, if there exists a valid
k-colouring of G (for every edge {u, v} ∈ E the colours of u and v are different).

The 3-colouring problem can be solved in linear time by a family of recognizer
tissue P systems with cell division [9]. The solution proposed in [9] is using a brute
force algorithm, in the framework of recognizer tissue P systems with cell division,
which consists of 4 stages:

1. Generation Stage: an initial cell, labelled by 2, is divided into two new cells;
this process is repeated until all possible candidate solutions to the problem
are generated (one solution for each membrane).

2. Prechecking Stage: after obtaining all possible 3-colourings (in cells labelled
by 2), additional objects are generated in the cells, for every edge of the graph.

3. Checking Stage: it is verified if there exists a pair of adjacent vertices in the
graph, with the same colour in the corresponding candidate solution.

4. Output Stage: the system sends to the environment the right answer according
to the results of the previous stage (yes or no).

As we will focus in the rest of the paper only on the properties from the
Generation Stage, we will omit from the recognizer P system model given in [9]
some rules and objects, which would hinder the understanding of the mechanism.
More precisely, we will consider only the division rules and a restricted set of
objects, so we can define the model using the basic class of tissue P systems with
cell division. However, for a complete specification in terms of a family of recognizer
tissue P systems, [9] can be consulted.

Let Π(n) = (Γ (n), w1, w2(n), ε, R(n), i0) be a family of tissue P systems with
cell division of degree 2, where:

1. Γ (n) = {Ai, Ri, Ti, Bi, Gi : 1 ≤ i ≤ n}
2. w1 = ∅, w2(n) = {A1, . . . , An}
3. R(n) is a set of division rules:
• r1,i ≡ [Ai]2 → [Ri]2[Ti]2 for i = 1, . . . , n
• r2,i ≡ [Ti]2 → [Bi]2[Gi]2 for i = 1, . . . , n

In this model Ai encodes the i-th vertex of the graph; Ri, Bi, Gi represent the
three colours red, blue, green. Appendix A presents two examples of computation
for Π(2) and Π(3). It can be observed that, after appropriate divisions, in the
step 2n we get exactly 3n cells encoding all the possible 3-colourings of the graph
having vertices A1, . . . , An. Appendix B presents the number of cells labelled 2 at
each computation step for 2 ≤ n ≤ 11, simulation results which help us formulate
some interesting properties.
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Given the family of P systems Π(n) previously defined, an initial set of prop-
erties have been identified manually (without using property extraction tools):

P1 For each computation C of the P system Π(n), there are 3n cells labelled with
2 at configuration C2n.

P2 For each computation C of the P system Π(n), the configuration Cn+1 has
exactly 2n+1 − 1 cells labelled 2.

P3 For each computation C of the P system Π(n), for each 0 ≤ j ≤ n the config-
uration Cj has exactly 2j cells labelled 2.

P4 For each combination (X1, X2, . . . , Xn), Xi ∈ {Ri, Gi, Bi}, i = 1 . . . n, there
exists, at configuration C2n, one and only one cell labelled by 2 that contains
the multiset {X1, X2, . . . , Xn}.

3.2 3-Col property verification using model checking

This initial set of properties is now verified using two model checkers, Spin and
ProB.

Spin is a model checker widely used in industries that build critical systems
and is considered one of the most powerful model checkers available [3]. It is de-
signed for modelling and verifying concurrent and distributed systems specified
in Promela (Process or Protocol Meta Language), a verification modelling lan-
guage. The properties to be verified can be expressed in LTL or by using assertion
statements.

ProB is an animation and model checking tool integrated within the Rodin plat-
form, which accepts Event-B models [1]. Unlike most model checking tools, ProB
works on higher-level formalisms and so it enables a more convenient modelling.
Besides verification of properties (expressed using the LTL or the CTL formalism),
it also provides animation facilities, allowing to visualize, at any moment, the state
space or to execute a given number of operations.

Property verification using Spin

As explained in [18], the executable specification for the Spin model checker
associated to a P system will contain extra states and variables, corresponding
to intermediate steps, which have no correspondence in the P system configura-
tions. For this reason, the properties to be verified, that refer to the P system,
need to be reformulated as equivalent LTL formulas for the associated Promela
implementation.

The P system properties verified in this section are of the form ‘G (φ → ψ)’,
and the equivalent LTL formula for the Promela model is ‘[](!φ ||ψ|| !pInS)’, as
formally proven in [19] (pInS is used to express if the current configuration in the
Promela model represents also a state in the P system).

In our experiments, we have used one Promela specification file for each par-
ticular P system Π(n), for all n ∈ {2, . . . , 9} because these files were (semi-)
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automatically generated from each corresponding instance of P–Lingua definition
file using the plinguacore library. We have successfully simulated all these models
with Spin, for n ∈ {2, . . . , 9}; typical state explosion problems appeared when we
attempted to verify the properties mentioned earlier for n ≥ 4.

For n ∈ {2, 3} we have verified all the formulas presented bellow, using also
some techniques that Spin provides to reduce the memory use. Starting with n = 4,
we obtained out of memory for properties that involved checking many steps of
the computations.

The properties verified, expressed as LTL formulas for the Spin model checker,
for n = 3, are:

P1 :[] ((!(noOfSteps == 6) || (noOfCells == 27) || (!pInS))
P2 :[] ((!(noOfSteps == 4) || (noOfCells == 15) || (!pInS))
P3 :[] ((!(noOfSteps >= 0 && noOfSteps <= 3)) || (noOfCells ==

pow2noOfSteps) || (!pInS)), where pow2noOfSteps is a variable which com-
putes 2noOfSteps

P4 :This property is hard to verify with Spin because of the complex operations
involved.

Property verification using ProB

The Event-B model of a P system with active membranes can be specified
using two functions cell and cellp, representing the number of objects of each type
contained in every cell and the number of objects produced between two steps
of maximal parallelism, respectively. The rules are represented by events. Each
division rule adds a cell to the domain of these functions. Additionally, a special
event called update, enabled after each step of maximal parallelism, is used to add
each value of cellp to cell and to reset all the values of cellp to 0. More details can
be found in [6].

First, we developed an Event-B model, using the Rodin platform, for each par-
ticular P system Π(n), with n ∈ {2, 3, 4}. Then, the possibility to use quantifiers
in ProB allowed us to develop a general Event-B model for the family of P systems
Π(n), that has been instantiated for particular values of n. We animated the mod-
els in order to see how the system evolves and we verified their properties using
the model checker ProB. Unlike the Promela specification, where the number of
cells with label 2 was incremented after each division rule, we could specify the
properties P1-P4 neglecting the extra intermediary) states; this is because these
properties refer only to the number of steps of maximal parallelism in the evolu-
tion of Π(n) (counted by a variable called noOfSteps) and to the number of cells
with label two (counted by a variable called noOfCells), whose values are modified
only in the update event. On the other hand, we used an additional state, Halt, to
mark final configurations. However, we were able to verify all the properties only
for n ∈ {2, 3, 4}; for n = 5, due to the state explosion problem, the model checker
crashed with an out of memory error before reaching the final configuration (after
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producing 196 cells labelled 2). Consequently, for n > 5, we could verify only some
simple properties, that do not involve terminal configuration (e.g. P3 for small
values of j).

The properties were specified using LTL as follows:

P1 :G{state = Halt⇒ noOfSteps = 2 ∗ n&noOfCells = 3n}
P2 :G{noOfSteps = n+ 1⇒ noOfCells = 2n+1 − 1}
P3 :G{!j.j >= 0 &j <= n& noOfSteps = j ⇒ noOfCells = 2j}
P4 :We were able to verify P4 splitting it in two properties, the first one for the

existence and the second one for the unicity. For n = 2 these properties were
formulated as follows:

– For all x, y symbols in {Ri, Gi, Bi}, i ∈ {1, 2}, there exist one cell in the
final configuration that contains one x and one y:
G{state = Halt⇒ (!x, y.x : {R1, R2, G1, G2, B1, B2}& y : {R1, R2, G1, G2,
B1, B2}& (x/ = y)⇒ (#c.c : dom(cell) & cell(c)(x) = 1 & cell(c)(y) = 1))}

– In the final configuration any two different cells c1, c2 have different con-
tents:
G{state = Halt ⇒ (!c1, c2.c1 : dom(cell) & c2 : dom(cell) & (c1/ = c2) ⇒
(#s.s : {R1, R2, G1, G2, B1, B2}& cell(c1)(s)/ = cell(c2)(s)))}
For higher values of n the formulas for these properties are very large and
for space considerations, we will omit them.

Here “!”, “#” and “:” correspond to the universal quantifier “∀”, existential
quantifier “∃” and membership operator “∈”, respectively.

4 Integrating Daikon in MeCoSim and finding new relations

The next stage in the proposed methodology is the automatic extraction of new
properties from simulation traces. The main tools used (MeCoSim and Daikon)
and their integration are presented next. The process of identifying new properties,
broken down in a number of individual steps, is also described.

4.1 Modelling and formalization

Once the 3-Col problem has been studied and modelled by means of P systems, this
model must be expressed in a language that may be understood by a simulation
machine. For this purpose, the standard P–Lingua [14] language has been chosen
as our modelling language. The initial multisets and rules are expressed as follows:

@ms(2) += A{i} : 1<=i<=n;

/* r1 */ [A{i}]’2 --> [R{i}]’2 [T{i}]’2 : 1<=i<=n;

/* r2 */ [T{i}]’2 --> [B{i}]’2 [G{i}]’2 : 1<=i<=n;
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The full code of the model in P–Lingua is showed in Appendix C. This file
will serve as an input for MeCoSim, so that the P system can be simulated, ana-
lyzed and debugged, and invariants can be detected, to be then verified by model
checking.

4.2 MeCoSim

In order to provide an integrated methodology for model simulation, properties
extraction and verification, we need an integrated environment to simplify the
user’s process.

In this sense, a general purpose membrane computing simulator, MeCoSim
[20], was provided. It was initially designed to enable the user defined customized
interfaces, with inputs, outputs, charts, etc., adapted to each family of P systems.
This permits entering data for different initial conditions, instantiating different P
systems of the family.

The initial aim of this software environment has been extended such that it can
cover a more general set of applications by providing flexible and powerful methods
to integrate various software applications and packages as MeCoSim plugins. These
kind of plugins can be easily added to MeCoSim by setting appropriate parameters
in a configuration file. Keeping in mind this architecture and the developed plugins,
MeCoSim may provide a platform for the integration of different tools for the
modelling, simulation, analysis, property extraction and verification of P systems.
Some of this tools have already been developed and/or integrated, others are being
developed, and many other could be added in a similar way.

To take advantage of this framework for studying the 3-Col problem, we need
to define our customized inputs, outputs, extractions, etc. The main steps of this
process are illustrated in the next paragraphs.

MeCoSim permits setting the hierarchy of tabs to be shown in the visual user
interface, including input and output tables inside each leaf tab. In our case, we
divide the information in two tabs, Input and Output (plus an additional tab,
Debug console, provided by default in MeCoSim, used for debugging the models).
For our example, we only need one input parameter, n, so one input table is defined
inside the tab Input, as showed in Fig. 2.

Now the simulation could be performed, in such a way that n takes the value
from the input table, this parameter complements the P–Lingua file to instantiate
the initial configuration of the P system and the computation steps run until
a halting condition is reached. In the debug console, we can run step by step,
looking at all the objects of the multisets inside each cell and compartment, for
each computation step.

However, this process could be very slow if we are interested in several objects,
membranes or steps, so we need a way to define customized outputs showing
the desired information only. MeCoSim provides this mechanism, and we define
outputs as shown in Fig. 3 to study different issues: entire configurations, objects
per membrane, objects by type (R, G, B), number of cells, etc.
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Fig. 2. MeCoSim window - Input tab: value of n

Tabs

Tables

Result
s

Extrac
tions

Fig. 3. MeCoSim window - Output tab: number of cells by step

Eventually, as we see in Fig. 3, we set the information to be extracted for
Daikon. This makes up the output files from the simulation, to be used as an
input for the MeCoSim Daikon plugin.

4.3 MeCoSim new plugin for Daikon integration

MeCoSim provides an easy way to add plugins, enriching the default functionality.
Taking advantage of this architecture, a new plugin has been developed to integrate
Daikon with MeCoSim.

Daikon [13] is a tool which dynamically detects programs invariants, based on
their execution traces. It can discover properties from C, C++, Eiffel, Java, or
Perl programs, from spreadsheet files and other data sources. The usual operation
of Daikon is the following: it receives data trace files about the values of some
variables across a sequence of steps from the execution of a program, and tries
to detect properties of types: precondition, postcondition and invariant. We are
mainly interested in the last one, but the previous ones could be also useful for
checking the correctness of the models.
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As part of the proposed methodology, we aim to integrate this tool with
MeCoSim, so invariants could be detected from the desired outputs of the simu-
lation. For this purpose, a plugin has been developed; an overview of the entire
(simulation and property extraction) process involves the following steps:

1. The model of the P system (written in P–Lingua, possibly parametrized) is
loaded in MeCoSim.

2. The initial parameters (n in the case of the 3–Col problem) for instantiating
the specific P system are provided by the user in a visual way through the
input tables.

3. The simulation runs, generating extraction files for the outputs previously set.
4. The plugin can be called from a menu option (Plugins > “Daikon”).

When the plugin is launched from MeCoSim, a window with a listing of avail-
able extraction files is visualized, as showed in figure 4.

Fig. 4. MeCoSim window - Daikon plugin - File selection

Once one of the extraction files is selected, the Daikon plugin runs from this
input file. It automatically reads the simulation extraction file, generates the traces
in the appropriate format and launches Daikon from this traces file, trying to
detect as many invariants as possible. They are eventually visualized, as showed
in figure 5.

Further technical details concerning the Daikon plugin and its integration into
MeCoSim is provided in Appendix D.

4.4 Methodology

In the previous sections, different tools and languages for modelling, simulation,
verification and invariant detection have been explained. In order to integrate the
different tools in a systematic way, a novel methodology has been devised, as
outlined in Fig. 1.

In the first stage, we need to model the problem, writing the model in P–
Lingua, Promela and other languages, in order to serve as the default input for
Spin and other possible model checkers.
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Fig. 5. Daikon plugin - Invariants detection

Once we have modelled the problem, written in P–Lingua, set the customized
MeCoSim-based application including Daikon and entered the P–Lingua file in
MeCoSim, the property extraction cycle can start.

For each iteration, some interesting goals should be addressed, for example
to obtain relations between P system objects or invariants regarding the number
of cells at each computation step. Then the needed outputs have to be set in
MeCoSim, according to the stated objective. Based on the model and the target
data entered in the input tables, simulations can be performed, obtaining the
required results, which can be displayed and exported into the extraction files.
The Daikon plugin can be executed further, in order to detect invariants from the
extraction files, which contain traces from the P system simulations. Eventually,
the new invariants detected by Daikon should be tested with the model checkers,
to be verified.

In the following paragraphs this methodology is illustrated with some iterations
for the 3–Col problem.

Iteration 1: property extraction using the entire model

The goal in this iteration is to analyze the values of all the objects across the
simulation. A first output is set in MeCoSim (see Fig. 6), along with an extrac-
tion file for Daikon. No interesting properties (invariants) were found, so other
alternative studies were considered.



An Integrated Approach for Model Simulation of P Systems 303

Fig. 6. Iteration 1. Output: entire simulation

Iteration 2: property extraction using the simplified model

The goal in this iteration is to simplify the model and to filter the information
sent to Daikon, for example by grouping the objects by type, or restricting the
kind of objects analysed to R, G or B (and not considering the others, such as A
and T). Again, the output is set in MeCoSim (see Fig. 7), along with an extraction
for Daikon, and no interesting properties were found.

Fig. 7. Iteration 2. Output: objects by type (R, G, B)

Another goal of this iteration is to obtain information (general formulas) re-
garding total number of cells in the P system for each computation step. To accom-
plish this, the respective output (see Fig. 8) and extraction are set. The simulation
runs for n = 2, generating the extraction file, and Daikon Plugin is executed, but no
relevant properties are obtained. The process is repeated for input n = 3, 4, 5, . . . ,
but again no interesting properties are found.

Fig. 8. Iteration 2. Output: Cells by step

Instead of continuing with simulations for other values of n, it emerges the
idea of collecting the results for different values of n in the same file, only for the
last computation step, in order to get a general property, met for all the cases. The
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result is showed in figure 9. As it can be seen, an interesting invariant is detected:
in the last configuration, having n as the input, numcells = 3n (Daikon indicates
the equivalent recursive relation, numcells− 3 ∗ orig(numcells) == 0).

Fig. 9. Iteration 2. Invariants detection: Cells in last configuration

Iteration 3: dividing the computation path and extracting properties from the
sub-paths, according to the model features

Another idea for extracting relevant information regarding the P system is to
analyse only the configurations from a certain computation sub-path. In the case
of the 3-Col problem, we anticipate that for the first half of the computation, the
number of cells at each step is a power of 2.

The first goal in this iteration is to count the number of cells for each step
until half the computation. The simulation runs, for example, for n = 7, generating
the extraction file, and Daikon Plugin is executed, getting the results showed in
Fig. 10. A new important invariant has been detected: for each step until half the
computation (that is, until step = n), numcells = 2step (Daikon indicates the
equivalent recursive relation, numcells− 2 ∗ orig(numcells) == 0).

The second goal in this iteration is to count the number of cells for each step
in the second half of the computation. The output and extraction are set, the
simulation runs again for n = 7, generating the extraction file. Daikon Plugin is
executed, detecting the invariant: for each step from half the computation to the
end , numcells = 3(mod 4). However, this invariant was verified with the model
checkers, resulting that this is not true for all the values of n, so it was not validated
and cannot be considered a general property.
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Fig. 10. Iteration 3. Invariants detection: Cells each last step, first half of the computa-
tion

As it has been seen, the methodology includes some important parts that have
been integrated, automating the process of modelling, simulating, analyzing, de-
bugging and detecting invariants from the MeCoSim application, making use of the
simulation engine of pLinguaCore and the invariants detector Daikon. However,
some parts of the process are being used independently, and have not been inte-
grated with MeCoSim until the moment. The methodology covers all the process,
and we plan to add the needed plugins to let it be as automated as possible.

4.5 Results - Summary of discovered properties

The idea of using simulation traces to infer properties of the P system model, as
detected by Daikon, is useful in order to check the correct behaviour of the system
and in the same time to find out new relationships between model variables. We
can classify the results proposed by Daikon into:

• Obvious invariants: these confirm that the model is behaving as it should. For
example, some results obtained for n = 10 are:
– B >= 0, B <= 196830: the number of objects will never be negative, even

more the sum of Bi objects over all membranes is at maximum 196830.
The last relation is correct, moreover we estimate that the total number
of occurrences of objects of type Ri, Gi, Bi at the end of computation is
n×3n−1 and 196830 = 10 ·39. This property has been verified with Spin for
n ∈ {2, 3} and with ProB for n ∈ {2, 3, 4}. For higher values of n, as stated
in section 3.2 this property could not be verified because it involves check-
ing many steps of the computations which yields to the “out of memory”
problem.

– (step == 0) ==> (B == 0) is obvious because the initial multiset is
w2 = A1 . . . An.
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– B <= R is a direct consequence of the fact that rules [Ai]2 → [Ri]2[Ti]2
are applied first, so Ri objects are produced, and later are applied rules of
type [Ti]2 → [Bi]2[Gi]2

– B >= orig(B) is obvious because Bi objects are never consumed by any
rules.

• Anomalous invariants: these indicate a fault in the model and its parameter
values. In this case, we did not obtained any of these, but if the P–Lingua
model would have been incorrect (not solving the proposed problem), we could
have encountered anomalous values.

• Interesting invariants: could even suggest novel relationships between the
model variables. However, these properties should be further confirmed by a
model checker verification.

A summary of the extracted properties is presented in Table 1, where by non-
interesting properties we refer to obvious invariants, such the ones presented previ-
ously. Also, the truth value given in the third column refers to the result returned
by the model checkers, after verifying the corresponding properties.

Extraction Result Truth

Entire model (all simulation data) Non-interesting properties

Objects grouped by type Non-interesting properties

Objects grouped by type, filtered by R, G
or B

Non-interesting properties

No. of cells for each n separately Non-interesting properties

No. of cells in the last configuration, for
different values of n together

numcells = 3n true

No. of cells for each step 0 . . . n numcells = 2step true

No. of cells for each step (n+ 1) . . . 2n numcells = 3(mod 4) false

No. of cells for each step (n + 1) . . . (n +
(n/2) + 1)

numcells = 3(mod 12) false

Table 1. Summary of detected invariants

5 Discovering other properties with Maple

5.1 Model simplification for simulation

As we have discussed in Section 3.2, verification through model checking is possible
for n up to 5. Beyond this point, due to the state explosion problem, both model
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checkers (Spin and ProB) will crash with an out of memory error, at least for some
of the verified properties. This led us to build and use a simplified model of the
investigated P system, based on the observation that the evolution of the number
of cells and the actual contents of each cell are two separable issues, because only
the symbols A and T appear in the left hand side of the rules. Thus, the number of
objects R,G,B was ignored; first, a simplified Event-B model was produced, but
with only limited performance gains, i.e. verification of properties for n up to 6;
secondly, a Python implementation was developed, which enabled the verification
of properties for n up to 19. Based on the backtracking technique, the simulation
Algorithm 1 follows the evolution of a cell placed in the top of a stack, across the
configurations of Π(n) for as long as it contains non-terminals. Each cell is stored
as a tuple containing the multiplicity of A’s and T ’s and the step number. If the
current cell still contains terminals, a new cell is added on to the stack, otherwise
it is removed. We also used an array to count the number of cells produced at each
step. The algorithm ends when the stack is empty. The verification Algorithm
2 checks if the values from the array calculated in the first algorithm are the
same with the values returned by a function implemented for each property. Both
algorithms are given in Appendix E.

5.2 Obtaining the polynomial coefficients with Maple

As we have seen in Section 4.4, using Daikon we have managed to find a number of
(simpler) invariants but have failed to find other potentially interesting properties,
such as the number of cells from configurations n + 2 up to configuration 2 ∗ n.
This is due to the quite complex nature of the formulae for these numbers: Using
the number of cells with label 2 given in Appendix B, we deduced that the number
of cells in configuration n + k, k ∈ {2, 3, 4, 5, . . .}, is a sum between 2n+k and a
polynomial Qkof degree k − 1. In order to determine the exact expression of this
polynomial we used Maple.

Maple is a powerful software that can be used to solve various mathematical
problems with numerical and symbolic calculus. It also incorporates a program-
ming language that allows working with formulas containing symbols and formal
operations. Maple provides users over 5000 predefined functions and commands,
with suggestive names, dedicated to various branches of mathematics.

In order to obtained Qk we used the idea that a polynomial of degree k − 1
can be obtained solving a recurrence of order k and some Maple functions and
commands:

• rgf findrecur(k, seq, f, n): function contained in the package genfunc that
finds the linear recurrence with constant coefficients of order k that is satisfied
by the sequence with 2k terms seq ; f is the name of the general term and n is
the index variable of the recurrence;

• rsolve({rec}, f(n)): command returning an expression for the general term of
the function f(n) by solving the recurrence rec;
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• expand(expr): command used to distribute products over sums in the given
expression.

For k = 4, using rgf findrecur(4, [(81 − 28), (227 − 29), (585 − 210), (1403 −
211), (3185− 212), (6947− 213), (14729− 214), (30619− 215)], f, t) we obtained the
recurrence: f(t) = 4 ∗ f(t− 1)− 6 ∗ f(t− 2) + 4 ∗ f(t− 3)− f(t− 4). Solving this
recurrence with the command rsolve({f(t) = 4∗f(t−1)−6∗f(t−2)+4∗f(t−3)−
f(t − 4), f(4) = −175, f(5) = −285, f(6) = −439, f(7) = −645}, f(n)) we obtain

the general term: −19+12(n+1)

(
1

2
n+ 1

)
−14n−8(n+1)

(
1

2
n+ 1

)(
1

3
n+ 1

)
,

and expanding it: −15 − 32

3
n − 2n2 − 4

3
n3. Adding 2n+4 to this general term we

obtain the number of cells with label 2 in the configuration n+ 4. The recurrences
from Table 2 have been obtained similarly.

Configuration Recurrence

n+ 2 f(t) = 2 · f(t− 1)− f(t− 2)

n+ 3 f(t) = 3 · f(t− 1)− 3 · f(t− 2) + f(t− 3)

n+ 4 f(t) = 4 · f(t− 1)− 6 · f(t− 2) + 4 · f(t− 3)− f(t− 4)

n+ 5 f(t) = 5 · f(t− 1)− 10 · f(t− 2) + 10 · f(t− 3)− 5 · f(t− 4) + f(t− 5)

n+ 6 f(t) = 6 · f(t− 1)− 15 · f(t− 2) + 20 · f(t− 3)
−15 · f(t− 4) + 6 · f(t− 5)− f(t− 6)

Table 2. Recurrence for the number of cells with label 2 in configuration n+ k

We notice that all these recurrences have, for each configuration n + k, the

following form: f(t) =
k∑

i=1

(−1)i+1 · Ci
k · f(t − i). Unfortunately, the current limi-

tations of our tools (n < 20) does not allow us to continue the calculus with the
next steps and so we cannot establish unequivocally if the recurrences have the
same form for larger values of k.

Solving these recurrences (using rsolve), expanding the expressions (with ex-
pand) and adding 2n+k, we obtain the number of cells with label 2 in the config-
uration n+ k, for k ∈ {2, 3, 4, 5, 6}, as presented in Table 3.

All these formulas were verified using Algorithm 2 from Appendix E for n < 20.
As we can see from Table 3 the coefficient of the polynomial that follows 2n+k are
rational but we could not establish any further rule for them except the fact that,
in each case, the free term is −2k + 1.
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Configuration Number of cells

n+ 2 2n+2 − 2n− 3

n+ 3 2n+3 − 2n2 − 4n− 7

n+ 4 2n+4 − 4

3
· n3 − 2 · n2 − 32

3
· n− 15

n+ 5 2n+5 − 2

3
· n4 − 28

3
· n2 − 20 · n− 31

n+ 6 2n+6 − 4

15
· n5 +

2

3
· n4 − 20

3
· n3 − 32

3
· n2 − 676

15
· n− 63

Table 3. Number of cells with label 2 in configuration n+ k

6 Conclusion

In this paper, we have outlined an integrated methodology for P system formal ver-
ification, comprising modelling using P–Lingua, simulation with MeCoSim, prop-
erly extraction using Daikon and model checking using tools such as Spin and
ProB. A plugin which allows Daikon to be called and used within MeCoSim has
been developed and a (semi)-automatic Promela implementation has been gener-
ated from the P–Lingua model. A number of steps involved in property extraction
using Daikon have been identified and the whole process has been illustrated with
an example, a tissue P system model of the 3-colouring problem; this is a complex
problem since, by using active membranes (cell division), the number of cells grows
exponentially. As some of the sought properties have proved to be quite complex
and could not be directly extracted using Daikon, a tool for mathematical and
symbolic calculus (Maple) has been used to supplement our methodology.

Further work involves the development of completely integrated environment
for automatic modelling, simulation and verification of P systems as well as ap-
plying the proposed methodology to other, more complex, P systems.
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Appendices

A Computation examples for Π(n), n ∈ {2, 3}

Crt. No. of cells Current configuration
step labelled 2 (only cells labelled with 2)

0 1
(

[A1A2]2
)

1 2
(

[R1A2]2 [T1A2]2
)

2 4
(

[R1R2]2 [R1T2]2 [B1A2]2 [G1A2]2
)

3 7

(
[R1R2]2 [R1B2]2 [R1G2]2 [B1R2]2 [B1T2]2
[G1R2]2 [G1T2]2

)
4 9

(
[R1R2]2 [R1B2]2 [R1G2]2 [B1R2]2 [B1B2]2
[B1G2]2 [G1R2]2 [G1B2]2 [G1G2]2

)
Table 4. Computation example for Π(2)

Crt. No. of cells Current configuration
step labelled 2 (only cells labelled with 2)

0 1
(

[A1A2A3]2
)

1 2
(

[R1A2A3]2 [T1A2A3]2
)

2 4
(

[R1R2A3]2 [R1T2A3]2 [B1A2A3]2 [G1A2A3]2
)

3 8

(
[R1R2R3]2 [R1R2T3]2 [R1B2A3]2 [R1G2A3]2
[B1R2A3]2 [B1T2A3]2 [G1R2A3]2 [G1T2A3]2

)

4 15

 [R1R2R3]2 [R1R2B3]2 [R1R2G3]2 [R1B2R3]2 [R1B2T3]2
[R1G2R3]2 [R1G2T3]2 [B1R2R3]2 [B1R2T3]2 [B1B2A3]2
[B1G2A3]2 [G1R2R3]2 [G1R2T3]2 [G1B2A3]2 [G1G2A3]2



5 23


[R1R2R3]2 [R1R2B3]2 [R1R2G3]2 [R1B2R3]2 [R1B2B3]2
[R1B2G3]2 [R1G2R3]2 [R1G2B3]2 [R1G2G3]2 [B1R2R3]2
[B1R2B3]2 [B1R2G3]2 [B1B2R3]2 [B1B2T3]2 [B1G2R3]2
[B1G2T3]2 [G1R2R3]2 [G1R2B3]2 [G1R2G3]2 [G1B2R3]2
[G1B2T3]2 [G1G2R3]2 [G1G2T3]2



6 27


[R1R2R3]2 [R1R2B3]2 [R1R2G3]2 [R1B2R3]2 [R1B2B3]2
[R1B2G3]2 [R1G2R3]2 [R1G2B3]2 [R1G2G3]2 [B1R2R3]2
[B1R2B3]2 [B1R2G3]2 [B1B2R3]2 [B1B2B3]2 [B1B2G3]2
[B1G2R3]2 [B1G2B3]2 [B1G2G3]2 [G1R2R3]2 [G1R2B3]2
[G1R2G3]2 [G1B2R3]2 [G1B2B3]2 [G1B2G3]2 [G1G2R3]2
[G1G2B3]2 [G1G2G3]2


Table 5. Computation example for Π(3)
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B Number of cells labelled with 2

n Number of cells labelled 2 at each configuration (from 0 to 17)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 1 2 4 7 9
3 1 2 4 8 15 23 27
4 1 2 4 8 16 31 53 73 81
5 1 2 4 8 16 32 63 115 179 227 243
6 1 2 4 8 16 32 64 127 241 409 585 697 729
7 1 2 4 8 16 32 64 128 255 495 891 1403 1867 2123 2187
8 1 2 4 8 16 32 64 128 256 511 1005 1881 3185 4673 5857 6433 6561
9 1 2 4 8 16 32 64 128 256 512 1023 2027 3891 6947 11043 15203 18147 19427
10 1 2 4 8 16 32 64 128 256 512 1024 2047 4073 7945 14729 24937 37289 48553
11 1 2 4 8 16 32 64 128 256 512 1024 2048 4095 8167 16091 30619 54395 87163
12 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8191 16357 32425 62801 115633
13 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16383 32739 65139 127651
14 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32767 65505 130617
15 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65535 131039
16 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131071
17 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
18 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
19 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

Table 6. Number of cells labelled 2 at each configuration. Steps 0 to 17.

n Number of cells labelled 2 at each configuration (from 18 to 25)

18 19 20 21 22 23 24 25

2 - 8
9 19683
10 55721 58537 59049
11 123131 152827 169979 176123 177147
12 195953 297457 399089 475633 516081 529393 531441
13 241235 427219 689363 994003 1273811 1467347 1561555 1590227
14 257929 496537 909689 1543801 2372729 3261817 4014969 4496249
15 261627 519163 1012395 1902763 3363179 5460331 8007275 10538603
16 262109 523705 1042417 2050721 3927553 7168705 12186689 18927937
17 262143 524251 1047923 2089827 4135555 8028995 15023811 26524099
18 262144 524287 1048537 2096425 4185673 8315209 16300105 31081801
19 262144 524288 1048575 2097111 4193499 8378523 16686555 32930523

Table 7. Number of cells labelled 2 at each configuration. Steps 18 to 25.
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n Number of cells labelled 2 at each configuration

26 27 28 29 30 31 32

2 - 12
13 1594323
14 4713337 4774777 4782969
15 12526187 13705835 14201451 14332523 14348907
16 26553153 33603393 38758209 41613121 42735425 43013953 43046721
17 43301315 64409027 86709699 105964995 119129539 125961667 128484803
18 56571721 96349513 151011657 215527753 279384393 331059529 364220745
19 63682011 118735323 209492955 343710683 517551067 710439899 889828315

Table 8. Number of cells labelled 2 at each configuration. Steps 26 to 32.

n Number of cells labelled 2 at each configuration

33 34 35 36 37 38

2 - 16
17 129074627 129140163
18 380408137 386044233 387289417 387420489
19 1026339803 1108849627 1146860507 1159377883 1161999323 1162261467

Table 9. Number of cells labelled 2 at each configuration. Steps 33 to 38.

C P–Lingua model file

The content of the file in P–Lingua format, containing the specification of the
model, is shown below.

@model<tissue_psystems>

def main()

{

/* tissue P system skeleton */

call example_tissue(n);

}

def example_tissue(n)

{

call init_cells();

call init_multisets(n);

call init_rules(n);

}

def init_cells()

{

@mu = [[]’2]’0;

}

def init_rules(n)

{
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/* r1 */ [A{i}]’2 --> [R{i}]’2 [T{i}]’2 : 1<=i<=n;

/* r2 */ [T{i}]’2 --> [B{i}]’2 [G{i}]’2 : 1<=i<=n;

}

def init_multisets(n)

{

@ms(2) += A{i} : 1<=i<=n;

}

D Daikon integration in MeCoSim - plugin and config files

This appendix presents some technical details about the developed plugin, and the
simple process of integration with MeCoSim.

The main code of the program is contained in DaikonInterface.jar program,
that receives an input file with a compatible format for Daikon invariants detector.
However, an additional jar file has been developed, DaikonPlugin.jar, to permit
selecting among the different extraction files generated by the simulator.

To implement the integration of the program, the only work we have to do is
the addition of a few lines in the file plugins-properties of MeCoSim, as follows:

plugin-daikon = daikonPlugin.Main

pluginname-daikon = Daikon

pluginmethod-daikon = pluginHook

pluginparam-daikon-1 = userfiles/daikon-files.txt

pluginjar-daikon-1 = DaikonInterface.jar

pluginjar-daikon-2 = DaikonPlugin.jar
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E Algorithms

Algorithm 1 Calculating the number of membranes

function TriColor(n)
numberCellsStep[0..2n]
for i=0 do 2n-1

numberCellsStep[i]← 0
end for
a← n
t← 0
step← 0
stack.Push(a, t, step)
numberCellsStep[step]← numberCellsStep[step] + 1
while not stack.IsEmpty() do

a, t, step← stack.Pop()
step← step+ 1
if t > 1 then

t← t− 1
stack.Push(a, t, step)
stack.Push(a, t, step)
numberCellsStep[step]← numberCellsStep[step] + 1

else if t = 1 then
if a > 0 then

t← t− 1
stack.Push(a, t, step)
stack.Push(a, t, step)
numberCellsStep[step]← numberCellsStep[step] + 1

else
numberCellsStep[step]← numberCellsStep[step] + 1

end if
else if a > 0 then

stack.Push(a− 1, t, step)
stack.Push(a− 1, t+ 1, step)
numberCellsStep[step]← numberCellsStep[step] + 1

end if
end while

for i=1 do 2n-1
numberCellsStep[i]← numberCellsStep[i− 1] + numberCellsStep[i]

end for
return numberCellsStep

end function
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Algorithm 2 Testing the invariants

function Fn2(n)
return 2 ∗ ∗(n+ 2)− 2 ∗ n− 3

end function
function Fn3(n)

return 2 ∗ ∗(n+ 3)− 2 ∗ n ∗ ∗2− 4 ∗ n− 7
end function
function Fn4(n)

m1← n ∗ ∗3 ∗ 4
r1← m1 mod 3
m1← m1/3
m2← 2 ∗ n ∗ ∗2
m3← 32 ∗ n
r3← m3 mod 3
m3← m3/3
r ← (r1 + r3)/3
return 2 ∗ ∗(n+ 4)−m1−m2−m3− r − 15

end function
function Fn5(n)

m1← n ∗ ∗4 ∗ 2
r1← m1 mod 3
m1← m1/3
m2← n ∗ ∗2 ∗ 28
r2← m2 mod 3
m2← m2/3
m3← 20 ∗ n
r ← (r1 + r2)/3
return 2 ∗ ∗(n+ 5)−m1−m2−m3− r − 31

end function
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function Fn6(n)
m1← n ∗ ∗5 ∗ 4
r1← m1 mod 15
m1← m1/15
m2← n ∗ ∗4 ∗ 2
m2← m2/3
m3← n ∗ ∗3 ∗ 20
r3← m3 mod 3
m3← m3/3
m4← n ∗ ∗2 ∗ 32
r4← m4 mod 3
m4← m4/3
m5← n ∗ 676
r5← m5 mod 15
m5← m5/15
r ← (r3 + r4)/3
rr ← (r1 + r5)/3
return 2 ∗ ∗(n+ 6)−m1 +m2−m3−m4−m5− r − rr − 63

end function
function Test(n)

a← TriColor(n)
nr ← len(a)− 1
results← []
if n+ 2 ≤ nr then

results.append((′n+ 2′, a[n+ 2] == Fn2(n), Fn2(n))
end if
if n+ 3 ≤ nr then

results.append((′n+ 3′, a[n+ 3] == Fn3(n), Fn3(n))
end if
if n+ 4 ≤ nr then

results.append((′n+ 4′, a[n+ 4] == Fn4(n), Fn4(n))
end if
if n+ 5 ≤ nr then

results.append((′n+ 5′, a[n+ 5] == Fn5(n), Fn5(n))
end if
if n+ 6 ≤ nr then

results.append((′n+ 6′, a[n+ 6] == Fn6(n), Fn6(n))
end if
return results

end function


