
On the Simulations of Evolution-Communication
P Systems with Energy without Antiport Rules
for GPUs

Richelle Ann B. Juayong1, Francis George C. Cabarle1, Henry N. Adorna1,
Miguel A. Mart́ınez–del–Amor2

1 Algorithms & Complexity Lab
Department of Computer Science
University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines
E-mail: rbjuayong@up.edu.ph, fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es

Summary. In this report, we present our initial proposal on simulating computations on
a restricted variant of Evolution-Communication P system with energy (ECPe system)
which will then be implemented in Graphics Processing Units (GPUs). This ECPe sys-
tems variant prohibits the use of antiport rules for communication. Several possible levels
of parallelizations for simulating ECPe systems computations on GPUs are emphasized.
Our work is based on a localized matrix representation for the mentioned variant given
in a previous literature. Our proposal employs a methodology for forward computing also
discussed in the said literature.

Key words: Membrane computing, Parallel computing, GPU computing

1 Introduction

Evolution-Communication P systems with energy (ECPe systems) [1] is a vari-
ant of P systems introduced in 2009 to initiate a framework for communication
complexity. It originates from Evolution-Communication P (ECP) systems [10], a
hybrid of two well-investigated variants, Transition P systems [9] and P systems
with Symport and Antiport rules [11]. The difference between ECPe and ECP
systems is the presence of a special object called ‘energy’ in the former, which can
be produced through evolution rules and consumed in communication rules. One

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51396841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

268 R.A.B. Juayong et al.

crucial restriction for ECPe systems includes the use of energy for each communi-
cation rule. Thus, no object can be communicated without using some ‘quanta’ of
energy. Moreover, upon being delivered to a receiving region, the energy used in
a communication does not pass through any membrane. In this manner, it is said
that the energy used in the process of communication is being ’lost’.

Several recent works have introduced the concept of representing certain P
system variants and their computations as matrices and vector-matrix operations,
respectively. In particular, variants known as Spiking Neural P (SNP) systems and
their matrix representations were introduced in [5] whereas matrix representations
for ECPe systems were given in [6]. Aside from creating a ‘convenient’ and rela-
tively compact way of describing the systems and their computations, the matrix
representations add additional ease to their simulation and implementation in par-
allel hardware. Vector and matrix operations are highly parallelizable and can be
efficiently implemented in parallel hardware, including Graphics Processing Units
(GPUs). GPUs are massively parallel hardware not like current generation CPUs.
Using their respective matrix representations, SNP systems have been successfully
implemented in GPUs in [2] and more recently in [3]. The intention of this cur-
rent work is to continue such trend i.e. to provide our methodology on how to
implement ECPe systems computations (using the vector-matrix representations)
on parallel hardware, in particular GPUs.

2 Evolution-Communication P Systems with Energy

2.1 Formal Definition of ECPe systems

Before we proceed, we note that the readers are assumed to be familiar with the
fundamentals of formal language theory and membrane computing [9].

A relatively new variant of Evolution-Communication P systems [10] has been
introduced in [1] to evaluate communication that is dependent on some energy
produced from evolution rules. A special object e is introduced to the system to
represent a quantum of energy. We use the definition for EC P system with energy
(ECPe system) from [1].

Definition 1. An EC P system with energy is a construct of the form

Π = (O, e, µ, w1, . . . , wm, R1, R
′
1, . . . , Rm, R

′
m, iout)

where:

(i) m pertains to the total number of membranes;
(ii) O is the alphabet of objects;

(iii) µ is the membrane structure which can be denoted by a set of paired square
brackets with labels. We say that membrane i is the parent membrane of a
membrane j, denoted parent(j), if the paired square brackets representing

On the Simulations of ECPe Systems with Energy for GPUs 269

membrane j is located inside the paired square brackets representing mem-
brane i, i.e. [i . . . [j]j]i. Reversely, we say that membrane j is a child mem-
brane of membrane i, denoted j ∈ children(i) where children(i) refers to the
set of membranes contained in membrane i. The relation of parent and child
membrane becomes more apparent when we represent the membrane struc-
ture as a tree. Since order does not matter in our model, there can be multiple
trees (isomorphic with respect to children of a node), each corresponding to
the same membrane structure representation.

(iv) w1, . . . , wm are strings over O∗ where wi denotes the multiset of object present
in the region bounded by membrane i.

(v) R1, . . . , Rm are sets of evolution rules, each associated with a region delimited
by a membrane in µ;
• An evolution rule is of the form a → v where a ∈ O, v ∈ (O ∪ {e})∗. In

the event that this type of rule is applied, the object a transforms into a
multiset of objects v in the next time step. Through evolution rules, object
e can be produced, but e should never be in the initial configuration and
object e is not allowed to evolve.

(vi) R′1, . . . , R
′
m are sets of communication rules, each associated with a membrane

in µ; A communication rule can either be a symport or an antiport rule:
• A symport rule can be of the form (aei, in) or (aei, out), where a ∈ O,

i ≥ 1. By using this rule, i copy of e objects are consumed to transport
object a inside (denoted by in) or outside (denoted by out) the membrane
where the rule is defined. To consume copies of object e means that upon
completion of the transportation of object a, the occurrences of e are lost,
they do not pass from a region to another one.

• An antiport rule is of the form (aei, out; bej , in) where a, b ∈ O and i, j ≥ 1.
By using this rule, we know that there exists an object a in the region im-
mediately outside the membrane where the rule is declared, and an object
b inside the region bounded by the membrane. In the application of this
rule, object a and object b are swapped using i and j copies of object e in
the different regions, respectively. As in symport rules, the copies of object
e are lost after the application.

We say that a communication rule has a sending and receiving region. For
a rule r ∈ R′i associated with an in label, its receiving region is region i
and its sending region is the parent(i). On the other hand, the sending and
receiving regions are reversed for a rule r ∈ R′i associated with an out label.
For an antiport rule r ∈ R′i, region i and parent(i) are both sending and
receiving region. Also, note that no communication can be applied without
the utilization of object e.

(vii) iout ∈ {0, 1, . . . ,m} is the output membrane. If iout = 0, this means that the
environment shall be the placeholder of the output.

Rules are applied in a nondeterministic, maximally parallel manner. Nondeter-
minism, in this case, has the following meaning: when there are more than two
evolution rules that can be applied to an object, the system will randomly choose

270 R.A.B. Juayong et al.

the rule to be applied for each copy of the object. The system assumes a universal
clock for simultaneous processing of membranes; all applicable rules have to be
applied to all possible objects at the same time. The behavior of maximally par-
allel application of rule requires that all object that can evolve (or be transferred)
should evolve (or be transferred).

Note that there is a one-to-one mapping between region and membrane, how-
ever, strictly, region refers to the area delimited by a membrane. A configuration
at any time i, denoted by Ci, is the state of the system; it consists of the mem-
brane structure and the multiset of objects within each membrane. A transition
from Ci to Ci+1 through nondeterministic and maximally parallel manner of rule
application can be denoted as Ci ⇒ Ci+1. A series of transition is said to be a
computation and can be denoted as Ci ⇒∗ Cj where i < j. Computation suc-
ceeds when the system halts; this occurs when the system reaches a configuration
wherein none of the rules can be applied. This configuration is called a halting
configuration. If there is no halting configuration—that is, if the system does not
halt—computation fails, because the system did not produce any output. Output
can either be in the form of objects sent outside the skin, the outermost membrane,
or objects sent into an output membrane.

We let N(Π) be the set of numbers generated by a given ECPe system Π.

2.2 An Example

To show how ECPe system works, we shall give an example of an ECPe system
with two membranes adapted from [1]:

Π = ({a,#}, e, [1[2]2]1, a
2#, λ, {r11 : a→ aa, r12 : a→ ee}, ∅,

{r21 : #→ #}, {r′21 : (ae, in), r′22 : (#e, in)}, 2)

Fig. 1. Graphical representation of an ECPe system Π where N(Π) = {2(n+ 1)|n ≥ 0}
from [1].

On the Simulations of ECPe Systems with Energy for GPUs 271

A graphical illustration of Π is shown in Figure 1. Its output is N(Π) = {2(n +
1)|n ≥ 0}. The computation to generate this proceeds as follows:

Initially, we can use either rule r11 or r12 in order to consume the copies of
object a in membrane 1. At any time, we can use both r11 and r12 to evolve
copies of object a. For every copy of a, we produce either two copies of object e or
another two copies of object a, therefore, we are always assured that multiplicity
of object a in region 1 is even, as well as the multiplicity of object e. Note that
upon introduction of object e in the system, it should immediately be used (in the
next step) to transport copies of object a in region 2, otherwise, it will be used
to transport the trap symbol # in region 2 using rule r′22 leading the system to
a never ending computation due to rule r21. For a computation to halt, rule r′21
should be the last rule to be applied. Since copies of object e transporting copies of
object a in region 2 is always even, we are assured that the multiplicity of objects
(copies of object a) in region 2 is also even. The minimum value 2 is produced
when we use both rule r11 and r12 in configuration C1. In the next step, we use
two applications of rule r′21. This will cause the system to halt.

2.3 Representation and Methodology for Forward Computing

In this section, we relate how computations in ECPe systems without antiport rules
can be performed in a localized manner. As will be shown, when we do not allow
antiport rules, membranes can compute more independently. This representation
has been used in [4] to answer the problem of computing backward and forward.
We shall relate the methodology for the latter. By computing forward, the problem
is to find the next configurations that can be yielded in one computational step
given a current configuration.

Let h ∈ {0, 1, 2, . . . ,m} where region 0 refers to the region located outside
the skin, the outermost membrane. The following notations and definitions are
adopted from [4] and used in the remaining parts of this section.

• Let IO(r, h) be the set of objects in region h involved in a rule r.
• Let TO(r, h) be the set of objects in region h that trigger a rule r.
• The set of rules IR(h) = Rh ∪ R′h ∪ (

⋃
h′∈children(h)R

′
h′) represents the set of

rules that directly influences the content of region h at any time of a computa-
tion. An object α in region h at any time i ≥ 0 may either be produced by an
evolution rule, transported from neighboring region to region h (or vice versa),
or simply carried over. In the first scenario, it is by definition that the rule that
produced object α must be in Rh. A neighboring region may either be a region
delimited by parent(h) or regions delimited by membranes in children(h). In
the first case, the rules for communication are in R′h while in the second case,
the rules for communication must be in one of R′h′ where h′ ∈ children(h).

• The set PO(h) = {α|α appeared in wh} ∪ (
⋃
r∈IR(h) IO(r, h)) represents the

set of objects (including special object e) that may possibly occur in region h
at any time of a computation. Originally, the objects that surely exist in the
region are the elements present in wh. In order to create a copy of an object

272 R.A.B. Juayong et al.

α, object α must either be produced or transported in region h through rules
in IR(h).

• The set TR(h) = {r|TO(r, h) 6= ∅} corresponds to the set of rules that con-
tribute to the decrease of objects in region h. In order to activate rules belonging
to such set, there must be a trigger object that may either be consumed or be
used for transportation

In order to represent configuration and rule application in terms of vectors,
and represent effect of a rule in each region using a matrix, the concept of total
order must be utilized. We note that for all the vector (and matrix) representation
constructed in the remaining parts of this section, there is a need to define a total
order 〈p1, p2, ...〉 (so that pi is considered the ith element in a defined set) over
the elements involved in the column for vectors (rows and columns for matrices).
As can be observed, this is used so that elements are uniquely identified by their
positions in the order to where they belong to and to assure that the position of
elements are correct during the vector-matrix operation.

Definition 2. Configuration Vector for each Region h
A configuration vector Ci,h is a vector whose length is |PO(h)|. The vector Ci,h(α)

refers to the multiplicity of object α in region h at configuration Ci.

Definition 3. Application Vector for each Region h
An application vector ai,h is a vector whose length is |R(h)|. The vector ai,h(r)

refers to the number of application of rule r specifically in region h during the
transition Ci−1 ⇒ Ci.

Definition 4. Transition Matrix for each Region h
A transition matrix MΠECPe,h is a matrix whose dimension is |R(h)| × |PO(h)|.

The matrix MΠECPe,h(r, α) returns the number of consumed or produced object α
in region h upon single application of rule r. The consumed objects have negative
values while the produced objects are positive. If object α in region h is not used in
rule r, then its value is zero.

Given application vector ai,h representing a maximal set of rule applications
applied in a configuration Ci−1 to achieve configuration Ci, the paper [4] showed
that a transition Ci−1 → Ci can be represented by performing

Ci,h = Ci−1,h + ai,h.MΠ,h (1)

for each region h provided that if h and h′ are the sender and receiver re-
gions corresponding to a communication rule r′ ∈ IR(h)∩ IR(h′), then ai,h(r′) =
ai,h′(r′).

Illustrating Localized Computation

To illustrate localized computation, we represent a possible transition C0 ⇒ C1

by showing the effect of applying rule r11 and rule r12 once on the initial config-
uration of the example presented in Section 2.2. Since PO(0) = IR(0) = ∅, the
participation of the environment is not needed in any part of the computation.

On the Simulations of ECPe Systems with Energy for GPUs 273

For Region 1

At the onset, we can impose a total order 〈a,#, e〉 over PO(1) and total order
〈r11, r12, r′21, r′22〉 over IR(1). The initial configuration will be represented by the
configuration vector C0,1 where

C0,1 =
(

2 1 0
)

and the representation for single application of both rules r11 and r12 will be given
by application vector a1,1 where

a1,1 =
(

1 1 0 0
)

Applying Equation (1) with the transition matrix MΠECPe,1 containing the values
shown below:

MΠECPe,1 =

1 0 0
−1 0 2
−1 0 −1
0 −1 −1

will yield the configuration vector C1,1

C1,1 =
(

2 1 2
)

which means that in the next configuration, there will be two copies of both object
a and the special object e and a single copy of the trap symbol # in region 1.

For Region 2

For region 2, we impose total order 〈a,#〉 over PO(2) and total order 〈r21, r′21, r′22〉
over IR(2). Since initially, no objects are present in region 2 and the rules involved
in the transition C0 ⇒ C1 are not in IR(2), the configuration vector C0,2 and the
application vector a1,2 will all contain zero values. We now show the transition
matrix MΠECPe,2

MΠECPe,2 =

 0 0
1 0
0 1

Since application vector a1,2 is a zero vector, the configuration vector C1,2 remains
also a zero vector.

Notice that all the declared communication rules influence the multiplicity of
objects in both region 1 and region 2. However, region 1 contains negative values
because it acts as a sending region while region 2 have non-negative values since
it acts as a receiving region. Also, matrix MΠECPe,2 shows that the special object
e can never reach region 2.

Forward Computing in ECPe systems without Antiport Rules

Shown below is a methodology for forward computing shown in [4].

274 R.A.B. Juayong et al.

1. Categorize all possible objects in PO(h) for all region h.

First, all α ∈ PO(h) are categorized for a certain region h. These categories are:

• Category 1: Evolution Trigger
Object α is an evolution trigger if there exists r ∈ Rh such that TO(r, h) = {α}.

• Category 2: Communication Trigger Only
Object α belongs in this category if there does not exist r ∈ Rh such that
TO(r, h) = {α} but there exists r′ ∈ IR(h) such that α ∈ TO(r′, h).

• Category 3: Not a Trigger
Object α is neither in Category 1 nor in Category 2.

2. Construct identity rules for objects in Category 2 and 3 for all region h.

For each α ∈ PO(h) that falls under one of Category 2 and Category 3, an identity
rule α → α is added. All these rules shall be contained in a set labelled Radd,h.
Also, a list of α′ ∈ PO(h) − {e} that fall under Category 2 is maintained, the
list shall be labelled Listcat2 and sorted Listcat2 in increasing order of energy
requirement for transport.

3. Construct Trigger Matrix TMΠECPe,h for all region h

The defined rules represented in the rows of TMΠECPe,h are the rules that con-
tribute to the decrease of multiplicity of objects in region h. These rules are rep-
resented in the set TR(h). The additional rules from Radd,h are represented in
the rows as well. The set of objects represented in the columns of TMΠECPe,h

is PO(h). Therefore, TMΠECPe,h has dimensions |TR(h) ∪ Radd,h| × |PO(h)|.
TMΠECPe,h(r, α) returns the multiplicity of α in region h needed to activate a
single application of rule r.

4. Set the dimension of the vector of unknowns (also called extended application
vector) a′

i,h for all region h

The length of a′
i,h is |TR(h) ∪Radd,h|.

5. Solve system of linear equation

Find all solutions to the equation

a′
i,h.TMΠECPe,h = Ci−1,h (2)

Since elements of vector a′
i,h pertain to number of application of rules, these ele-

ments must be natural numbers. The value a′
i,h(r) can be interpreted as either the

number of application of each rule r ∈ TR(h) or how many object α is unevolved
or unmoved (if (r : α → α) ∈ Radd,h). Note that TR(h) and Radd,h are disjoint
sets.

On the Simulations of ECPe Systems with Energy for GPUs 275

6. Filter solutions in Step 5

For each region h, if Listcat2 6= ∅, scan the sorted Listcat2 and find out the first
object, labelled αcat2,min, falling under Category 2 whose corresponding identity
rule application is non-zero, i.e. a′

i,h(αcat2,min → αcat2,min) > 0. Since Listcat2 is
sorted increasingly according to transport energy requirement, the object αcat2,min
has the minimum energy required for communication. Let its corresponding energy
be labelled energy(αcat2,min). Solutions are filtered in step 5 by adding, for each
region h with a non-empty Listcat2 , the inequality below:

a′
i,h(e→ e) < energy(αcat2,min) (3)

7. Finding ai,h

Upon finding values for a′
i,h in all region h, all identity rules r′ ∈ Radd,h are

omitted. The values of an application vector ai,h are filled through the equation

ai,h(r) = a′
i,h(r), r ∈ Rh (4)

For every communication rule r ∈ IR(r, h′) ∩ IR(r, h′′),

ai,h′(r) = ai,h′′(r) = a′
i,h′′(r) (5)

where region h′′ is the sending region of communication rule r.

An Illustration

We illustrate how we can compute forward in ECPe systems without antiport by
using the ECPe system given in Section 2.2. We maintain the total orders 〈a,#, e〉
over elements of PO(1), 〈a,#〉 over elements of PO(2), 〈r11, r12, Add11, Add12〉
over elements of ER(1)∪Radd,1 and 〈r21, r′21, r′22, Add21〉 over elements of ER(2)∪
Radd,2. Thus, our vectors are:

Ci−1,1 =
(

2 1 2
)

Ci−1,2 =
(

1 0
)

Step 1

For region 1, object a belong to Category 1, object # and special object e belong
to Category 2 while no objects belong to Category 3. On the other hand, objects
and a in region 2 belong to Category 1 and Category 3, resp.

Step 2

The additional identity rules per region are given below.

Radd,1 = {Add11 : #→ #, Add12 : e→ e}
Radd,2 = {Add21 : a→ a}

Since only object # is in category 2, Listcat2 for region 1 is composed of only a
single element #.

276 R.A.B. Juayong et al.

Step 3 and 4

The trigger matrix for both region 1 and 2 are shown below

TMΠECPe,1 =

1 0 0
1 0 0
1 0 1
0 1 1
0 1 0
0 0 1

 TMΠECPe,2 =

(
0 1
1 0

)

The extended application vectors a′
i,1 and a′

i,2 representing the vector of un-
knowns has the same index as that of the rows of their corresponding effect matrix.

Step 5

The resulting system of linear equations achieved from Equation (2) for region 1
and 2 is given below:

a′
i−1,1(r11) + a′

i−1,1(r12) + a′
i−1,1(r′21) = 2

a′
i−1,1(r′22) + a′

i−1,1(Add11) = 1
a′
i−1,1(r′21) + a′

i−1,1(r′22) + a′
i−1,1(Add12) = 2

a′
i−1,2(r21) = 0

a′
i−1,2(Add21) = 1

As can be traced, there are 11 possible extended application vectors for region 1
while there exists a unique extended application vector for region 2. Shown below
is extended application vector for region 2:

a′
i−1,2 =

(
0 1
)

Step 6

The additional inequality in region 1 requires that:

a′
i,1(Add12) < 1

for cases where the trap object # remain. Thus, these solutions are possible:

ai,1 =
(

0 0 2 0 1 0
)

ai,1 =
(

1 0 1 1 0 0
)

ai,1 =
(

0 1 1 1 0 0
)

For cases where the trap object does not remain, the following solutions are also
possible:

ai,1 =
(

1 1 0 1 0 1
)

ai,1 =
(

0 2 0 1 0 1
)

ai,1 =
(

2 0 0 1 0 1
)

After step 6, the 11 solutions in step 5 were reduced to six.

On the Simulations of ECPe Systems with Energy for GPUs 277

Step 7

Performing Equation (4) and Equation (5), below are the possible application
vector combinations:

Solution 1 : ai,1 =
(

0 0 2 0
)

ai,2 =
(

0 2 0
)

Solution 2 : ai,1 =
(

1 0 1 1
)

ai,2 =
(

0 1 1
)

Solution 3 : ai,1 =
(

0 1 1 1
)

ai,2 =
(

0 1 1
)

Solution 4 : ai,1 =
(

1 1 0 1
)

ai,2 =
(

0 0 1
)

Solution 5 : ai,1 =
(

0 2 0 1
)

ai,2 =
(

0 0 1
)

Solution 6 : ai,1 =
(

2 0 0 1
)

ai,2 =
(

0 0 1
)

The corresponding configuration vectors for each solution is as follows:

Solution 1 : Ci,1 =
(

0 1 0
)

Ci,2 =
(

3 0
)

Solution 2 : Ci,1 =
(

2 0 0
)

Ci,2 =
(

2 1
)

Solution 3 : Ci,1 =
(

0 0 2
)

Ci,2 =
(

2 1
)

Solution 4 : Ci,1 =
(

2 0 3
)

Ci,2 =
(

1 1
)

Solution 5 : Ci,1 =
(

0 0 5
)

Ci,2 =
(

1 1
)

Solution 6 : Ci,1 =
(

4 0 1
)

Ci,2 =
(

1 1
)

2.4 A Sequential Implementation of Computation on ECPe Systems
without Antiport using Initial Matrix Representation

Given the representation and algorithm for forward computing presented in Section
2.3, we were able to do a sequential implementation of computation on ECPe
systems without antiport using the C programming language.

The system starts with reading two input files containing information for find-
ing valid application vectors and determining the next configuration vector given a
currently examined configuration vector. The following are the names of the input
files:

• File trans file.txt which contains the information needed for transitioning from
one configuration to the next.

• File forwComp file.txt which contains the information needed to find valid con-
figuration vector/s given a current configuration vector.

A discussion about the format for the specified files is given in the appendix. The
files will be used to initialize the necessary variables and pointers needed for the
simulation. The system has two output files representing the tree-structure of the
configuration history. The following are the name of the output files:

278 R.A.B. Juayong et al.

• File conf.txt which contains a list of configuration.
• File conf index.txt which contains the index of the configuration in the tree

structure.

Presented in Figure 2 is the flowchart of how the program works. Upon reading
input files and loading variables and pointers needed for computing, the initial
configuration is placed in the conf.txt and the associated index 1 is placed in
conf index.txt. Afterwards, the system will enter a loop for determining the con-
figurations generated by a currently examined configuration. The examination of
configuration will be executed in order of their position in the file. Given two con-
figuration C and C ′ where the position of C precedes C ′, then configuration C
will be examined first before configuration C ′. Examining configuration shall halt
only when the system reaches two stopping criterion:

• Upon achieving a pre-specified upper bound on the number of iterations
• Upon reaching a state where there are no more configurations to examine.

Fig. 2. An overview of our sequential implementation for ECPe systems without antiport
in the C programming language.

For every loop, a configuration in the file is examined by first determining all valid
application vectors which is applicable to the currently examined configuration. In
finding a valid application vector, we use the concept of localized representation
and extended application vectors, and follow the steps in Section 2.3 for forward

On the Simulations of ECPe Systems with Energy for GPUs 279

computing. If the only application vector applicable is the zero vector which means
no more rule combination can be applied to the current configuration, it will pro-
ceed to the next configuration to examine. Each non-zero application vector is
used to generate the next set of configurations. Afterwards, output files conf.txt
and conf index.txt will be updated to account all the newly generated next con-
figuration vectors. Note that in this system, we have not yet implemented the
methodology to detect repeating configuration.

On Generating Extended Valid Application Vectors and Filtering

The goal of step 5 in Section 2.3 is the generation of all possible extended ap-
plication vectors a′i,h satisfying equation (2). In our sequential implementation,
we achieve this by examining each equation resulting from the corresponding and
equivalent system of linear equation. We now study the characteristics of the re-
sulting system by using the example presented for forward computing.

Shown below are the equations yield from Equation (2) of region 1 for the
example in Section 2.2, also shown in Section 2.3.

β1 : a′
i−1,1(r11) + a′

i−1,1(r12) + a′
i−1,1(r′21) = 2

β2 : a′
i−1,1(r′22) + a′

i−1,1(Add11) = 1
β3 : a′

i−1,1(r′21) + a′
i−1,1(r′22) + a′

i−1,1(Add12) = 2

It can be observed that each equation in the resulting system represents an object
condition; the object referring to possible objects that may enter an examined
region. Also, for sending regions, an equation for energy condition (β3) must also
be present in a resulting system. In the general case, each variable (representing
rule application of a certain communication rule) in the energy equation is present
in exactly one other object condition. This object is the communication trigger
that will be communicated upon activation of the rule represented by the said
variable. For example, the variable a′

i−1,1(r′21) is present in both β1 and β3. The
same goes for variable a′

i−1,1(r′22) which is present in both β2 and β3.
Other than such type of variables, no more variables can be present in more

than one equation. Moreover, while the coefficients of the terms in the energy
equation can contain any positive integer, the coefficients of the terms for non-
energy condition will always be one (due to the restriction of noncooperative rule
format). Moreover, the set of rules r ∈ TR(h) are all represented by the union of
all rules (variables) represented in the non-energy conditions without the identity
rules.

Given such observation, possible vectors a′i,h are determined by first solving the
condition posed for energy. Since there can be multiple solution for rules involving
energy (the rules include the identity rule for energy since it is of Category 2),
we shall determine the possible extended applications vectors resulting from a
valid energy solution. In the linear equation shown above, we first on determining
solutions for β3. The possible energy solutions are

(1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2),

280 R.A.B. Juayong et al.

where in each vector, the first element corresponds to value of a′
i−1,1(r′21), the sec-

ond corresponds to the value of a′
i−1,1(r′22) and the third element is for the energy

identity rule a′
i−1,1(Add12). For each solution, we then copy the rule application

to the associated object to communicate. Afterwards, the rule application is trans-
ferred to the right-hand side of the equation, i.e. subtracted from the current count
of the corresponding communicated object. As an example, the resulting modified
object condition β′1 caused by the value of communication rulea′

i−1,1(r′21) in the
first energy solution will be

β′1 : a′
i−1,1(r11) + a′

i−1,1(r12) = 1

If the resulting count is negative, then, the resulting energy solution cannot be
applied. Therefore, no vector a′i,h can be generated given such negative result.
This filtering on energy solution is evident in applying energy solution (0,2,0) on
β2. Upon subtracting the resulting rule application from the right-hand side of the
corresponding communicated object condition, the resulting object conditions can
be analyzed one at a time.

Upon realizing solutions for each object condition, step 6 of the forward com-
puting methodology can already be executed per object condition. Identity rules
for category 2 objects can be further checked to execute the filtering part, done
in Step 6 of the methodology in Section 2.3 to see if the number of category 2
objects remaining in the region can be allowed to remain (that is, the case doesn’t
validate the rule that all objects that can evolve or be communicated must do so).
Otherwise, the object solution will be dropped. Note that while step 6 in Section
2.3 evaluates first all extended application vectors before this step, we perform this
step per object condition since the identity rules for any category 2 objects can
only be present in the corresponding category 2 object equation. Preferably, the
order of analyzing category 2 objects follow the sorted list Listcat2 so that if an
object solution is not valid, it can terminate immediately at the first unsatisfied
category 2 object.

The resulting value of each filtered variable set per solution can be combined,
one solution from each object, and each combined list constitutes one extended
application vector. To illustrate this, we examine the possible extended application
vectors that can be yield from energy solution (1, 1, 0). For β1 condition, the object
solutions are (0, 1) and (1, 0) where the first element of the said vectors correspond
to a′

i−1,1(r11) and the second, to a′
i−1,1(r12). For β2 condition, the object solution

only assigns the value 1 to a′
i−1,1(Add11). Therefore, for energy solution (1,1,0),

the corresponding extended application vectors yielded are

ai,1 =
(

1 0 1 1 0 0
)

ai,1 =
(

0 1 1 1 0 0
)

3 Simulator design and implementation

In this section, we relay how we can employ GPUs to parallelize the task of finding
all possible object solutions. NVIDIA introduced the Compute Unified Device

On the Simulations of ECPe Systems with Energy for GPUs 281

Architecture (CUDA) in 2007 [7]. CUDA is a software and hardware architecture
for general purpose computations in NVIDIA’s GPUs [7]. CUDA extends high-
level languages such as C to allow programmers to easily create software that will
be executed in parallel, avoiding low-level graphics and hardware primitives [12].

GPUs introduce increased performance speedups over CPU only implemen-
tations with linear algebra computations (among other types of computations)
because of the GPU architecture. The common CPU architectures are composed
of transistors which are divided into different blocks to perform the basic tasks of
CPUs (general computation): control, caching, DRAM, and ALU (arithmetic and
logic). In contrast, only a fraction of the CPU’s transistors allocated for control
and caching are used by GPUs, since far more transistors are used for ALU [7]
(see Figure 3 for an illustration). This architectural difference is a very distinct
and significant reason why GPUs offer large performance increases over CPU only
implementation of parallel code working on large amounts of input data. However
if the problem to be solved cannot be organized in a data parallel form (a task
performing computations on data need not depend heavily on other task’s results)
then the performance of GPUs over CPUs will not be fully utilized.

Code written for CUDA can be split up into multiple threads within multiple
thread blocks, each contained within a grid of (thread) blocks. These grids belong
to a single device or GPU. Each device has multiple cores, each capable of running
its own threads. Each core in the device is able to run a set of threads.A thread
block is assigned to each multiprocessor, where each processor is made up of sev-
eral cores [7, 12]. A function known as a kernel function is one that is called from
the host or CPU but executed in the device. Using kernel functions, the program-
mer can specify the GPU resources: the layout of the threads (from one to three
dimensions) in a thread block, and the thread blocks (from one to two dimensions)
in a grid. Table 1 shows the resources of current CUDA enabled NVIDIA GPUs.

GPU resources Values

Global memory Up to 4GB

Max number of threads per dimension (x, y, z) (1024, 1024, 64)

Max number of thread blocks per grid (x, y, z) (65535, 65535, 65535)

Table 1. Typical resources for CUDA enabled Fermi architecture GPUs (from [7, 12]) .

On Parallelizing Transitions

Another apparent possibility in order to simulate the parallel computations of
ECPe systems (as well as capitalize on their representations as matrices) on GPUs,
we can have initially at least two levels of parallelism: the first level is the computa-
tion of Equation (1) in parallel by threads in a block; the second level involves the
computation of all the possible next configurations given a current configuration,
so that each block in a grid of thread blocks performs this level.

282 R.A.B. Juayong et al.

Fig. 3. (a) Common transistor allocation of CPUs and GPUs (b) Computing unit hier-
archy of GPUs, from [12].

The first level is highly parallelizable since vector-matrix multiplication and
vector addition are highly data independent. Each thread can multiply a vector
to one column of the matrix, thus performing ai,h ·MΠ,h. Each thread sums the
products then adds these to another vector, performing the addition of Ci−1,h.
For the second level, if there are q number of ai,h’s and hence q number of next
configurations, then q blocks will perform Equation (1) q times.

Because of the physical limitations of current NVIDIA GPUs, no more than
1024 threads per block are allowed for Fermi architecture GPUs so that at most
matrices of at most 1024 columns can be simulated in a block. In Fermi GPUs, the
maximum number of allowable thread blocks in a grid is 65535 (See Table 1) so q
is currently upper bounded by this value. Another simulation consideration, aside
from the computing units (threads, thread blocks) is the relatively more limited
memory of current GPUs compared to CPUs. In this case, storing all q number
of application vectors (each of which are of length |R(h)|) and the q number of
next configurations (each of which are of length |PO(h)|) resulting from those
application vectors must fit into the GPU’s global memory.

On Generating Object Solutions

Given an examined energy solution, we check each object condition where each
variable corresponding to a communication rule have already been determined (via

On the Simulations of ECPe Systems with Energy for GPUs 283

the examined energy solution) and the value at the right-hand side of a communi-
cated object has already been updated. As can observed, this problem is reduced to
an integer partition problem where, given an object equation α1+α2+...+αk = n,
we need to find vector containing αi ∈ N’s, i.e. (α1, α2,, αk).

To generate solutions for non-energy object equation, we first obtain a lexi-
cographic order of partition for the value n. In [13], given X = (x1, x2, ..., xk′)
and Y = (y1, y2, ..., yk′′), X precedes Y lexicographically if and only if for some
j ≥ 1, xi ≥ yi when i < j, and xj precedes yj . As an example, partitions of 5 in
lexicographic order are: 11111, 2111, 311, 221, 311, 32, 41, 5.

Each resulting partition will be padded with zeroes accordingly so that the
partition can be represented in a k-dimensional vector. Each partition will be
assigned to a thread. Each thread will be responsible for the generation of distinct
permutation of the k-dimensional vector representing the partition. The union of
solutions generated by each partition corresponds to the set of object solutions for
a certain examined object. Since the filtering step of the forward methodology, as
explained in Section 2.4, can be done per object condition, this step can also be
performed within the current threads.

The idea of parallelization in Section 3 may also be used for generating energy
solutions of the form c1α1 + c2α2 + ...+ ckαk = n, where a lexicographic order on
the partitions of n is first accomplished. Again, each resulting partition will then
be padded with zeroes accordingly. Upon assigning each partition to a thread,
and generating distinct permutation of a partition, each vector representating a
permutation can be equated with the vector (c1α1, c2α2, ..., ckαk), afterwhich the
corresponding value for the α′is can be obtained.

4 Conclusions and future work

In this report, we were able to describe a sequential implementation of a forward
computing methodology for ECPe systems without antiport rules. We also were
able to show how we extend this sequential work to employ GPUs for parallelizing
some key areas in the implementation procedures. We were also able to show our
proposed ideas for parallelizing other parts of the code.

As future work, we would like to implement our proposed ideas for paralleliza-
tion and test the efficiency of the resulting implementation. Moreover, we hope to
improve these ideas to better capitalize the parallelizability of vector-matrix rep-
resentations of the computations on GPUs. As part of our future works, we also
would like to extend the methodology for forward computing to apply to a general
ECPe systems where antiport rules are allowed. The difficulty in allowing such
communication rules are influenced by the implication that a region can be both
a sender and receiver region. Thus, antiport rules need to maintain relationship
between adjacent regions at crucial parts of the forward computing methodology.
The more tricky part is the action done when considering objects that are un-
moved due to antiport rule. The antiport rule increases the number of possible
cases dictating why a category 2 object can remain in a certain region.

284 R.A.B. Juayong et al.

5 Acknowledgments

R.B. Juayong and F.G.C. Cabarle are partially supported by the DOST-ERDT
scholarship program. H. Adorna is funded by the DOST-ERDT research grant and
the Alexan professorial chair of the UP Diliman Department of Computer Science,
University of the Philippines Diliman. M.A. Mart́ınez–del–Amor is supported by
“Proyecto de Excelencia con Investigador de Reconocida Vaĺıa” of the “Junta de
Andalućıa” under grant P08-TIC04200, and by the project TIN2009–13192 of the
“Ministerio de Ciencia e Innovación” of Spain, both co-financed by FEDER funds.

References

1. H. Adorna, Gh. Păun, M. Pérez-Jiménez : On Communication Complexity in
Evolution-Communication P systems, Romanian Journal of Information Science
and Technology, Vol. 13 No. 2 pp. 113-130, 2010

2. F.G.C. Cabarle, H. Adorna, M.A. Mart́ınez-del-Amor: A Spiking Neural P system
simulator based on CUDA, M. Gheorghe et al. (Eds.), 12th Int’l Conference on
Membrane Computing 2011, revised and selected papers, LNCS vol. 7184, pp. 87-
103. Springer-Verlag, 2012.

3. F.G.C. Cabarle, H. Adorna, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez: Im-
proving GPU Simulations of Spiking Neural P Systems, (to appear) Romanian
Journal of Information Science and Technology, 2012.

4. R.A. Juayong, H. Adorna: Computing on Evolution-Communication P systems
with Energy Using Symport Only, Workshop on Computation: Theory and Practice
2011 (WCTP 2011), UP Diliman NISMED auditorium.

5. X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L. Pan, M. Pérez-Jiménez : Matrix
Representation of Spiking Neural P Systems, Membrane Computing: Lecture Notes
in Computer Science, Volume 6501/2011, 377-391, 2011

6. R.A. Juayong, H. Adorna: A Matrix Representation for Computations in
Evolution-Communication P Systems with Energy, Proc. of Philippine Comput-
ing Science Congress, Naga, Camarines Sur, Philippines, March 3-4, 2011

7. Kirk D., Hwu W., Programming Massively Parallel Processors: A Hands On Ap-
proach, 1st ed. MA, USA, Morgan Kaufmann, 2010.

8. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez: Computing Backwards with P sys-
tems, WMC10, Curtea de Argeş, Romania, (2009), 282-295.

9. Gh. Păun: Introduction to Membrane Computing. In: Gabriel Ciobanu, Mario J.
Pérez-Jiménez and Gheorghe Păun, eds: Applications of Membrane Computing,
Natural Computing Series. Springer, pp.142. (2006)

10. M. Cavaliere: Evolution-communication P systems. Membrane Computing. Proc.
WMC 2002, Curtea de Argeş (Gh. Păun et al., eds.), LNCS 2597, Springer, Berlin,
134-145. (2003)

11. A. Păun, Gh. Păun: The power of communication: P systems with symport/an-
tiport. New Generation Computing, 20, 3, 295-306, (2002)

12. NVIDIA corporation,“NVIDIA CUDA C programming guide”, version 3.2, CA,
USA, 2010.

13. A. Zoghbi, I. Stojmenović: Fast algorithms for generating integer partitions, Inter-
national Journal of Computer Mathematics, Vol. 70, No. 2., pp. 319-332, (1998)

On the Simulations of ECPe Systems with Energy for GPUs 285

Appendix A:
On File Formats for Implementation of ECPe system in C

Fig. 4. Format for file trans file.txt for the sequential implementation of ECPe system
in C.

Shown in Figure 4 above is the format for input file trans file.txt. This file
contains the information required to find a succeeding configuration given a current
one. First, the number of regions must be specified. If there will be a case where the
environment will be needed during the computation, the value of this parameter
must be the number of membranes incremented by one in order to account for the
environment. The membrane structure is represented by paired square brackets as
typical representation of a membrane structure. Note that for either a closed or
open square bracket, the symbol must be followed by a numeral to indicate the label
of the membrane. For the initial configuration, there is a need to follow a total order
as discussed in Section 2.3. Therefore, the initial configuration is simply a initial
configuration vector where each cell contains the number of copies of a certain
object at the start of the computation. The separator for the cells will be the space
symbol. The expected transition matrix has dimensions following the previously
specified number of rules involving a specific region and the number of possible
objects that may enter the region. The rows will be separated by newline, whereas,
the columns are separated by spaces. A rule type can either be an evolution rule in

286 R.A.B. Juayong et al.

which case the symbol to type will be ’e’, whereas a communication rule can have
one of symbol ’s’ and ’r’. The symbol ’s’ represents that the communication rule
uses the specific region as a sender, while the symbol ’r’ uses the specific region as
a receiver.

Fig. 5. Format for file forwComp file.txt for the sequential implementation of ECPe
system in C.

Figure 5, on the other hand, illustrates the format for the input file forw-
Comp file.txt. This file contains the information required to find all valid applica-
tion vectors from a given configuration vector. First, a trigger matrix needs to be
indicated. Again, there is a need to impose a total order over the rules. In this case,
there will be a specific setup for the rules in the trigger matrix wherein, it is re-
quired that evolution rules must be specified first before the communication rules.
After the existing rules associated with the region, the identity rule for energy (e)
should proceed after. The identity rules for the other category 2 objects will follow
after the energy’s identity rule. After indicating the trigger matrix, there is a need
to define the range of the communication rules in the specified region. To indicate
this:

On the Simulations of ECPe Systems with Energy for GPUs 287

Fig. 6. Input files for the example given in Section 2.2

<position of starting communication rule>-<position of last communication
rule>

where the positions will be based on the imposed total order. The total order
will also be used in the next set of input which entails specifying the minimal
energy requirement needed to transport each category 2 object. Since they only
be enumerated in a single line, the separator of energy per object will be the space
symbol. Following after this will be the enumeration of the details needed in the
receiving region for each communication rule. To indicate this:

<position of receiving region> <position of partner rule in receiving region>

where this specifications per communication rule will be separated by newlines.
Note that only a single space symbol separates the position of the receiving region
with the position of the corresponding rule in the receiving region. In case no
communication rules exist in the trigger matrix, there is no need to fill up this
part. Moreover, the range of communication rules will be 0-0 and the value of the
succeeding line will be 0. Shown in Figure 6 are the input files for the example given
in Section 2.2 whose total order for involved rules and possible objects follows the
order given in Section 2.3 except that we swap the position of the last and second

288 R.A.B. Juayong et al.

Fig. 7. Sample output files for the example given in Section 2.2

On the Simulations of ECPe Systems with Energy for GPUs 289

to the last identity rule in the first region to follow the required format for total
order on rules involved in the corresponding trigger matrix.

For the output, there will be two files, namely conf.txt and conf index.txt, that
shall represent an ECPe systems configuration tree of computations. The former
consists a list of configurations (not yet necesarily unique) where each system
configuration is separated by a newline. The system configuration is composed
of configuration vectors local to each region that are juxtaposed together. The
elements of the vectors are separated by an individual space whereas dollar sign
($) separates each local configurations. The initial configuration will be the first
configuration in the file.

The output file conf index.txt stores the indices of the configurations in file
conf.txt in order to remember the association between configurations. Given an
index in this file, the configuration associated with the index is the configuration in
conf.txt which has the same line position as the line of the index. For example, the
initial configuration is located at the first line in the file conf.txt, its corresponding
first line in conf index.txt is the index 1. Since we can represent computation as
a tree, the initial configuration with index 1 is the root node configuration of the
tree. To determine the configurations that sprung from the initial configuration
i.e. the children of the root node, the indices must have the prefix ’1 ’. The parent
configuration which generates a configuration can be tracked by removing the last
underscore in the index associated with the configuration, along with the number
that appears after the said underscore. A path from the initial configuration to any
configuration C can be traced by retrieving the associated configuration starting
from index 1 (which, as mentioned, represents the initial configuration) to the
configuration C following the precedence imposed by the indices. Shown in Figure
7 are the output files for the example given in Section 2.2 whose total order for
objects follows the order given in Section 2.3 and where the maximum number of
configurations to examine is set to 10.

