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Resumen

We consider the primal hybrid formulation for second order elliptic problems in-
troduced by Raviart-Thomas [9] and apply the classical iterative method of Uzawa
to obtain a non overlapping domain decomposition method that converges geometri-
cally with a mesh independent ratio. The proposed method connects with the Finite
Element Tearing and Interconnecting (FETI) method proposed by Farhat-Roux and
collaborators [7]-[8]. In this research work we use the detailed work on domains with
corners developed by Grisvard [6], which clarifies the situation of cross-points, and
the direct computation of the duality H−1/2 − H1/2 using the H1/2 scalar product;
therefore no consistency error appears.

1. Introduction

The primal hybrid formulation for second order elliptic problems inforce via the Lagran-
ge multipliers the continuity of the approximations across interfaces, and this is expressed
via the duality H−1/2 −H1/2, see Raviart-Thomas [9]. Usually, for numerical discretiza-
tions, this duality is worked out by means of some projection operator onto the L2 space
on the interfaces, see Ben Belgacem [3]. In our approach we use Riesz representation and
replace the duality with the H1/2 scalar product that is explicitly computed. As a con-
sequence, we have a formulation in terms of a saddle point problem suitable for iterative
techniques, see Bacuta [2].

The method presented is similar to the classical Lagrange Finite Element Tearing and
Interconnecting (FETI) method proposed by Farhat-Roux and collaborators [7]-[8]. In this
research work we use the detailed work on domains with corners developed by Grisvard
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[6] which clarifies the situation of cross-points and the direct computation of the duality
H−1/2 −H1/2 using the H1/2 scalar product; therefore no consistency error appears.

2. Formulation with Lagrange Multipliers

Let Ω ⊂ R2 be a poligonal domain and consider f ∈ L2(Ω). Then, our departure
problem looks for u ∈ H1

0 (Ω) such that

(∇u,∇v)Ω + (u, v)Ω = (f, v)Ω ∀v ∈ H1
0 (Ω). (1)

Assume that Ω is a polygonal bounded domain in R2 with a Lipschitz–continuous boundary
and consider a decomposition without overlapping in polygonal subdomains

Ω = ∪R
r=1Ωr and Ωr ∩ Ωr′ = ∅, 1 ≤ r < r′ ≤ R (2)

where each Ωr has a Lipschitz–continuous boundary. We describe ∂Ωr in terms of its edges
via

∂Ωr = Γr,0 ∪ Γr,1 ∪ ... ∪ Γr,Jr (3)

where Γr,0 = ∂Ωr ∩ ∂Ω such that ∂Ω = ∪R
r=1Γr,0 and assume that Ωr ∩Ωs is either empty,

a single point or a full edge Γr,s. On each Γr,j we consider the classical Hilbert space of
traces H

1/2
00 (Γr,j) and its dual space H

−1/2
00 (Γr,j), see Adams [1]. We call skeleton of Ω,

and denote it by E , the set of all interfaces in Ω

E = ∪I
i=1Γi (4)

where Γi = Γi,0 for i = 1, ..., R describe the boundary ∂Ω, and for i ≥ R + 1 we set
Γi = Γr,j for some r, j ≥ 1. Green’s formulae on polygonal domains will be used

Lemma 1 (Grisvard [6]) When O ⊂ R2 is a poligonal domain and ∂O = ∪J
j=1Γj, then

H2(O) is dense on E = {u ∈ H1(O); ∆u ∈ L2(Ω)}. The mapping u 7→ ∂nju|Γj
has a

unique continuous extension from E to H
−1/2
00 (Γj) dual space of H

1/2
00 (Γj). Moreover, for

each u ∈ E and v ∈ H1(O) such that v|Γj
∈ H

1/2
00 (Γj) we have

−(∆u, v)O = (∇u,∇v)O −
J∑

j=1

< ∂nju, v >−1/2,00,Γj
. (5)

Also, using that D(O)d is dense on H(div;O), for any ~q ∈ H(div;O), we have nj · ~q ∈
H
−1/2
00 (Γj) and for any v ∈ H1(Ω) with v|Γj

∈ H
1/2
00 (Γj)

(~q,∇v)O + (div(~q), v)O =
J∑

j=1

< nj · ~q, v >−1/2,00,Γj
. (6)
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Next, on each Ωr we consider the classical Hilbert space

H1
b (Ωr) = {vr ∈ H1(Ωr); vr = 0 on ∂Ωr ∩ ∂Ω} (7)

with scalar product (ur, vr)1,Ωr = (ur, vr)Ωr + (∇ur,∇vr)Ωr the dense subspace Wr of
H1

b (Ωr) given by

Wr = {u ∈ H1
b (Ωr); u|Γr,j

∈ H
1/2
00 (Γr,j), j = 1, ..., Kr},

needed to apply Green’s formulae, the global, defined on Ω, Hilbert space

X = {v ∈ L2(Ω); vr = v|Ωr
∈ H1

b (Ωr), r = 1, ..., R} ≈
R∏

r=1

H1
b (Ωr) (8)

with scalar product and norm given by

(u, v)X =
R∑

r=1

(ur, vr)1,Ωr , ‖v‖2
X = (v, v)X =

R∑

r=1

‖vr‖2
1,Ωr

,∀v, u ∈ X (9)

and finally X0 ≈
∏R

r=1 Wr that is also a dense subspace of X. We also need the Hilbert
space

H0(div; Ω) = {~q ∈ L2(Ω)d; div(~q) ∈ L2(Ω), nr,0 · ~q = 0 en Γr,0, 1 ≤ r ≤ R} (10)

where nr,j · ~q ∈ H
−1/2
00 (Γr,j), j = 1, ..., Kr, consider Tr =

∏Kr
j=1 H

−1/2
00 (Γr,j) and M given

by

M = {~µ ∈
R∏

r=1

Tr;µr,j = nr,j · ~q, for some ~q ∈ H0(div; Ω)}. (11)

Let b : M ×X 7→ R given for v ∈ X0, ~λ ∈ M by

b(~λ, v) =
I∑

i=R+1

< λi, vs − vt >−1/2,00,Γi
(12)

when Ωs ∩ Ωt = Γi and extended by density to all v ∈ X. Then

H1
0 (Ω) = {v ∈ X; b(~λ, v) = 0, ∀~λ ∈ M}.

Define the bilinear form a : X ×X 7→ R given by

a(u, v) =
R∑

r=1

{(∇ur,∇vr)Ωr + (ur, vr)Ωr} =
R∑

r=1

∫

Ωr

{∇ur · ∇vr + ur vr} dx. (13)

Then, the primal hybrid formulation for Poisson problem (1) consists in looking for a
pair (u,~λ) ∈ X ×M such that

a(u, v) + b(~λ, v) =
R∑

r=1

(f, vr)Ωr , ∀v ∈ X (v|Ωr
= vr) (14)

b(~µ, u) = 0, ∀~µ ∈ M. (15)
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Theorem 1 If u ∈ H1
0 (Ω) solves the Dirichlet problem (1) then there exists a unique

(u,~λ) ∈ X × M that solves problem (14)-(15). If (u,~λ) ∈ X × M solves (14)-(15) then
u ∈ H1

0 (Ω) and solves the Dirichlet problem (1). Moreover, for i = R + 1, ..., I

λi = −∂niu ∈ H
−1/2
00 (Γi). (16)

Next, via Riesz representation we identify H
−1/2
00 (Γi) (dual space of H

1/2
00 (Γi)) with H

1/2
00 (Γi),

write the duality in terms of the scalar product in H
1/2
00 (Γi), identify M with its dual space

M ′ and define b : M ×X 7→ R given for any v ∈ X0, ~λ ∈ M by

b(~λ, v) =
I∑

i=R+1

(λi, vs − vt)1/2,00,Γi
(17)

when Ωs∩Ωt = Γi and extended by density to all v ∈ X. Then, the formulation of Poisson
problem (1) that we shall use is: Find a pair (u,~λ) ∈ X ×M such that

a(u, v) + b(v,~λ) =
R∑

r=1

(f, vr)Ωr , ∀ v ∈ X, (18)

b(u, ~µ) = 0, ∀ ~µ ∈ M. (19)

Thanks to Theorem 1 this is equivalent to (1) but it also is whithin the saddle point
problems framework, see Girault-Raviart [5], which allows the use of different methods
for computing the solution. Also, the analysis at the continuous level is reproduced in the
discrete version of the saddle point problems as a simple consequence of the finite element
extension theorems, see for instance Bernardi-Maday-Rapetti [4].

3. Domain decomposition methods

A rephrasing of the problem in terms of functional operators will clarify what we do.
To fix ideas we work with Ω split up slicewise into two subdomains. Let B : X 7→ M given
by Bv = (v1)|Γ − (v2)|Γ , i.e., the jump of v across the interface Γ, set R : X ′ 7→ X as the
Riesz isomorphism associated with the scalar product a(·, ·) on X and F : X 7→ R given
by < F, v >=

∑2
r=1(f, vr)Ωr . Then, our saddle point problem looks for (u, λ) ∈ X ×M

such that

R−1 u + B′λ = F on X ′ (20)
B u = 0 on M, (21)

where B′ is the transpose operator to B. Then, u = R(F −B′λ) ⇒ Bu = BRF −BRB′λ
and (using Bu = 0) from here we have the dual problem associated to the saddle
point problem

(BRB′)λ = BRF on M. (22)

Thanks to the inf-sup condition the operator BRB′ is symmetric positive definite,
see Bacuta [2]. Now the resolution of (22) via an iterative method is possible; we propose
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the use of the iterative method of Richardson, which amounts to the classical
Uzawa’s Method.
Given ρ > 0 and λ0 ∈ M , for m = 0, 1, 2, 3, ... set

rm = BRF − (BRB′)λm = B um, using (??) (23)
λm+1 = λm + ρ rm (24)

which unfolds from (20)-(21) as

2∑

r=1

(um,r, vr)1,Ωr =
2∑

r=1

(f, vr)Ωr − (λm, v1 − v2, )1/2,00,Γ, ∀v ∈ X, (25)

and update λm+1 = λm + ρ(um,1 − um,2). (26)

Following standard convergence results, see Bacuta [2] and references therein, we have
geometric convergence for this iterative process by simply blocking to zero the test
functions alternatively on each subdomain

Theorem 2 The iterative process:
Given ρ > 0 and λ0 ∈ M , find for m ≥ 0 um ∈ X via

(∇um,1,∇v1)Ω1 + (um,1, v1)Ω1 = (f, v1)Ω1 − (λm, v1)1/2,00,Γ, ∀v1 ∈ X1,

(∇wm,2,∇v2)Ω2 + (um,2, v2)Ω2 = (f, v2)Ω2 + (λm, v2)1/2,00,Γ, ∀v2 ∈ X2,

and update λm+1 = λm + ρ(um,1 − um,2) on Γ

is a non overlapping domain decomposition method geometrically convergent with
a ratio of convergence independent of the mesh size.

The drawback that this method presents is how to fix the optimal parameter ρ > 0. In
the numerical experiments that we present the value of ρ has been tuned easily by hand
thanks to the great speed of convergence that the method exhibits.

For a method that has no need of fixing any parameter we could use the application
of the Conjugate Gradient Method which is the core of the FETI methods.

4. Numerical experiments

We compute on a non convex domain with three subdomains. We use a Galerkin
approximation with P1 Lagrange finite elements on a uniform triangular mesh size h of Ω
and its restriction to each of the Ωi for i = 1, 2, 3. The numerical results show a geometric
rate of convergence with a mesh independent ratio as the theory predicts.

We set Ω = (−1, 1)2 \ {(−1, 0)× (−1, 0)} and decompose it into three squares so that
our interfaces are Γ1 = {0} × (0, 1) and Γ2 = (0, 1)× {0}. Then we solve

−∆u = 1, on Ω, u = 0 on ∂Ω.

We take λ0 = (0, 0) and stop iterating for m = niter(h) such that

‖um+1
h − um

h ‖X

‖um
h ‖X

=
(
∑3

i=1

∫
Ωi
|∇(um+1

i,h − um
i,h)|2 dx)1/2

(
∑3

i=1

∫
Ωi
|∇um

i,h|2 dx)1/2
≤ 10−7; (27)
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Figura 1: Decrease error ratio given by (29) on the L-shaped domain test using Uzawa’s
Method and Conjugate Gradient Method (CG).

we compute the errors and their decrease ratio given for m ≥ 0 by

euh(h,m) = ‖uh − um
h ‖X = (

3∑

i=1

∫

Ωi

|∇(uh − um
i,h)|2 dx)1/2 (28)

r(h,m) =
euh(h,m + 1)

euh(h,m)
, r(h) ≈ ĺım

m
r(h,m) (29)

where uh is the P1 solution computed on the whole domain Ω. For Uzawa’s Method we
found by performing few several tests that ρ ≈ 0.12 seems to be the closest value to the
optimal one. The results are shown in Table 1.

1/h 4 8 16 32
#iterations 17 17 17 21

ρ ≈ 0.12 ≈ 0.12 ≈ 0.12 ≈ 0.12
r(h) ≈ 0.43.. ≈ 0.43... ≈ 0.43... ≈ 0.44...

Table 1: Uzawa’s Method: Number of iterations, values of ρ and of r(h) obtained
with the inverted L-shape domain for different values of h.

We also computed the solution using the Conjugate Gradient Method. In Figure 1, For
both of the iterative methods proposed, we show the ratio between consecutive errors.

Figure 2 shows the Galerkin solution computed in Ω and Figure 3 shows the solution
computed right after the first iteration of Uzawa’s Method. We see the lack of jumps on
the two interfaces.
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Figura 2: Approximated solution computed with standard Galerkin P1 finite elements on
the whole domain and with h = 1/8.
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Figura 3: Computed solution after the first iteration with h = 1/8 using Uzawa’s Method.
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