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Summary. We investigate the computational power of energy-based P systems, a model
of membrane systems where a fixed amount of energy is associated with each object and
the rules transform single objects by adding or removing energy from them. We answer
recently proposed open questions about the power of such systems without priorities asso-
ciated to the rules, for both sequential and maximally parallel modes. We also conjecture
that deterministic energy-based P systems are not computationally complete.

1 Introduction

Membrane systems (also called P systems) have been introduced in [11] as a class
of distributed and parallel computing devices, inspired by the structure and func-
tioning of living cells. Since then, many variants of P systems have been defined
in the literature. In what follows we assume the reader is familiar with the basic
notions and the terminology underlying P systems. A systematic introduction to
the area can be found in [12]; a recent overview of the developments is presented
in [13], whereas the latest information can be found in [15].

In this paper we consider energy-based P systems [7, 8, 6], a model of computa-
tion in the framework of Membrane Computing in which a given amount of energy
is associated to each object, and the energy manipulated during computations is
taken into account by means of conservative rules.

Let us note in passing that there has been other attempts in the literature
to incorporate certain conservation laws in membrane computing. One is purely
communicative models, of which the most thoroughly studied is P systems with
symport/antiport [10]. In these systems the computation is carried out by moving
objects between the regions in groups. To reach computational completeness, the
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workspace is increased by bringing (some types of) objects from the environment,
where they can be found in an unbounded supply. Another model is conformon P
systems [5], where computations are performed by redistributing energy between
objects, than can also be renamed and moved. A feature of these systems is that a
different amount of energy may be embedded in the same object at different time
steps. Yet another approach is to assign energy to membranes, as in P system with
Unit Rules and Energy assigned to Membranes (UREM P systems, for short) [1].
Here the computations are performed by rules renaming and moving an object
across a membrane, possibly modifying the energy assigned to that membrane.
It has been proved in [1] that UREM P systems working in the sequential mode
characterize PsMAT , the family of Parikh sets generated by matrix grammars
without appearance checking (and with erasing rules), and that their power is
increased to PsRE (the family of recursively enumerable Parikh sets) if priorities
are assigned to the rules or the mode of applying the rules is changed to maximally
parallel.

As stated above, in this paper we consider energy-based P systems, in which
energy is assigned to objects in a way that each object from the alphabet is assigned
a specific value. Instances of a special symbol are used to denote free energy units
occurring inside the regions of the system. The computations are carried out by
rules renaming and possibly moving objects, which may consume or release free
energy in the region, respecting the energy conservation law (that is, the total
amount of energy associated with the objects that appear in the left hand side of
a rule is the same as the energy occurring in the right hand side). The result of
a computation may be interpreted in many ways: for example, as the amount of
free energy units in a designated output region. Also for this model, to give the
possibility to reach computational completeness it is necessary (but not sufficient,
as we will see) that there may be an unbounded amount of free energy in (at least
one) specified region of the system. In [6] it is proved that energy-based P systems
working in the sequential way and using a form of local priorities associated to
the rules are computationally complete. Without priorities, their behavior can be
simulated by vector addition systems, and hence are not universal. However, in [6]
the precise characterization of the computational power of energy-based P systems
without priorities is left as an open problem. A related open question was whether
energy-based P systems can reach computational completeness by working in the
maximally parallel mode, without priorities, as it happens with UREM P systems
[1].

In this paper we answer these questions, by showing that the power of energy-
based P systems containing an infinite amount of free energy and without priorities
is exactly PsMAT when working in the sequential mode, and PsRE when work-
ing in the maximally parallel mode. Nonetheless we will end with another open
question: what is the power of energy-based P systems under the restriction of
determinism? We conjecture non-universality for this case.

The rest of the paper is structured as follows. The next section contains some
mathematical preliminaries, to fix the notions, definitions and notations with which
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we will work. Section 3 contains our results concerning the characterization of
the computational power of energy-based P systems working without priorities,
either in the sequential or in the maximally parallel mode. Section 4 contains the
conclusions and some discussion on the above mentioned open problem, concerning
the computational power of deterministic energy-based P systems.

2 Preliminaries

We assume the reader to be familiar with the basics of formal languages; on this
subject one may refer to, e.g., [14].

We denote by N the set of non-negative integers. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the empty string is denoted by
λ, and V ∗ − {λ} is denoted by V +. By | x | we denote the length of the word x
over V. Let {a1, . . . , an} be an arbitrary alphabet; the number of occurrences of
a symbol ai in x is denoted by | x |ai

; the Parikh vector associated with x with
respect to a1, . . . , an is (| x |a1 , . . . , | x |an) . The Parikh image of a language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L. For a family of
languages FL, the family of Parikh images of languages in FL is denoted by PsFL.
A finite multiset ⟨m1, a1⟩ . . . ⟨mn, an⟩ with mi ∈ N, 1 ≤ i ≤ n, is represented as
any string x the Parikh vector of which with respect to a1, . . . , an is (m1, . . . ,mn) .
The family of recursively enumerable languages is denoted by RE, and the family
of context-free languages by CF. The family of all recursively enumerable sets of
k-dimensional vectors of non-negative integers can thus be denoted by Ps(k)RE.
Since numbers can be seen as one-dimensional vectors, we can replace Ps(1) by N
in the notation, thus obtaining NRE.

2.1 Matrix Grammars

A context-free matrix grammar (without appearance checking) is a construct
G = (N,T, S,M) where N and T are sets of non-terminal and terminal sym-
bols, respectively, with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite set of
matrices, M = {mi | 1 ≤ i ≤ n}, where the matrices mi are sequences of the form
mi = [mi,1, . . . ,mi,ni ], ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n,
are context-free productions over (N,T ). For mi = [mi,1, . . . ,mi,ni ] and v, w ∈
(N ∪ T )

∗
we define v =⇒mi w if and only if there are w0, w1, . . . , wni ∈ (N ∪ T )

∗

such that w0 = v, wni = w, and for each j, 1 ≤ j ≤ ni, wj is the result of the
application of mi,j to wj−1. The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T )
∗
, mij ∈ M for 1 ≤ j ≤ k, k ≥ 1

}
.

According to the definitions given in [2], the last matrix can already finish with
a terminal word without having applied the whole sequence of productions. The
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family of languages generated by matrix grammars without appearance checking
is denoted by MAT . It is known that PsCF ⊂ PsMAT ⊂ PsRE. Further details
about matrix grammars can be found in [2] and in [14].

2.2 Energy-based P systems

Let us now recall the definition of energy-based P systems as given in [8].
An energy-based P system of degree m ≥ 1 is a tuple

Π = (A, ε, µ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout)

where:

• A is a finite set of objects called the alphabet;
• ε : A → N is a mapping that associates to each object a ∈ A the value ε(a) (also

denoted by εa), which can be viewed as the “energy value of a”. If ε(a) = ℓ,
we also say that object a embeds ℓ units of energy;

• µ is a description of a tree structure consisting of m membranes, injectively
labeled with elements from the set {1, . . . ,m};

• e /∈ A is a special symbol denoting one free energy unit;
• wi, for 1 ≤ i ≤ m, specifies multisets (over A∪ {e}) of objects initially present

in region i. We will sometimes assume that the number of e’s (but not of objects
from A) in some regions of the system is unbounded;

• Ri, for 1 ≤ i ≤ m, is a finite set of multiset rewriting rules over A ∪ {e}
associated with region i. Rules can be of the following types:

aek → (b, p) and b → (a, p)ek (1)

where a, b ∈ A, p ∈ {here, in(j), out | 1 ≤ j ≤ m}, and k is a non-negative
integer. Rules satisfy the conservativeness condition ε(a) + k = ε(b);

• iin ∈ {1, 2, . . . ,m} specifies the input region of Π;
• iout ∈ {0, 1, . . . ,m} specifies the output region of Π (iout = 0 corresponds to

the environment).

Remark 1. In the above definition we excluded rules of types e → (e, p), originally
included in [8]. It is easy to see that this does not influence the computational
power of energy-based P systems.

When a rule of the type aek → (b, p) is applied, the object a, in presence of k
free energy units, is allowed to be transformed into object b (note that εa+k = εb,
for the conservativeness condition). If p = here, then the new object b remains
in the same region; if p = out, then b exits from the current membrane. Finally,
if p = in(name), then b enters into the membrane labelled with name, which
must be directly contained inside the current membrane in µ. The meaning of
rule b → (a, p)ek, where k is a positive integer number, is similar: the object b is
allowed to be transformed into object a by releasing k units of free energy (also
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here, εb = εa+k). As above, the new object a may optionally move one level up or
down into the membrane structure. The k free energy units might then be used by
another rule to produce “more energetic” objects from “less energetic” ones. When
k = 0 the rule aek → (b, p), also written as a → (b, p), transforms the object a into
the object b (note that in this case εb = εa) and moves it (if p ̸= here) upward or
downward into the membrane hierarchy, without acquiring or releasing any free
energy unit. A similar observation applies to rules b → (a, p)ek when k = 0.

Rules can be applied either in the sequential or in the maximally parallel mode.
In either cases, we assume that the execution of rules does not consume energy.
When working in the sequential mode, at each computation step (a global clock is
assumed) exactly one enabled rule is nondeterministically chosen and applied in
the whole system. When working in the maximally parallel mode, instead, at each
computation step in each region of the system a maximal multiset of applicable
rules is selected, and then all those rules are applied in parallel. Here maximal
means that no further rule is applicable to objects that are “idle”, that is, not
already used by some other rule. If two or more maximal sets of applicable rules
exist, then one of them is nondeterministically chosen.

A configuration of Π is the tuple (M1, . . . ,Mm) of multisets (over A ∪ {e}) of
objects contained in each region of the system; (w1, . . . , wm) is the initial configu-
ration. A configuration where no rule can be further applied on is said to be final.
A computation is a sequence of transitions between configurations of Π, starting
from the initial one. A computation is successful if and only if it reaches a final
configuration or, in other words, it halts. The multiset wiin of objects occurring
inside the input membrane is the input for the computation, whereas the multi-
set of objects occurring inside the output membrane (or ejected from the skin, if
iout = 0) in the final configuration is the output of the computation. A non-halting
computation produces no output. As an alternative, we can consider the Parikh
vectors associated with the multisets, and see energy-based P systems as comput-
ing devices that transform (input) Parikh vectors to (output) Parikh vectors. We
may also assume that energy-based P systems have α ≥ 1 input membranes and
β ≥ 1 output membranes, instead of one. This modification does not increase the
computational power of energy-based P systems, since for any fixed value of α ≥ 1
(resp., β ≥ 1), the set Nα (resp., Nβ) is isomorphic to N, as it is easily shown by
using the well known Cantor mapping.

In what follows sometimes we will use energy-based P systems as generating
devices: we will disregard the input membrane, and will consider the multisets
(or Parikh vectors) produced in the output membrane at the end of the (halting)
nondeterministic computations of the system. In particular, in the output multi-
sets we will only count the number of free energy units contained in the β out-
put regions in the final configuration. We will denote the family of β-dimensional
vectors generated in this way by energy-based P systems with at most m mem-
branes and unbounded energy by Ps(β)OPm(energy∗). The union of all these
classes for β ranging through the set of all non-negative integers is denoted by
PsOPm(energy∗). When β = 1, the class Ps(β)OPm(energy∗) will be written as
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NOPm(energy∗). In all cases we will replace the subscript m by ∗ if no bound is
placed on the number of membranes. If instead of maximal parallelism we assume
that the P system evolves sequentially, we will add the superscript seq to P in the
notation.

Our results will thus be proved for energy-based P systems working as generat-
ing devices; however, the extension to the cases in which P systems are computing
functions or are accepting multisets of objects (or Parikh vectors) will be straight-
forward.

2.3 Register machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine is
a tuple M = (m,B, l0, lh, P ), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

• l1 : ADD(j, l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and nondeterministically jump to in-
struction l2 or l3. This instruction is usually called increment.

• l1 : SUB(j, l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine. Note that, without loss
of generality, we may assume that this instruction always appears exactly once
in P , with label lh.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A con-
figuration of a register machine is described by the contents of each register and
by the value of the program counter, that indicates the next instruction to be ex-
ecuted. Computations start by executing the first instruction of P (labelled with
l0), and terminate if and when they reach instruction lh.

Register machines provide a simple universal computational model [9]. In par-
ticular, the results proved in [4] immediately lead to the following proposition.

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β}+2)-register machine M computing f in such a way that,
when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, and all other registers
empty, M has computed f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label
lh with registers 1 to β containing r1 to rβ, and all other registers being empty. If
the final label cannot be reached, then f(n1, . . . , nα) remains undefined.

Register machines can also be used as accepting or as generating devices. In
accepting register machines, a vector of non-negative integers is accepted if and
only if the register machine halts. The following Proposition is a direct consequence
of Proposition 1.
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Proposition 2. For any recursively enumerable set L ⊆ Ps (α)RE of vectors of
non-negative integers there exists a deterministic register machine M with (α+ 2)
registers accepting L in such a way that, when starting with n1 to nα in registers
1 to α, M has accepted (n1, . . . , nα) ∈ L if and only if it halts in the final label lh
with all registers being empty.

To generate vectors of non-negative integers we have to use nondeterminis-
tic register machines. The following Proposition is also a direct consequence of
Proposition 1.

Proposition 3. For any recursively enumerable set L ⊆ Ps (β)RE of vectors
of non-negative integers there exists a nondeterministic register machine M with
(β + 2) registers generating L in such a way that, when starting with all registers
being empty, M has generated (r1, . . . , rβ) ∈ L if it halts in the final label lh with
registers 1 to β containing r1 to rβ , and all other registers being empty.

A direct consequence of the results exposed in [9] is that in Propositions 1 and 3
we may assume without loss of generality that only ADD instructions are applied
to the output registers. This fact will be used to decrease the number of membranes
of energy-based P systems simulating register machines; in particular, for each
output register one membrane will suffice, whereas to simulate the behaviour of
the other registers we will need two membranes.

A register machine is called partially blind if performing a zero-test blocks the
computation, thus leading to no result. We can reflect this situation by omitting l3
from all SUB instructions. However, unless all non-output registers have value zero
at halting, the result of a computation is discarded; note that this is an implicit
final zero-test, imposed by the definition and not affecting the power of register
machines in the general case. It is known [3] that partially blind register machines
characterize PsMAT .

3 Characterizing the Power of Energy-based P Systems

In this section we characterize the computational power of energy-based P systems
without priorities associated to the rules and with an unbounded amount of free
energy units. As stated in the previous section, we use energy-based P systems as
generating devices; the extension to the computing and accepting cases (concerning
computational completeness) is easy to obtain.

We start with systems working in the sequential mode; with the next two
theorems we prove that they characterize PsMAT . We first prove the inclusion
PsMAT ⊆ PsOP seq

∗ (energy∗), obtained by simulating partially blind register
machines.

Theorem 1. PsOP seq
∗ (energy∗) ⊇ PsMAT .
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Proof. Consider a partially blind register machine M = (m,B, l0, lh, P ), generat-
ing β-dimensional vectors, and assume that registers β+1, . . . ,m are empty in the
final configuration of successful computations, corresponding to an implicit final
zero-test.

We construct a corresponding energy-based P system ΠM , containing an infi-
nite amount of free energy units in the skin, as follows:

Π = (A, ε, µ, e, ws, . . . , wf , Rs, . . . , Rf ), where

A = {l, l′, l′′ | l ∈ B} ∪ {tj , Tj | β + 1 ≤ j ≤ m} ∪ {t, T,H,H ′},
ε(l) = 1, ε(l′) = 2, ε(l′′) = 0, l ∈ B,

ε(tj) = 0, ε(Tj) = 2, β + 1 ≤ j ≤ m,

ε(t) = 0, ε(T ) = 1, ε(H) = 2m+ 1, ε(H ′) = 2β + 2,

µ = [ [ ]
1
· · · [ ]

m
[ ]

f
]
s
,

ws = l0,

wj = λ, 1 ≤ j ≤ m,

wf = tβ+1 · · · tmT,

Rs = {l1e → (l′1, in(j)) | l1 : ADD(j, l2, l3) ∈ P}
∪ {l1 → (l′′1 , in(j)) e | l1 : SUB(j, l2) ∈ P}
∪ {T → (T, in(f)), lhe

2m → (H, in(f))}
∪ {Tj → (t, in(j)) e2 | β + 1 ≤ j ≤ m}.

Rj = {l′1 → (l2, out) e, l′1 → (l3, out) e | l′1 : ADD(j, l2, l3) ∈ P}
∪ {l′′1e → (l2, out) | l1 : SUB(j, l2) ∈ P} ∪R′

j , 1 ≤ j ≤ m,

R′
j = ∅, 1 ≤ j ≤ β,

R′
j = {T → te, te → T}, β + 1 ≤ j ≤ m,

Rf = {T → te, te → T, H → H ′e2(m−β)−1}
∪ {tje2 → (Tj , out) | β + 1 ≤ j ≤ m}.

Note that if β = m, then we replace H → H ′e−1 in Rf by He → H ′. The sets
of rules Rj and R′

j , 1 ≤ j ≤ m, are both intended to be associated with region
j, and hence should be joined. As explained below, the rules from R′

j are used to
produce infinite T ↔ te loops in the regions corresponding to non-output registers
of M if such registers are nonempty when the computation halts.

The simulation consists of a few parts. Every object associated with an in-
struction label l1 embeds 1 unit of energy. To simulate an increment instruction
l1 : ADD(j, l2, l3), the corresponding object l1 consumes 1 more unit of energy,
enters the region associated with register j as l′1, releases e there, and returns to
the skin either as the object l2 or as l3 (the choice being made in a nondetermin-
istic way), indicating the next instruction of M to be simulated. To simulate a
decrement instruction l1 : SUB(j, l2), the corresponding object l1 releases e in the
skin and enters as l′′1 the region associated with register j. There it consumes 1
unit of energy, and returns to the skin as the object l2 associated with the next
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instruction of M to be simulated. If the register was empty then this process is
blocked.

Meanwhile, another process takes place in region f ; the order of execution of
the two processes is nondeterministic, but both must finish in order for the system
to terminate the computation and produce a result. The aim of this latter process
is indeed to make ΠM “compute” forever if the above simulation of the SUB
instruction gets blocked when trying to decrement an empty register, so that no
result is produced in this case. The process consists of object T cyclically releasing
e and capturing it, generating a possibly infinite loop. The only way to stop the
loop is to alter the free energy occurring in region m. This is done when the
simulation of M is finished, leading to object H releasing e2(m−β)−1. If β = m this
consumes 1 unit of energy, thus stopping the T ↔ te loop. Otherwise it releases
enough energy for objects tj , β + 1 ≤ j ≤ m to leave the region, and the last one
of them stops the T ↔ te loop. The objects tj are used to ensure that registers
β + 1 ≤ j ≤ m are empty, otherwise causing a T ↔ te loop in the corresponding
region. �

The opposite inclusion, PsOP seq
∗ (energy∗) ⊆ PsMAT , is proved by simulating

energy-based P systems by matrix grammars.

Theorem 2. PsOP seq
∗ (energy∗) ⊆ PsMAT .

Proof. Let Π be an energy-based P system containing an infinite amount of free
energy units and applying the rules in the sequential mode. Each rule of Π can
be simulated by a corresponding rewriting rule on multisets of object-region pairs,
ignoring those pairs involving energy objects in the regions containing infinite free
energy. Such a multiset rewriting rule can be written as a matrix, yielding a matrix
grammar. Clearly no matrix can be applied if and only if no rule can be applied.
Since matrix languages are closed under morphisms, when this happens we can
apply a morphism that erases all object-region pairs except those involving free
energy objects in the output regions. The resulting language belongs to MAT , and
its Parikh mapping yields exactly Ps(Π). �

By joining the two inclusions proved in Theorems 1 and 2 we obtain our charac-
terization of PsMAT by energy-based P systems working in the sequential mode
with an unbounded amount of free energy:

Corollary 1. PsOP seq
∗ (energy∗) = PsMAT .

Running energy-based P systems in the maximally parallel mode allows them
to reach computational completeness without using priorities, as shown in the next
theorem.

Theorem 3. Ps(β)RE = Ps(β)OPβ+6(energy∗) for all integers β ≥ 1.
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Fig. 1. Simulation of the zero-test of l1 : SUB(j, l2, l3). The case when the register is
not zero is shown by dotted lines and symbols in parentheses, and the computation stops
before the dashed line.

Proof. We start by noticing that the construction from Theorem 1 produces the
same result when the P system works in the maximally parallel mode. Thus, it
suffices to only add a simulation of zero-test instructions without disrupting the
existing machinery. The new system nondeterministically chooses between decre-
ment and zero-test, and blocks the simulation process if the zero-test fails.

We thus add membranes [ ]
1′

, [ ]
2′

, . . . , [ ]
m′ and the following sets of

rules to the energy-based P system ΠM mentioned in the proof of Theorem 1:

R0
s = {1 : l1e → (l′1, in(j

′)), 3a : l′′′1 → (l1, in(j)),

5a : l′1 → (l1, in(j
′)) e, 5b : zje → (Zj , in(j)) e,

7b : z′je → (Z ′
j , in(j

′)), 12a : l
(iv)
1 → l3e

2

| l1 : SUB(j, l2, l3) ∈ P},
R0

j = {4a : l1e → (l′1, out), 6b : Zj → (z′j , out) e ∈ R′′
j

| l1 : SUB(j, l2, l3) ∈ P},
R0

j′ = {2 : l′1 → (l′′′1 , out) e, 3b : zje → Zj , 4b : Zj → (zj , out),

8b : Z ′
je → Z ′′

j , 9b : Z ′′
j → zje

2, 10a : l1e → l′′′1 ,

11a : l′′′1 e → (l
(iv)
1 , out) | l1 : SUB(j, l2, l3) ∈ P}.

The case of correct simulation of a zero-test is illustrated in Figure 1. Indeed,
if region j does not contain any object e, then the following sequence of multisets
of rules is applied: 1, 2, (3a, 3b), (4a, 4b), (5a, 5b),6b, 7b, 8b, 9b, 10a, 11a, 12a. In this
way, l1 is transformed to l3 while the other objects used (energy and zj) are
reproduced. On the other hand, if region j contains some object e, corresponding
to a non-zero value of the corresponding register, then the sequence of multisets
of rules applied is 1, 2, (3a, 3b), (4a, 4b), (5a, 5b), (6b, 10a), 7b, and the simulation
process is blocked. We recall that blocking the simulation process leads to an
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infinite computation due to the T ↔ te loop in region f . In words, because of free
energy in region j, object l1 left that region three steps earlier. As a result, instead
of object Z ′

j consuming 1 unit of energy and then releasing 2 units needed for
l1, the existing unit of energy has been consumed by l1, leaving the computation
unfinished.

The full P system, defined using components of the construction from Theorem
1, is given below:

Π ′′ = (A′′, ε′′, µ′′, e, w′′
s , . . . , w

′′
f , R

′′
s , . . . , R

′′
f ), where

A′′ = A ∪ {l′′′ | l ∈ B} ∪ {zj , z′j , Zj , Z
′
j , Z

′′
j | 1 ≤ j ≤ m},

ε′′(x) = ε(x), ∀x ∈ A, ε(l′′′) = 1, ε(l(iv)) = 2, ∀ l ∈ B,

ε′′(zj) = ε′′(z′j) = 0, ε′′(Zj) = ε′′(Z ′
j) = 1, ε′′(Z ′′

j ) = 2, 1 ≤ j ≤ m,

µ = [ [ ]1 · · · [ ]m [ ]1′ · · · [ ]m′ [ ]f ]s ,

w′′
s = ws, w′′

j = wj , 1 ≤ j ≤ m, w′′
f = wf ,

w′′
j′ = zj , 1 ≤ j ≤ m,

R′′
s = Rs ∪R0

s, R′′
j = Rj ∪R0

j , 1 ≤ j ≤ m,

R′′
j′ = R0

j′ , 1 ≤ j ≤ m, R′′
f = Rf .

As we can see, system Π ′′ uses the skin membrane, one membrane to control the
halting, and two membranes for each of the m registers, for a total of 2m + 2
membranes.

Since it is known (see Proposition 3) that m = β+2 registers suffice to generate
any recursively enumerable set L ⊆ Ps(β)RE of vectors of non-negative integers
by nondeterministic register machines, we would obtain 2β + 6 membranes. How-
ever, as recalled above, when using register machines as generating devices we can
assume without loss of generality that only ADD instructions are applied to the
output registers. So the number of membranes needed to simulate M reduces to
β + 2(m− β) + 2 = β + 6. ⊓⊔

By putting β = 1 in the above theorem we obtain a characterization of NRE:

Corollary 2. NOP7(energy∗) = NRE.

whereas if we make the union of all classes Ps(β)OPβ+6(energy∗) for β ranging
through the set of non-negative integers we obtain a characterization of PsRE:

Corollary 3. PsOP∗(energy∗) = PsRE.

As stated above, these results can be easily generalized to the cases in which
energy-based P systems are used as accepting devices or as devices computing
partial recursive functions. First of all note that the energy-based P systems built
in the proofs of Theorems 1 and 3 can be easily modified to simulate deterministic
register machines. Considering the computing case, we know from Proposition 1
that m = max{α, β}+2 registers suffice to compute any partial recursive function
f : Nα → Nβ . To simulate such a register machine we would obtain 2max{α, β}+6
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membranes for the system Π ′′ built in the proof of Theorem 3. However, this
number can be reduced to α+max{α, β}+ 6 by considering that:

• as stated above, we can assume that only ADD instructions are applied to
the output registers. This means that only one membrane (instead of two) is
needed to simulate the behaviour of each output register;

• in general some input registers may also be used as output registers. However,
any “primed” membrane j′ associated with an input register, 1 ≤ j′ ≤ α,
cannot be used also as a membrane associated to an output register, due to
the object zj residing in the membrane. Hence, with α inputs and β outputs we
need α primed membranes plus max{α, β} non-primed membranes. By adding
two membranes for each of the 2 additional registers of M , plus membranes f
and s, we obtain α+max{α, β}+ 6 membranes.

As particular cases, we need 2α + 6 membranes for the accepting case and β + 6
membranes for the generating case.

4 Conclusions and Future Work

In this paper we have considered energy-based P systems, a model of membrane sys-
tems with energy assigned to objects. We have answered two questions about their
computational power, and we have thus proved that it matches Parikh mapping
of matrix languages when the rules of the P systems are applied in the sequential
mode, whereas there is computational completeness in the maximally parallel case.

As a direction for future research, we propose the following problem: What is
the computational power of deterministic energy-based P systems? We conjecture
that they are not universal. The question originates from the fact that in [7, 8]
energy-based P systems are used to simulate Fredkin gates and Fredkin circuits,
respectively; however, the simulation is performed in a nondeterministic way, rely-
ing on the fact that sooner or later the simulation will choose the correct sequence
of rules. Note that if the wrong rules are chosen the simulation is not aborted;
the state of the system is “rolled back” so that a new nondeterministic choice can
be made, hopefully the correct one. Clearly this situation could produce infinite
loops; this is why one would like instead to have a deterministic simulation.

Here we can only give an informal justification for our conjecture. Notice that
objects only interact indirectly, via releasing free energy units in a region or con-
suming them. Consider a dependency graph whose nodes are identified by object-
region pairs. Two nodes are connected if the corresponding objects are present
in the associated regions in some rule. A system is deterministic if no branching
can be effectively used in its computations, so removing unusable rules would lead
to a dependency graph where each node has out-degree at most one. Hence, any
object occurring in the initial configuration of the system has some predetermined
evolution path, and one of the following cases must happen:

• the path is finite, and the object evolves until there are no associated rules,
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• the path leads to a cycle, and the object evolves forever (the computation yields
no result),

• the evolution is “frozen” because there is not enough energy for the associated
rule.

In energy-based P systems, the only way one object can influence the behavior
of another object is by manipulating energy, leading to freezing or unfreezing
the computational path of another object. There is no deterministic way to set
an object to two different paths. If a “frozen” object receives enough energy to
continue its evolution, then its computational path is the same as if it was never
frozen.

So the information that can be passed from an object to another one is quite
limited: giving the latter energy, as opposed to letting it freeze forever. However,
every time this happens, some object must stop evolving forever. Since the initial
number of objects is fixed and cannot increase, the communication complexity is
bounded and this should imply non-universality.

However, even if deterministic energy-based P systems were not universal, they
could nonetheless be able to simulate Fredkin gates. This should be doable if
leaving some “garbage” into the system at the end of the computation is allowed.
Indeed, the active objects could unfreeze the desired ones, producing the needed
result. More difficult would be designing an energy-based P system that can be
reused to simulate a Fredkin gate as many times as desired. We expect the reusable
construction to be impossible, for the same reasons as exposed above.
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