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Summary. This paper continues an investigation into bridging two research areas con-
cerned with natural computing: membrane computing and reaction systems. More specif-
ically, the paper considers a transfer of two assumptions/axioms of reaction systems, non-
permanency and the threshold assumption, into the framework of membrane computing.
It is proved that: (1) SN P systems with non-permanency of spikes assumption charac-
terize the semilinear sets of numbers, and (2) symport/antiport P systems with threshold
assumption (translated as ω multiplicity of objects) can solve SAT in polynomial time.
Also, several open research problems are stated.

1 Introduction

This paper continues research aimed at bridging two research areas concerned
with processes inspired by the functioning of living cells, membrane computing
(see, e.g., [10], [11], [14]) and reaction systems (see, e.g., [1], [3] – [6]). Membrane
computing (based on P systems) essentially deals with multisets, processed in the
compartments of a membrane structure according to rules of various types, such as,
e.g., multiset rewriting and symport/antiport rules. Thus, the objects are present
with specified multiplicity within the regions delimited by membranes, some of
them evolve by the rules associated with membranes while the objects which are
not involved in the rules used at a given step remain unchanged – thus they can
be used in the subsequent processing steps.

The situation is very different in reaction systems. First of all, because of the
assumed abstraction level this is a qualitative model, i.e., there is no counting: one
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deals with sets rather than with multisets. Consequently, it is assumed that if an
entity is present, then it is present in enough copies to be used by all reactions that
use this entity as a reactant. This is referred to as a threshold assumption. Secondly,
an entity is present in a successor state T ′ of a given state T only if it is produced
by a reaction enabled in T or it is put into T ′ by the environment/context. This
reflects the basic bioenergetics of the living cell, and it is referred to as the non-
permanency assumption.

In this paper we continue an investigation of bridging membrane computing
and reaction systems (see [12] and [13]) by transferring the threshold and the
non-permanency assumptions to the framework of P systems. In particular, we
investigate the resulting computing power and efficiency of some classes of P sys-
tems. We prove that:

(1) spiking neural (in short, SN) P systems with non-permanency of spikes
characterize/compute just semilinear sets of numbers, while traditional SN P sys-
tems are Turing complete,

(2) symport/antiport P systems with the threshold assumption can solve NP-
complete problems in polynomial time – this is illustrated with SAT, the satisfia-
bility of propositional formulas in the conjunctive normal form.

We conclude this paper by stating a number of research problems.

2 Prerequisites

We assume the reader to be familiar with basic elements of membrane computing
(e.g., from [11], [14], [17]) and of language theory (e.g., from [16]). Here we only
recall some general notions and notations.

The language of all strings over an alphabet V is denoted by V ∗, the empty
string is denoted by λ, and V + = V ∗ − {λ}.

We denote by SLIN1 the family of semilinear sets of numbers, and by NRE the
family of recursively enumerable (Turing computable) sets of numbers. Semilinear
sets are the length sets of regular languages, which are languages characterized
by regular expressions or generated by regular grammars. A regular grammar is
specified in the form G = (N,T, S, P ), where N is the nonterminal alphabet, T
is the terminal alphabet, S ∈ N is the axiom of the grammar, and P is a set of
rules, each of which is of the form A→ aB, A→ a, where A,B ∈ N, a ∈ T .

As customary in membrane computing, we represent the multisets over an
alphabet V by strings in V ∗ (hence a string and all its permutations represent
the same multiset). Thus, we speak interchangeably about strings and multisets
over V , and |w| represents both the length of the string w and the cardinality of
the multiset (represented by) w. We also write w ⊆ w′ for the inclusion between
multisets (represented by the strings) w and w′. Since a set M is a multiset where
all elements have multiplicity one, it is represented by a string containing each
symbol from M exactly once.
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2.1 Membrane Computing

We briefly recall here two classes of P systems which we investigate in this paper:
the symport/antiport P systems, [9], and the spiking neural (SN) P systems, [8].

A membrane structure is a cell-like hierarchical arrangement of labeled mem-
branes (understood as 3D vesicles); the external membrane is usually called the
skin membrane, and a membrane without any membrane inside is called elemen-
tary. With each membrane, one associates a region, which is the space delimited
by it and the inner membranes, if any. A membrane structure can be naturally
represented by a rooted tree or by an expression of labeled parentheses (with a
unique external parenthesis, associated with the skin).

A symport rule is either of the form (x, in) or of the form (x, out), and an
antiport rule is of the form (z, out;w, in), where x, z, and w are multisets of objects.
These rules formalize the biological operations of moving several objects at a time
across a membrane, either in the same direction, as is the case for symport rules
or in opposite directions, as is the case for antiport rules.

A P system with symport/antiport rules is a construct of the form

Π = (O,µ,w1, . . . , wm, E,R1, . . . , Rm, iin, iout),

where O is an alphabet of objects, µ is a membrane structure with m membranes
(here, labeled by 1, . . . ,m, but any set of labels associated in a one-to-one manner
to membranes can be used), w1, . . . , wm are the multisets present in the initial
configuration in the m regions of µ (delimited by membranes labeled by 1, . . . ,m,
respectively), E ⊆ O, R1, . . . , Rm are finite sets of symport/antiport rules associ-
ated with the m membranes of µ, and iin, iout are the input and the output regions
of the system (iin indicates a region of µ, while iout can also be the environment
of the system – we write then iout = env). The objects of E are supposed to be
present in the environment of the system with an arbitrary multiplicity.

Using an antiport rule (z, out;w, in) associated with a membrane i means send-
ing the multiset z out of region i and, simultaneously, bringing the multiset w into
membrane i from the outside region adjacent to membrane i. Similarly for symport
rules, where only one multiset of objects is moved across membrane i.

(Note that the symport/antiport rules do not change the number of objects,
but they only displace them – that is why we need a supply of objects in the
environment; this supply is inexhaustible, i.e., it does not matter how many ob-
jects are introduced into the system, still arbitrarily many objects remain in the
environment.)

The rules are used in the nondeterministic maximally parallel manner. In the
initial configuration, an input is introduced into region iin in the form of a multiset,
and the result of a computation is given in region iout, most typically at the end
of the computation (when no rule can be applied). If the system is used in the
generative mode, then iin is ignored/removed. If the system is used in the accepting
mode, then iout is ignored and the input is accepted if and only if the computation
halts. In the computing mode both iin and iout are used. In particular, the system
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can be used in the decidability mode: the code of an instance of a decision problem
is introduced in iin and the result is obtained in iout: an object yes is placed in iout
at a specified step of the computation if and only if the instance of the problem
has a positive answer.

More precise definitions of what it means to solve a decision problem in terms
of P systems (complexity classes, uniform versus semi-uniform solutions, frontiers
of efficiency etc.) can be found in many places – we mention here only [15] and the
corresponding chapter from [14]. Several results in this area say that P systems
able to produce an exponential workspace in a linear time (e.g., by membrane
division, membrane creation, string replication) can solve computationally hard
problems (typically, NP-problems) in polynomial time; the term fypercomputation
was proposed in [12] for this situation, a sort of analogy to an established term
hypercomputation, see, e.g., [2].

It is known that symport/antiport P systems (with a small number of mem-
branes and with rules of a low complexity) used in the generative or the accepting
mode characterize NRE (see, e.g., [14]).

Note that in the previous definitions multisets play a crucial role: objects ap-
pear with a finite multiplicity and the objects which do not evolve by a rule remain
unchanged. However, the objects from the set E are used according to the thresh-
old assumption (but they do not obey the non-permanency assumption).

The threshold assumption can be applied to some or to all membranes of a
symport/antiport P system. In such distinguished membranes (where the threshold
assumption applies), any object – even if it comes from a neighboring membrane
with a specified multiplicity, maybe in only one copy – is present in arbitrarily
many copies. A P system with such membranes is said to be an ωP system.

Another class of P systems investigated in this paper is that of spiking neural
P systems, in short, SN P systems. Such a system (with extended rules, without
delay, of degree m ≥ 1) is a construct of the form

Π = (O, σ1, . . . , σm, syn, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of rules each of which is in one of the following two forms:

(1) E/ac → ap, where E is a regular expression over {a} and 1 ≤ p ≤ c;
(2) as → λ, for some s ≥ 1, with the restriction that as ∈ L(E) for no rule

E/ac → a of type (1) from Ri;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
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4. out ∈ {1, 2, . . . ,m} indicates the output neuron.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, ak ∈ L(E) and k ≥ c, then the rule
E/ac → ap can be applied, and this means that c spikes are consumed, only k− c
remain in the neuron, and p spikes are produced and submitted to all neurons σj
such that (i, j) ∈ syn (each σj receives p spikes). The rules of type (2) are forgetting
rules: if the neuron contains exactly s spikes, then the rule as → λ can be used,
and this means that all s spikes are removed. The rules are used in the sequential
manner within each neuron, and in parallel for all neurons of the system.

Using the rules as described above (see more detailed/precise definitions in the
literature), we can define transitions among configurations. With a computation
we can associate a result in several ways. The basic one associates a number to
each computation (halting or not), viz., as the number of steps elapsed between the
first and the second time when the output neuron spikes. The set of such numbers
“generated” by Π is denoted by N2(Π). Another possibility is to count all spikes
sent to the environment by the output neuron during halting computations. The
set of numbers computed by Π in this way is denoted by Nout(Π).

For both modes two types of results were obtained: Turing computability in
the case of neurons without any bound on the number of spikes present inside,
and a characterization of semilinear sets of numbers in the case of systems whose
neurons have a bound on the number of spikes (we also call such systems bounded).

Note that also for SN P systems the multisets (counting the spikes in each
neuron) and the permanency (spikes unused remain in the neurons) are essential.

3 The Effect of Non-Permanency

The non-permanency feature was considered in [13] for two classes of P systems:
cooperative transition P systems and symport/antiport P systems, and in both
cases the universality was proved. Hence there is no loss of power with respect to
the traditional membrane computing case, where the objects which do not evolve
survive. The case of catalytic P systems was stated as an open problem – recall that
under the permanence assumption catalytic P systems are universal, even with two
catalysts only, [7]. The effect of non-permanency was not investigated neither for
non-cooperative transition P systems nor for the spiking neural P systems.

Let us denote by NoutSNPm(np) the family of sets of numbers Nout(Π), for SN
P systems Π with at most m neurons having the non-permanency property. When
the generated numbers are taken as the number of steps between the first two
steps when spikes are emitted by the output neuron, then we replace the subscript
out by 2. The subscript m is replaced by ∗ if no bound on the number of neurons
is assumed.

Lemma 1. NαSNP∗(np) ⊆ SLIN1, for α ∈ {2, out}.
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Proof. If an SN P system Π (with m neurons) works in the non-permanency
mode, then after each computation step each neuron has a number of spikes which
is bounded by a constant depending on Π: each neuron emits a number of spikes,
bounded by the maximum number of spikes produced by any rule of the system –
denote this number by M . The spikes produced by a neuron σi can be replicated
and submitted to at most m− 1 other neurons (to which there is a synapse from
σi), hence in total we have at most m(m − 1)M spikes. We start with a given
initial number of spikes and at any moment we have in the system a bounded
number of spikes, distributed to m neurons, which means a finite number of pos-
sible configurations of the system. These configurations can be taken as states of
a finite automaton (or the nonterminals of a regular grammar) which simulates
the work of the system. Taking as a result of a computation (of the automaton or
of the grammar) either all spikes sent to the environment by the output neuron
of Π or the number of steps between the first two spikes sent to the environment
(e.g., we record in the configuration-nonterminal the fact that a spike was emitted,
then we “count” until a second spike is emitted, and in that moment we stop the
computation of the grammar), we obtain the inclusions of the lemma.

The above reasoning actually shows that an SN P system with non-permanency
cannot use rules of the form E/ac → ap where for the regular expression E its
language L(E) is infinite. Thus, we can assume that each neuron contains only
bounded rules, which then implies the semilinearity of the generated set of numbers
(see already [8]).

Also the converse of the previous lemma holds. It was proved in [8] for bounded
SN P systems, but the proof in [8] is rather complex (it starts from the characteri-
zation of semilinear sets of numbers as the union of a finite set with a finite number
of arithmetical progressions), and it does not provide a bound on the number of
neurons. Here we provide a direct proof (also bounding the number of neurons),
starting from the characterization of semilinear sets of numbers as the length sets
of regular languages. Of course, it is sufficient to consider regular languages over
the one-letter alphabet.

Lemma 2. SLIN1 ⊆ NoutSNP5(np).

Proof. Let us consider a regular grammar G = (N, {a}, S, P ) and assume that
N = {A1 = S,A2, A3, . . . , An}. We construct the following SN P system (its
initial configuration is given in a graphical form in Figure 1):

Π = ({a}, σ1, . . . , σ5, syn, 5), where

σ1 = (n+ 1, {an+i → an | 1 ≤ i ≤ n}),
σ2 = (0, {an+i → an | 1 ≤ i ≤ n}),
σ3 = (n+ 1, {an+i → aj | 1 ≤ i, j ≤ n,Ai → aAj ∈ P}
∪ {an+i → an+i | 1 ≤ i ≤ n,Ai → a ∈ P}),

σ4 = (0, {an+i → aj | 1 ≤ i, j ≤ n,Ai → aAj ∈ P}



Bridging Membrane and Reaction Systems – Further Results 249

∪ {an+i → an+i | 1 ≤ i ≤ n,Ai → a ∈ P}),
σ5 = (0, {ai → a | 1 ≤ i ≤ 2n}),
syn = {(1, 2), (2, 1), (1, 4), (4, 1), (2, 3), (3, 2), (3, 4), (4, 3), (3, 5), (4, 5)}.

With each nonterminal Ai, 1 ≤ i ≤ n, we associate n + i spikes, in neurons
σ3 and σ4, where the rules in P are simulated. Initially, only neurons σ1 and σ3
spike, sending spikes to “partner neurons” σ2 and σ4; when these later neurons
spike, they send spikes to the former neurons. The computation consists of such
alternating steps. Neurons σ3 and σ4 also send spikes to the output neuron, σ5,
which sends a spike to the environment in each step. When a terminal rule Ai → a
in P is simulated, neurons σ3 and σ4 produce n+i spikes. The output neuron spikes
once again, but all other neurons stop working: there is no rule which processes
2n+ i spikes (these spikes are removed because of the non-permanency axiom, but
this is not important since the computation halts anyway).

Consequently, the system Π produces k spikes if and only if ak ∈ L(G), hence
SLIN1 ⊆ NoutSNP5(np).

Lemma 3. SLIN1 ⊆ N2SNP5(np).

Proof. We consider the SN P system from the proof of Lemma 2, but now we
replace the output neuron σ5 by the following neuron:

σ5 = (a2n+1, {a2n+1 → a} ∪ {an+i → a | 1 ≤ i ≤ n}).

The output neuron spikes in the first step and then it spikes only one step after
the moment when a rule Ai → a was simulated in one of the neurons σ3 or σ4.
In the steps for which ai, 1 ≤ i ≤ n, spikes are sent to neuron σ5; these spikes are
removed – this is implied by the non-permanency axiom, because there is no rule
to process them.

Consequently, the modified system spikes twice, at a distance of k steps if and
only if ak ∈ L(G), hence SLIN1 ⊆ N2SNP5(np).

Combining the previous three lemmas we obtain:

Theorem 1. SLIN1 = NαSNPβ(np), for all α ∈ {2, out} and β ∈ {5, 6, . . .} ∪
{∗}.

What about the SN P systems using less than five neurons? It is easy to see
that computations in one-neuron systems last only one step, hence they produce
only finite sets. SN P systems with two neurons can generate infinite sets – in the
out mode. Here is an example of such a system:

Π = ({a}, σ1, σ2, {(1, 2), (2, 1)}, 2), where

σ1 = (2, {a2 → a2, a2 → a}),
σ2 = (0, {a2 → a2}).
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Ai → a ∈ P

5

ai → a,

1 ≤ i ≤ 2n

Fig. 1. The SN P system in the proof of Lemma 2

The computation can continue until using the rule a2 → a in the first neuron –
at that moment no rule can be applied in any neuron and all spikes vanishes. We
have Nout(Π) = {2n | n ≥ 0}.

Interestingly enough, when the result is the distance between the first two
spikes, SN P systems with two neurons generate only singletons. If there is only
one synapse between the two neurons, then each computation lasts one or two
steps, hence only one of the numbers 0 and 1 can be generated. If the two neurons
can communicate with each other, this can be done simultaneously or at most in
alternate steps (after using a rule, no spikes remains in a neuron, because of the
non-permanency assumption, hence new spikes must be obtained from the partner
neuron); one of the neurons is the output neuron, hence it must spike twice in the
first four steps of the computation and so only numbers 1 and 2 can be computed.
One can easily see that the generated set is a singleton, containing one of the
numbers 1, 2.

However, SN P systems with three neurons can generate infinite sets also as
the distance between the first two spikes sent to the environment. This is the case
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for the system Π in Figure 2, for which we have N2(Π) = {n | n ≥ 1}. The output
neuron spikes in the first step of a computation and then only after the step when
neuron σ2 uses the rule a?2→ a; as long as both σ1 and σ2 use their rules a2 → a2,
neuron σ3 cannot use its rule, hence the four spikes it receives are lost, due to the
non-permanency assumption.
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Fig. 2. An SN P system with three neurons generating an infinite set.

It remains an open problem whether SN P systems with four neurons charac-
terize SLIN1.

4 The Effect of the Threshold Assumption

It was proved in [12] that cooperative P systems without permanency, with two
membranes where the inner one works under the threshold assumption (any object
present here is available in arbitrarily many copies), can solve SAT in a polynomial
time (actually, linear with respect to the number of clauses and independent of
the number of variables) in a uniform way.

This result can be extended to symport/antiport P systems, with one additional
feature: the system uses precomputed resources. More specifically, for a SAT(n,m)
problem (n variables and m clauses) we work with a number of objects of the order
of nm, i.e., all sets of at most m variables. These objects are given in advance,
available in the initial configuration of the system, but they are “precomputed”,
provided at no cost, although there are exponentially many of them (but without
containing other information than that provided by n and m). Of course, in this
case we do not work in the standard complexity framework, as the systems solving
a class of problems cannot be constructed in a polynomial time with respect to
the size of the problems (actually, up to now there is no definition of complexity
classes for the case of precomputed resources).
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The proof follows the same idea as that of the result in [12], implemented
for symport/antiport systems. Since in such systems the objects are only moved
across membranes and they cannot be changed during the computation, we see
no way to avoid using an exponential number of objects given in advance (in [12]
these objects are created during the computation by means of cooperative multiset
rewriting rules).

Theorem 2. SAT can be solved (in a uniform way) in a polynomial time by sym-
port/antiport ωP systems with precomputed resources.

Proof. Let us consider the SAT problem for n variables, x1, x2, . . . , xn, and m
clauses. We denote Lit = {xi,¬xi | 1 ≤ i ≤ n} and V al = {ti, fi | 1 ≤ i ≤ n}. Let
v(xi) = ti and v(¬xi) = fi, for all 1 ≤ i ≤ n. We have ¬ti = fi and ¬fi = ti, for
1 ≤ i ≤ n. (Note that ti, fi identify, by their subscripts, the variables with which
they are associated.)

An instance γ = C1∧C2∧. . .∧Cm of SAT(n,m), with Ci = yi,1∨yi,2∨. . .∨yi,ki ,
for yi,j ∈ Lit, 1 ≤ j ≤ ki, is encoded as

code(γ) = v(y1,1)(1) . . . v(y1,k1)(1)v(y2,1)(2) . . . v(y2,k2)(2) . . .

v(ym,1)(m) . . . v(ym,km)(m).

We now construct the following symport/antiport ωP system (the system works
under the non-permanency assumption, the three inner membranes are distin-
guished, and the objects are present in them with ω multiplicity):

Π = (O,µ,w1, . . . , wm+1, w0, w0′ , E,R1, R2, . . . , Rm+1, R0, R0′ ,m+ 1, env),

O = {α(j) | α ∈ V al, 1 ≤ j ≤ m} ∪ V al
∪ {a, 〈a〉, yes} ∪ {d(i) | 1 ≤ i ≤ m+ 1} ∪ {〈aw〉 | w ⊆ V al, |w| ≤ m},

µ = [ [ . . . [ [ [ [ ]
0′

]
0
]
1
]
2
. . . ]

m
]
m+1

,

w0′ = w0 = {yes} ∪ {〈aw〉 | w ⊆ V al, |w| ≤ m},
w1 = w2 = . . . = wm = λ, wm+1 = ad(m+1),

E = {d(i) | 1 ≤ i ≤ m} ∪ {d, 〈a〉} ∪ V al,
R0′ = {(yes, out; yes, in} ∪ {(〈aw〉, out; 〈aw〉, in) | w ⊆ V al, 0 ≤ |w| ≤ m},
R0 = {(〈aw〉, out; 〈aw〉α, in) | α ∈ V al, w ⊆ V al, 0 ≤ |w| ≤ m,α ∈ w}
∪ {(〈awα〉, out; 〈aw〉α, in) | α ∈ V al, w ⊆ V al, 0 ≤ |w| ≤ m,α /∈ w,¬α /∈ w}
∪ {(yes, out; 〈aw〉d, in) | w ⊆ V al, 1 ≤ |w| ≤ m},

Ri = {(α, in) | α ∈ V al} ∪ {(d, in), (yes, out), (〈a〉, in)}, 1 ≤ i ≤ m,
Rm+1 = {(d(1), out; d, in), (yes, out)} ∪ {(d(i+1), out; d(i), in) | 1 ≤ i ≤ m}

∪ {(α(j+1), out;α(j), in) | α ∈ V al, 1 ≤ j ≤ m− 1}
∪ {(α(1), out;α, in) | α ∈ V al} ∪ {(a, out; 〈a〉, in)}.

For an easier understanding, we also present this system in a graphical form,
in Figure 3. (We follow here the standard way of representing a P system with
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symport/antiport rules, i.e., indicating inside membranes the objects present in
the initial configuration of the system, and on the outside side of each membrane
the associated rules.)

(yes, out), (a, out; 〈a〉, in)

(α(1), out;α, in), α ∈ V al

(α(j+1), out;α(j), in), α ∈ V al, 1 ≤ j ≤ m− 1

(d(1), out; d, in)

(d(i+1), out; d(i), in), 1 ≤ i ≤ m

'

&

$

%

'

&

$

%

m+ 1

m

(α, in),

α ∈ V al

(d, in)

(yes, out)

(〈a〉, in)

. . .'

&

$

%

a d(m+1)

1

(α, in),

α ∈ V al

(d, in)

(yes, out)

(〈a〉, in)

(yes, out; 〈aw〉d, in), w 6= λ

(〈awα〉, out; 〈aw〉α, in), α /∈ w,¬α /∈ w

(〈aw〉, out; 〈aw〉α, in), α ∈ w

'

&

$

%

0

(yes, out; yes, in)

(〈aw〉, out; 〈aw〉, in),

w ⊆ V al, |w| ≤ m

yes

〈aw〉, w ⊆ V al, |w| ≤ m'

&

$

%

0′
yes

〈aw〉,

w ⊆ V al, |w| ≤ m

Fig. 3. The symport/antiport ωP system from the proof of Theorem 2

The computation of Π starts after introducing the multiset code(γ) into the
skin membrane, for a given instance γ of the SAT(n,m) problem. The truth-values
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which satisfy the first clause bring from the environment the corresponding truth-
values without superscripts. Simultaneously, object a is replaced by 〈a〉, and all
other truth-values, corresponding to clauses C2, . . . , Cm, decrease by one their su-
perscripts. Also the “checker” object d decreases, step by step, its superscript –
but starting from m+1, hence by one greater than the superscripts of objects asso-
ciated with Cm. The truth-values without superscripts and object 〈a〉 “migrate”,
step by step, towards membrane 1. First, the truth-values which satisfy C1 (at the
same time with 〈a〉) reach membrane 1, then those which satisfy C2, and so on.

In membrane 1, objects of the form 〈aw〉 grow, starting from the “seed” 〈a〉,
with w containing the truth-values which satisfy one by one the clauses. Specifi-
cally, if α satisfy clause Ci and it arrives in membrane 1, where we have the object
〈aw〉 (for i = 1 we have w = λ), with w containing the truth-values of the variables
which satisfy all clauses Cj , 1 ≤ j ≤ i− 1, then:

(1) if α is in w, then the object 〈aw〉 is not changed, and α is moved in
membrane 0, where it will not survive,

(2) if neither α nor ¬α is in w, then this new truth-value α is added to w, by
means of the rule (〈awα〉, out; 〈aw〉α, in) ∈ R0,

(3) if none of the previous cases holds (i.e., ¬α appears in w), then no reaction
takes place – hence both α and 〈aw〉 will disappear because of the non-permanency
condition.

Note the important fact that the threshold assumption is crucial in this oper-
ation: each object, whether of the form α or 〈aw〉, appears in membrane 1 (and in
membranes 0, 0′) in the ω way, sufficient for all rules which can be applied (there
is no competition for objects), hence all rules are applied simultaneously!

One step after the truth-values corresponding to the last clause, Cm, entered
membrane 1, also d moves to membrane 1. It finds here all truth-assignments w
which satisfy all clauses. If there is no such truth-assignment, then no reaction
takes place in membrane 1 at that time – thus object d disappears and object
yes is not released from membrane 0. If there is at least one non-empty truth-
assignment w, then the rule (yes, out; 〈aw〉d, in) ∈ R0 is used and yes is moved
out of membrane 0 and from here it starts its way out of the system.

The internal membranes 0, 0′ have the role of suppliers of objects: because of
the non-permanency assumption, only objects which are moved by a rule survive.

If the formula γ is satisfiable, then object yes exits the system, otherwise this
object remains inside. Let us count now the number of steps necessary to bring out
object yes. Objects d(i) decrease their superscript from m + 1 to 1 (hence m + 1
steps), then d(1) is replaced by d (one more step). In further m steps, d crosses
all membranes from region m+ 1 to region 1. Taking yes from membrane 0 needs
one more step. Crossing all membranes 1, 2, . . . ,m+ 1 requires m+ 1 steps. Thus,
provided that γ is satisfiable, object yes exits the system in 3m+ 4 steps.

Because of the rules associated with membrane 0′, the system never halts, but
the answer whether or not the formula γ is satisfiable is obtained in step 3m+ 4:
γ is satisfiable if and only if in this step we get yes out of the system.
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Note that we work with precomputed resources: the total alphabet of the sys-
tem as well as the contents (objects and rules) of membranes 0, 0′ are exponential
(of the order of nm), the computation of these objects and rules is done in ad-
vance, at no cost, but there is no information in the system at the beginning of
the computation related to γ different from n and m.

Finally, we notice that the construction is uniform (it starts from the problem
itself, SAT(n,m), not from a given instance of the problem), which concludes the
proof.

5 Concluding Remarks. Other Cases to Consider

In this paper we continued the study of the effect of transferring to membrane com-
puting the two basic axioms of reaction systems: the non-permanency assumption
(an object which does not evolve disappears) and the threshold assumption (an
object either does not appear, or it is present in arbitrarily many copies).

After recalling the results from [12] and [13], we established two new results:
in the non-permanency case, SN P systems characterize the semilinear sets of
numbers, and symport/antiport systems under the threshold assumption (imposed
in only two membranes) can solve SAT in a polynomial time. All these results and
the cases which were not yet investigated are displayed in Table 1.

coop cat ncoop S/A SN P

Non-permanency Univ. ? ? Univ. SLIN1

[13] [13] Theorem 1

Threshold assumption Fyper. ? ? Fyper. ?
[12] Theorem 2

Table 1. Cases studied – cases to be studied

Of course, there also are other open problems and research topics. Several
of them were also mentioned in the previous sections. Certainly, an interesting
question is whether the threshold assumption adds power to SN P systems working
under the non-permanency assumption.

A natural research topic is to avoid using precomputed resources in Theorem
2 and instead to construct the exponentially many components of the initial con-
figuration of the symport/antiport P system by using additional features of the
system, e.g., using membrane division.

A “dual” research area is a transfer of ideas from membrane computing to
reaction systems, but we do not address this issue here – some comments can be
found in [13].
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Acknowledgements. The work of the first two authors was supported by
Proyecto de Excelencia con Investigador de Reconocida Vaĺıa, de la Junta de An-
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