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Summary. We introduce and briefly investigate P systems with controlled computa-
tions. First, P systems with label restricted transitions are considered (in each step, all
rules used have either the same label, or, possibly, the empty label, λ), then P systems
with the computations controlled by languages (as in context-free controlled grammars).
The relationships between the families of sets of numbers computed by the various classes
of controlled P systems are investigated, also comparing them with length sets of lan-
guages in Chomsky and Lindenmayer hierarchies (characterizations of the length sets of
ET0L and of recursively enumerable languages are obtained in this framework). A series
of open problems and research topics are formulated.

1 Introduction

Most investigations in membrane computing deal with cell-like distributed com-
puting devices (P systems) which process multisets of objects (symbols) in the
compartments defined by membranes. That is, the data structure used is the mul-
tiset, sets with multiplicities associated with their elements; as a consequence, in
a natural way, the results of computations are numbers. However, numerous re-
searches were devoted to computations which have as results strings over given
alphabets (in this way, the P systems generate/compute languages). Details and
references can be found in [5]. A concise presentation of this research direction, also
indicating a series of recent developments and several research topics, is provided
by [4].

One of the suggestions in [4] is to associate a control language to a P sys-
tem, in the way already well-known in formal language theory, e.g., in the case of
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context-free controlled grammars (see [2]). The difficulty in the case of P systems
is the parallelism of computations: arbitrarily many rules can be used in the same
step. There are two ways to overcome this difficulty. The first one, followed in [1],
assumes the computations sequential, but here we follow the way suggested in [6]
and further explored in [7]: in a step one may use only rules with the same label
from a given set of labels, maybe also rules having no label (we say that such a
rule has an empty label, denoted by λ). (Note that the sequential mode is not
obtained as a particular case, considering the rules labeled in a one-to-one manner
and without using the empty label: each single rule r : a → u should be used as
many times as a appears in a multiset.)

Several possibilities appear: to allow rules with empty labels or not; in the
latter case, to allow steps when only rules with empty labels are used or not; to
have a control language which is finite, regular, or from a subregular family of
languages other than the finite ones. Part of these possibilities will be considered
here, for non-cooperating P systems and for catalytic P systems.

Some delicate issues appear in comparison with the standard definition of suc-
cessful computations in P systems (where successful means halting). In the case
when no rule is labeled with λ, then in the end of the control word the com-
putation ends, hence we do not need to consider the halting condition. On the
contrary, when λ steps are possible, the halting condition should be preserved, as
the computation can continue forever by means of λ-steps without interacting with
the control word. Moreover, the rules are used in the maximally parallel manner,
which means that if no rule can be applied, then the maximally applicable mul-
tiset of rules is the empty one; this means that no rule (with the specified label
is applied), but still we consider this as a step of the computation. In the case of
rules with a nonempty label, one symbol of the control word is “consumed”, hence
a change in the system configuration (taking into account both the objects and the
control word) is obtained, but a λ-step where no rule is applied changes nothing
and the computation can continue forever. That is why we impose the restriction
that after a λ-step when no rule can be applied, no further λ-step is permitted.
This is important in ensuring the halting of computations. Note that a rule of the
form λ : a → a can be applied forever to a multiset which contains the object a:
nothing is changed, but the rule is effectively applied, this is not a λ-step when no
rule is applied.

As expected, by imposing restrictions on the way the rules of a P system
are used the computing power is increased. This is confirmed for several cases,
both by comparing the power of classes of controlled P systems to each other
and to (the sets of numbers associated with) classes of languages in Chomsky and
Lindenmayer hierarchies. In this framework, new characterizations of the length
sets of ET0L languages and of recursively enumerable languages are obtained.
Still, many problems remain open, while further related research topics can be
considered (we formulate part of these problems and topics in the last section of
the paper).
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As we mentioned before, P systems with computations controlled by means of
regular languages were also considered in [1], but in a restricted case: the computa-
tions were considered sequential and, moreover, the halting condition was replaced
with a more powerful condition.

2 Prerequisites

We assume the reader to be familiar with basic notions and results in formal
language theory (for details, one can consult [9]) and in membrane computing
(see, e.g., [5] and the area website from [10]), that is why we introduce here only
the notations we use.

For an alphabet V , we denote by V ∗ the set of all strings over V , including the
empty string, denoted with λ; V ∗ − {λ} is denoted by V +.

A Chomsky grammar is a tuple G = (N,T, S, P ), where N is the nonterminal
alphabet, V is the terminal alphabet, S ∈ N is the axiom, and P is the set of
rewriting rules. If the rules are of the forms A→ aB, A→ a, for A,B ∈ N, a ∈ T ,
then the grammar is said to be regular. (We omit the rules of the form A→ λ,A ∈
N , as they can be removed without changing the generated language, possibly
having only a rule S → λ in the case when λ ∈ L(G); however, as usual in formal
language theory, in what follows the empty string is ignored when comparing the
power of two string processing devices. Correspondingly, number 0 is ignored when
comparing the power of two number computing devices.)

We denote by FIN,REG,RE the families of finite, regular, and recursively
enumerable languages, respectively. In general, for a family FL of languages, we
denote by NFL the family of length sets of languages in FL; formally, NFL =
{length(L) | L ∈ FL}, where length(L) = {|x| | x ∈ L} and |x| is the length of the
string x. NREG is the family of semilinear sets of numbers (sometimes denoted
by SLIN1), and NRE is the family of sets of numbers which can be computed by
Turing machines.

A regularly controlled context-free grammar (with appearance checking) is a
6-tuple G = (N,T, S, P,K, F ), where G0 = (N,T, S, P ) is a usual context-free
grammar (nonterminal alphabet, terminal alphabet, axiom, set of rules), K ⊆ Lab∗
is a regular language over an alphabet Lab of labels associated in a one-to-one
manner to rules in P (thus, we can imagine that K ⊆ P ∗, with the rules considered
elements of an alphabet) and F ⊆ Lab. A derivation in G is a terminal derivation
in G0 which follows a control word w ∈ K, in the appearance checking mode: if
a rule r : A → u is to be used, r not in F , then the rule must be used, otherwise
(if A is not present in the sentential form) the derivation is blocked; if r ∈ F and
A appears in the sentential form, then the rule must be used, but if A does not
appear in the sentential form, then the rule is skipped and one passes to the next
label indicated by the control word w. All terminal words generated in this way
form the language L(G). One knows that context-free grammars (using λ-rules)
with regular control languages characterize RE (hence, in terms of length set,
characterize NRE).



140 K. Krithivasan, Gh. Păun, A. Ramanujan

We will also need the notion of an ET0L system (extended tabled interactionless
Lindenmayer system). Such a device is a quadruple γ = (V, T, w, P ), where V is the
total alphabet, T ⊆ V is the terminal alphabet, w ∈ V + is the axiom, and P is the
finite set of tables; a table is a set of rules of the form a→ u, a ∈ V, u ∈ V ∗, which
is complete, i.e., for each a ∈ V there is a rule a→ u in the table. The derivation
starts from w; in a derivation step w =⇒ w′ we use a table in P , and this means
rewriting in parallel all symbols from w using the rules in the table. The generated
language, L(γ), consists of all strings in T ∗ generated in this way. The families of
languages of this form is denoted by ET0L. It is known that using or not λ-rules in
ET0L systems makes no difference in the generative power, the same family ET0L
is obtained, and that ET0L ⊂ RE and NET0L ⊂ NRE. If the terminal alphabet
T is not present, we have a (non-extended) tabled interactionless Lindenmayer
system, in short, a T0L system; then all strings generated are accepted in the
language L(γ) (hence each step of a derivation produces a string). It is known
that T0L ⊂ ET0L and NREG ⊂ NT0L ⊆ NET0L (see [8]).

In what concerns the classes of P systems we consider in this paper,
they are the cell-like transition P systems (in short, P systems), specifically,
with non-cooperating and with catalytic rules. Such a system is a tuple Π =
(O,C, µ,w1, . . . , wm, R1, . . . , Rm) where O is the alphabet of objects, C ⊆ O is
the set of catalysts (this component is present only in the catalytic systems and
it is omitted in non-cooperating P systems), µ is the membrane structure, with m
membranes, wi is the multiset of objects present in region i of µ in the initial con-
figuration, and Ri is the set of rules present in region i of µ; these rules are of the
forms a → u and ca → cu, where a ∈ O, c ∈ C, u ∈ ({bhere, bout | b ∈ O} ∪ {binj

|
b ∈ O, 1 ≤ j ≤ m})∗; the target indication here is omitted. If C = ∅, hence all
rules are of the form a → u, then Π is called non-cooperating. The computation
proceeds in a maximally parallel way and it provides an output only if it halts, a
configuration is reached where no rule can be applied. The result of a computation
is the number of objects which are sent out of the system during the computation
(objects b which appear in the form bout in the right hand side of rules used in the
skin region are sent out of the system, into the environment). The number m of
membranes in µ is called the degree of the system.

The set of numbers generated by a P system Π is denoted by N(Π). The family
of setsN(Π) generated by P systems of degree at mostm is denoted byNPm(ncoo)
when using non-cooperating rules and NPm(cati) when using catalytic rules, with
at most i catalysts present in the system. If the number of membranes is not
bounded, then the subscript m is replaced by ∗. The following results are known:
NP∗(ncoo) = NREG, NP1(cat2) = NRE, but the size of the family NP∗(cat1)
is not known (it is believed that it is strictly included in NRE). As only the case
of one catalyst is of interest, in what follows we will investigate only this case.
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3 Label Restricted P Systems

Consider a catalytic P system Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm) (of course,
if C = ∅, then we have a non-cooperating system) and associate with each rule
in sets R1, . . . , Rm a label, which can be either a symbol from an alphabet H
or it can be λ; thus, the rules are written in the form r : u → v, with r ∈ H,
or λ : u → v. We add then the alphabet of labels to the system, in the form
Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, H) and we say that Π is labeled. (Note that
this time the labeling is not necessarily one-to-one like in controlled context-free
grammars.)

A computation in a labeled P system Π is label restricted if in each step one
uses (in the maximally parallel manner) only rules with the empty label and rules
labeled with the same label in H. A step where only rules λ : u → v are used is
called a λ-step.

The computations proceed exactly as in a usual P system: we start from the
initial configuration, we proceed through maximally parallel steps (which are label
restricted), and we get a result (in the environment) after the computation halts.
Only halting computations provide a result.

Two cases can be distinguished: using only labels in H (indicated by
lr) or also allowing empty labels (indicated by lrλ). Correspondingly, we
obtain four families of sets of numbers: NP∗(ncoo, lr), NP∗(cat1, lr), and
NP∗(ncoo, lrλ), NP∗(cat1, lrλ), respectively. (Of course, when the number of mem-
branes is bounded, the subscript of NP specifies the bound.)

Note the important detail that lrλ indicates that rules λ : u → v are allowed
and, moreover, λ-steps are allowed. A possible case of interest would be to allow
rules with the empty label, but not λ-steps (i.e., to ask that in each step at least
a rule with a non-empty label to be used); this case remains as a research topic.

We will mention now, in the form of lemmas, a series of relations about families
defined up to now, and later we will synthesize all of them (as well as some results
from the literature) in a diagram theorem.

Lemma 1. NP∗(α) = NP1(α) and NP∗(α, β) = NP1(α, β), α ∈ {ncoo, cat1}, β ∈
{lr, lrλ}.

Proof. The first equality is known, the second one can be proved in the same way:
objects in a membrane i are indexed with i, and then all membranes different from
the skin membrane can be omitted, the rules are handling indexed objects in the
same way as in the compartments of the initial membrane structure. The target
indications in the right hand side of rules are easily implemented by changing the
subscripts of objects.

According to this lemma, from now on we will use only P systems with only
one membrane, and the subscript ∗ in the notation of the generated families is
omitted.

Lemma 2. NP (ncoo, α) ⊆ NP (cat1, α), α ∈ {lr, lrλ}.
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Proof. Directly from the definition.

Lemma 3. NP (α, lr) ⊆ NP (α, lrλ), α ∈ {ncoo, cat1}.

Proof. Directly from the definition.

Lemma 4. NP (α) ⊆ NP (α, lr), α ∈ {ncoo, cat1}.

Proof. Consider a system Π = (O,C, µ,w1, R1) and add to it the set H = {r},
with the same label r associated with all rules in R1. Denote by Π ′ the obtained
labeled P system. Clearly, no restriction is imposed on using the rules of Π ′, hence
N(Π) = N(Π ′).

Lemma 5. NET0L ⊆ NP (ncoo, lr).

Proof. Let γ = (V, T,w, P ) be an ET0L system with n tables. Label all rules in
table i with ri, 1 ≤ i ≤ n, and let P1 be the union of all these tables. We construct
the labeled P system

Π = (O, [ ]
1
, w,R1, H),

where

O = V ∪ {#},
R1 = P1 ∪ {f : A→ # | A ∈ V − T} ∪ {f : #→ #} ∪ {f : a→ (a, out) | a ∈ T},
H = {ri | 1 ≤ i ≤ n} ∪ {f}.

In each step of a computation in Π we use either only rules from a table of γ or
rules with the label f . If these latter rules are used before completing a terminal
derivation in γ, then the trap object # is introduced, and the computation never
halts. In the end of the computation, if the derivation in γ is not terminal, the rules
with the label f must be used – in this way we check whether the derivation in γ
was terminal; simultaneously, all terminal symbols of γ are sent to the environment,
hence the computation halts. Thus, we have, length(L(γ)) = N(Π).

Somewhat surprisingly, we also have the following result.

Lemma 6. NRE = NP (cat1, lr).

Proof. We only have to prove the inclusion ⊆, the opposite one is a consequence
of the Turing-Church thesis (it can also be proved by a direct, straightforward
but cumbersome construction of a Turing machine simulating a label restricted P
system).

Let us consider a regularly controlled context-free grammar G =
(N,T, S, P,K, F ), with K ⊆ Lab∗, where Lab is an alphabet of labels asso-
ciated in a one-to-one manner with rules in P . Consider a regular grammar
GK = (NK , Lab, SK , PK) generating the language K; assume the rules in PK
to be labeled in a one-to-one manner with symbols in a set LabK . We construct
the labeled catalytic P system
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Π = (O, {c}, [ ]
1
, cSKSE,R1, H),

where:

O = N ∪ T ∪NK ∪ {c, E, t,#},
H = {(s, r) | s ∈ LabK , r ∈ Lab} ∪ {f},

and the set R1 is constructed as follows:

1. For s : XK → rYK ∈ PK and r : A→ u ∈ P such that r /∈ F , we introduce in
R1 the following rules:

(s, r) : XK → YK ,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : cE → c#,

(s, r) : t→ #;

2. For s : XK → rYK ∈ PK and r : A→ u ∈ P such that r ∈ F , we introduce in
R1 the following rules:

(s, r) : XK → YK ,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : t→ #;

3. For s : XK → r ∈ PK and r : A→ u ∈ P such that r /∈ F , we introduce in R1

the following rules:

(s, r) : XK → t,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : cE → c#,

(s, r) : t→ #;

4. For s : XK → r ∈ PK and r : A→ u ∈ P such that r ∈ F , we introduce in R1

the following rules:
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(s, r) : XK → t,

(s, r) : ZK → #, ZK ∈ NK , ZK 6= XK ,

(s, r) : cA→ cuhereuout, uhere contains all nonterminal

symbols of u and uout contains all terminal symbols of u,

with the subscript out,

(s, r) : t→ #;

5. We also consider the following rules:

f : E → λ,

f : t→ λ,

f : ZK → #, ZK ∈ NK ,
f : A→ #, A ∈ N,
f : #→ #.

We start by introducing both the axiom S of G and the axiom SK of GK in the
initial configuration of Π, together with the catalyst c and the auxiliary object
E. The catalyst has the role of ensuring that the rules of P are simulated in a
sequential way, not in a parallel one.

The objects XK ensure the fact that the computation in Π follows the same
sequence of rules in P as requested by a control word from K. Together with
simulating a derivation step in GK (performed by a rule s : XK → rYK or s :
XK → r) we also simulate the rule r : A → u from P , and this is done by the
rules of Π with the label (s, r).

Consider a rule (s, r) : cA → cuhereuout in Π, corresponding to the rule r :
A→ u in P . If the object A is present and we use the rule (s, r) : cA→ cuhereuout,
this corresponds to a derivation step in G. If the object A is present and, instead of
(s, r) : cA→ cuhereuout we use the rule (s, r) : cE → c#, then no result is obtained,
the computation never halts. If the object A is not present and r : A→ u is a rule
from F (remember that the rules of P are labeled in a one-to-one manner with
symbols in Lab), then the rule cannot be applied, hence nothing is changed (the
rule (s, r) : cE → c# is not present in this case). If the object A is not present and
the rule r is not from F , then the trap-object # is introduced by means of the rule
(s, r) : cE → c#. This object will evolve forever by means of the rule f : #→ #,
hence the computation will never halt. In any moment, in between steps which
use rules (s, r), also rules f : A → #, A ∈ N, can be used, but this will lead to a
non-halting computation.

After ending the simulation of a computation in G, we can use an f -rule – and
this must be done, as otherwise the computation is not completed (not halted). In
this way, we check whether the derivation in G was a terminal one; if not, a rule
f : A→ # can be effectively used and the computation in Π will never halt.

If the derivation in GK is not correctly simulated, then again the trap object #
is introduced; this is ensured by the rules of the form (s, r) : ZK → # introduced
for each s and r.
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In the end of the derivation, if the symbol # was introduced, then the rule
f : #→ # can be used forever, hence the computation in Π will never stop.

If the derivation in GK is terminal, hence the object t is introduced, but the
derivation in G is not terminal, then for each rule (s, r) : cA → z which is used
from now on we have to also use (s, r) : t → # and the computation never halts.
Conversely, if the derivation in G ends first, then rules (s, r)XK → z can be used
only if r ∈ F , otherwise also the rule (s, r) : cE → c# must be used, but this does
not change the multiset generated by G. Thus, the derivations in GK and G end
in the right way.

Therefore, only (and all) terminal derivations in G which follow control words
in the language K can be simulated by halting computations in Π, that is, N(Π) =
length(L(G)).

4 Controlled P Systems

In the previous label restricted computations in a labeled P system all sequences
of labels are allowed, which corresponds to using H∗ as a control language. The
control language can be a particular one, and this leads to controlled P systems.

Such a system is of the form Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, H,K)
where (O,C, µ,w1, . . . , wm, R1, . . . , Rm, H) is a labeled P system and K ⊆ H∗

is a language in a given family FL. A computation in Π has to follow a control
word in K. If the empty label is not used, then the computation stops in the
moment when the control word ends, irrespective of the fact whether there are
rules which can be applied to the reached configuration. Of course, if rules with
the empty label (and hence λ-steps) are allowed, then arbitrarily many λ-steps
can be performed in between steps where rules with the labels indicated by the
word in K are used. This makes necessary the returning to the halting condition
in the case lrλ: after the last step where rules with a label in H is used, we have no
control about the end of the computation, arbitrarily many λ-steps can be done.
That is why we again impose the restriction that after a λ-step where no rule can
be applied we cannot continue with another λ-step (note that such a restriction
is not imposed for steps which correspond to non-empty labels: after a step when
rules with a label in H should be used, even if no rule is applicable, we pass to the
next label in the control word and again it may happen that no rule is applicable,
but the control word is “consumed” symbol by symbol).

The computation is done in the maximally parallel manner, in the label re-
striction framework. This means that when rules with a label r have to applied,
a maximal multiset of applicable rules with this label is used. In particular, such
a maximal multiset may be empty: no rule with label r can be applied. This is a
powerful feature, as it works in a way similar to the appearance checking feature
in regulated rewriting (in particular, in controlled context-free grammars).

We denote byNCPm(α, β, FL) the family of setsN(Π) generated by controlled
P systems Π of degree at most m, with rules of types α ∈ {ncoo, cat1}, with the
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rules labeled in the sense of β ∈ {lr, lrλ}, and with the control language in the
family FL. As usual, m is replaced with ∗ when no bound on the number of
membranes is considered.

Lemma 7. NCP∗(α, β, FL) = NCP1(α, β, FL) for all α ∈ {ncoo, cat1}, β ∈
{lr, lrλ}, and any family FL.

Proof. The same ideas as in the proof of Lemma 1 can be used.

Thus, from now on only P systems with only one membrane will be consid-
ered and no subscript is used in the notations of the generated families of sets of
numbers.

Lemma 8. NCP (ncoo, α, FL) ⊆ NCP (cat1, α, FL) for α ∈ {lr, lrλ},
NCP (α, lr, FL) ⊆ NCP (α, lrλ, FL), for α ∈ {ncoo, cat1} and all FL, and
NCP (α, β, FL) ⊆ NCP (α, β, FL′) for α ∈ {ncoo, cat1}, β ∈ {lr, lrλ}, for all
families FL ⊆ FL′.

Proof. Directly from the definitions.

Lemma 9. NFL ⊆ NCP (ncoo, lr, FL) for all families FL.

Proof. Let L ⊆ V ∗ be a language in a family FL. We construct the controlled P
system

ΠL = ({b} ∪ V, [ ]
1
, b, {a : b→ baout | a ∈ V }, V, L).

Taking a string w ∈ L as a control word, the rules of ΠL produce symbol by symbol
the string w and halts when the string ends (no λ-step is possible). Therefore,
N(ΠL) = length(L).

In what follows, we consider only control languages in the families FIN and
REG.

Lemma 10. NCP (α, lr, FIN) = NFIN,α ∈ {ncoo, cat1}.

Proof. All computations in a controlled P system where no rule has the empty
label and the control language is finite are finite, hence the inclusion ⊆ follows.
The opposite inclusion follows from Lemma 9.

Lemma 11. NCP (ncoo, lrλ, F IN) contains non-semilinear sets.

Proof. Consider the system

Π = ({a}, [ ]1, a, {λ : a→ aa, r : a→ aout}, {r}, {r}).

After n ≥ 0 λ-steps (during this time we produce 2n copies of object a), if we use
the rule r : a → aout (as requested by the control language), then all copies of a
should be sent out (hence the rule λ : a → aa should not be used at this step),
otherwise the computation will never halt (the rule r : a → aout cannot be used
for a second time). Therefore, N(Π) = {2n | n ≥ 0}, which is not a semilinear set.
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Lemma 12. NCP (ncoo, lr, REG) contains non-semilinear sets.

Proof. Consider the system

Π = ({a}, [ ]
1
, a, {r : a→ aa, r′ : a→ aout}, {r, r′}, {r∗r′}).

After n ≥ 0 steps when we produce 2n copies of object a by means of rule r, we
have to also use rule r′, which sends all objects to the environment, hence the
computation halts. Therefore, N(Π) = {2n | n ≥ 0}.

Lemma 13. NP (α) ⊆ NCP (α, lrλ, F IN), α ∈ {ncoo, cat1}.

Proof. Take a P system Π = (O,C, [ ]
1
, w1, R1) and construct the controlled

system

Π ′ = ({a} ∪O,C, [ ]
1
, a, {r : a→ w1} ∪ {λ : u→ v | u→ v ∈ R1}, {r}, {r}).

After one initial step, when producing the initial multiset of Π, the system Π ′

continues exactly as in Π, with arbitrarily many λ-steps. The computation in
Π ′ halts if and only if the corresponding computation in Π halts, hence we get
N(Π) = N(Π ′).

Lemma 14. NCP (ncoo, lrλ, REG) ⊆ NET0L.

Proof. Consider a controlled P system Π = (O, [ ]1, w1, R1, H,K) with K ∈
REG. Let G = (N,H, S, P ) be a regular grammar for the language K. We con-
struct the following ET0L system:

γ = (V, {b}, Sw1, U), where

V = N ∪H ∪O ∪ {rt | X → r ∈ P,X ∈ N, r ∈ H} ∪ {b,#},

and U contains the following tables (in each case, so-called completion rules are
added, i.e., rules of the form a → a for all symbols a ∈ V for which no rule was
already specified in the table; we do not explicitly specify these completion rules;
remember that in each rule a→ u of Π, the string u is composed of symbols a ∈ O
and aout, a ∈ O; in the rules of the tables below, b(u) denotes the string obtained
by replacing each aout from u ∈ (O ∪ {aout | a ∈ O})∗ by b):

1. {X → rY }
∪ {Z → # | Z ∈ N,Z 6= X}
∪ {rt → #}
∪ {a→ b(u) | r : a→ u ∈ R1}
∪ {a→ b(u) | λ : a→ u ∈ R1},
for each rule X → rY ∈ P, X, Y ∈ N, r ∈ H;

2. {X → rt}
∪ {Z → # | Z ∈ N,Z 6= X}
∪ {rt → #}
∪ {a→ b(u) | r : a→ u ∈ R1}
∪ {a→ b(u) | λ : a→ u ∈ R1},
for each rule X → r ∈ P,X ∈ N, r ∈ H;
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3. {X → X | X ∈ N} ∪ {rt → rt}
∪ {a→ b(u) | λ : a→ u ∈ R1};

4. {rt → λ}
∪ {Z → # | Z ∈ N}
∪ {a→ # | there is a rule λ : a→ u ∈ R1}
∪ {a→ λ | there is no rule λ : a→ u ∈ R1}
∪ {r → λ | r ∈ H}.

In each derivation step of γ one both generates a label r ∈ H, according to the rules
of the regular grammar G, and one simulates all rules with that label or rules with
the empty label (tables of type 1). λ-steps can be intercalated in-between steps
which use at least one rule with a label in H (tables of type 3). In the end of
the derivation in G one introduces the symbol rt and one simulates rules with the
label r and rules with label λ (tables of type 2).

After introducing a label rt, one can continue by simulating arbitrarily many
λ-steps (tables of type 3). The string can become a terminal one only by using the
table of type 4. This table checks whether the control word is completed, that is,
the derivation in G is terminal (if this is not the case, then a rule Z → #, Z ∈ N ,
has to be used), whether the computation in Π halted (if not, then rules a → #
can be used), erases all symbols a ∈ O for which there is no rule λ : a→ u ∈ R1,
all r ∈ H, as well as rt for r ∈ H. Note that all objects aout were replaced by b,
which is the terminal symbol of γ.

The tables cannot be used in the wrong moment, because of the rules of the
form Z → #.

Consequently, N(Π) = length(L(γ)), and this completes the proof.

5 A Synthesis Theorem

Putting together all previous lemmas as well as known relations between families
in Chomsky and Lindenmayer hierarchies, we obtain the following result.

Theorem 1. The relations from Figure 1 hold. The arrows indicate inclusions
while the dotted arrows correspond to strict inclusions.

We have not mentioned in this diagram the position of the family NT0L. For
it we have the following relations: NREG ⊂ NT0L ⊆ NCP (ncoo, lr, REG) ⊆
NET0L. The inclusion NT0L ⊆ NCP (ncoo, lr, REG) can be proved in a way
similar to the proof of Lemma 5.

Lemma 15. NT0L ⊆ NCP (ncoo, lr, REG).

Proof. Let γ = (V,w, P ) be a T0L system with n tables. Label all rules in table i
with ri, 1 ≤ i ≤ n, let H be the set of all these labels, and let P1 be the union of
all the tables (with labeled rules). Consider the labeled P system
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NFIN = NCP (ncoo, lr, F IN) = NCP (cat1, lr, F IN)

NREG = NP (ncoo)
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Fig. 1. The hierarchy of families of sets of numbers generated by controlled transition P
systems

Π = (V, [ ]
1
, w,R1, H ∪ {f}, H∗{f}),

R1 = P1 ∪ {f : a→ (a, out) | a ∈ V }.

In each step of a computation in Π we use only rules from a table of γ, chosen
according to a control word in H∗. When the control word ends, we sent all ob-
jects to the environment, and the computation stops. As H∗ contains all possible
sequences of tables, we have length(L(γ)) = N(Π).

Note that a similar language H∗ cannot be used in the ET0L case, because
we have to check whether the computation in Π ends when the ET0L system has
generated a terminal string.
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6 Further Research Topics

First of all, it is an open problem whether or not the inclusions in Figure 1
which were not shown to be proper are strict and whether the families not linked
by a path in this diagram are comparable. Note the difference between families
NCP (α, lr, FL) and NP (α, lrλ): the halting is different in the two cases and this
makes difficult their comparison (when we do not have λ-steps and we use a con-
trol word, the computation halts when the control word ends, without checking
whether further rules could be applied to the obtained configuration).

Then, besides the lr and lrλ cases considered here, further possibilities seem
to be of interest. First, we may impose that in each step when a nonempty label
r is indicated by the control word, at least one rule with this label is used (hence
we do not allow steps where the maximal multiset of applicable rules is empty –
or it contains only rules with the empty label). Also, in the lrλ case, we may not
allow λ-steps after ending the control word.

Besides considering sets of numbers computed by P systems, we can also con-
sider vectors of numbers, counting the multiplicity of different objects in the out-
put (this corresponds to Parikh sets of languages). Whether or not results different
from those in Figure 1 are obtained for vectors remains to be checked. (The ques-
tion is not trivial, in view of the fact that it is an open problem which of the
next inclusions is proper: NREG ⊆ NP (cat1) ⊆ NRE). Another direction of
research is to consider other classes of P systems instead of transition P systems.
For symport/antiport systems we cannot obtain too much, as these systems are
universal even with severe restrictions on the complexity of the systems in terms
of the number of membranes and the size of rules. Still, the idea of label restricted
computations is useful in the case of small symport/antiport systems: the following
example was given in [4]:

Π = ({a, b}, [ ]1, a, {a, b}, {r1 : (a, out; aa, in), r2 : (a, out; b, in)}, 1).

After using for some n ≥ 0 steps rule r1 (2n copies of a are obtained in the
system), the second rule should be used – otherwise the computation cannot stop.
The output is obtained in membrane 1 and we have N(Π) = {2n | n ≥ 0}, which
is not semilinear. The same result is obtained if the control language r∗1r2 is added
to the system Π.

Similarly, one has to consider the case of spiking neural P systems – the class
of P systems where the idea of control words (and hence of label restricted com-
putations) was introduced, [6].
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grant P08 – TIC 04200, co-financed by FEDER funds. Useful discussions with
Rudi Freund during 11th Brainstorming Week on Membrane Computing, Sevilla,
4-8 February 2013, are gratefully acknowledged.



On Controlled P Systems 151

References

1. A. Alhazov, R. Freund, H. Heikenwälder, M. Oswald, Y. Rogozhin, S. Verlan: Sequen-
tial P systems with regular control. Membrane Computing International Conference.
CMC 2012, Budapest, Hungary. Invited and Selected Papers (E.Csuhaj-Varju, M.
Gheorghe, G. Vaszyl, eds.), Springer, LNCS 7762, 2013, in press.
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