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Quadrangulations and 2-Colorations
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Abstract

Any metric quadrangulation (made by segments of
straight line) of a point set in the plane determines a
2-coloration of the set, such that edges of the quadran-
gulation can only join points with different colors. In
this work we focus in 2-colorations and study whether
they admit a quadrangulation or not, and whether,
given two quadrangulations of the same 2-coloration,
it is possible to carry one into the other using some
local operations, called diagonal slides and diagonal
rotation. Although the answer is negative in gen-
eral, we can show a very wide family of 2-colorations,
called onions 2-coloration, that are quadrangulable
and which graph of quadrangulations is always con-
nected.

1 Introduction

Given a set S, either a polygon or a point set, a quad-
rangulation of S is a partition of the interior of S, if
S is a polygon, or of the convex hull of S, if S is a
point set, into quadrangles (quadrilaterals) obtained
by inserting edges between pairs of points (diagonals
between vertices of the polygon) such that the edges
intersect each other only at their end points. Not all
polygons or point sets admit quadrangulations, even
when the quadrangles are not required to be convex.
In the study of finite element methods and scattered
data interpolation, it has recently been shown that
quadrangulations of point sets may be more desirable
objects than triangulations [2]. The quadrangulations
of polygons have been also investigated in Computa-
tional Geometry, mostly in the context of guarding or
illumination problems.
From now on we call a polygon or point set quadran-

gulable if it admits a quadrangulation without adding
any additional point (Steiner point).
There are two different characterizations of quad-

rangulable point sets:
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• if and only if there exists a triangulation of the
set such that its dual graph contains a perfect
matching [5].

• if and only if it has an even number of points in
its convex hull [1].

A quadrangulation is constructed (with the addition
of a Steiner point to obtain an even number of points
in the convex hull, if necessary) in Θ(n log n).
For a more complete vision on quadrangulations we

recommend Toussaint’s survey [6].
Given a quadrangulation of a point set in the plane,

it determines a 2-coloration of the set, such that edges
of the quadrangulation can only join points with dif-
ferent colors. In this work we focus on 2-colorations
and study whether they admits a quadrangulation
or not (Section 2), and whether, given two quad-
rangulations of the same 2-coloration, it is possible
to carry one into the other using some local opera-
tions (Section 3). Finally, in Section 4 we present
a very wide family of 2-colorations, called onions 2-
coloration, that are quadrangulable and which graph
of quadrangulations is always connected.

2 2-colorations and quadrangulations

Suppose we have a 2-colorated point set S in the plane
and we want to know if it is possible to construct a
quadrangulation of its convex hull. A similar condi-
tion to the one given by [1] is, in this context, evident:

Lemma 1 A necessary condition for a 2-coloration
of a point set S to admit a quadrangulation (to be
quadrangulable) is that

1. the number of points of the convex hull of S is
even; and

2. consecutive points of the hull have different color.

But even when the conditions of Lemma 1 are
fulfilled, it is easy to find non-quadrangulable 2-
colorations, as the one at the left of Figure 1. In
order to construct a quadrangulation, point 1 cannot
be joined with c because then b can be joined with
no black point but 1. So we draw an edge from 1 to
b. Now b cannot be joined either with 3 or with 4,
because then c or 2, respectively, would be isolated,
and cannot be part of any quadrangulation. But if
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we join b with 2 the only way to complete a quadri-
lateral is to match 2 and d, that leaves 3 isolated.
It is important to remark that we are talking about
2-colorations instead sets of points. Thus, while the
2-coloration at the left of Figure 1 is not quadrangula-
ble, the underlying point set is, as we see in the right
picture.
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Figure 1: The set is either quadrangulable or not de-
pending on the coloration.

Notice that in the right picture we have inter-
changed the colors of 2 and b, obtaining a set with
two convex layers, both of them made by points with
alternate colors. This is a interesting configuration
since, as we will see in Section 4, it is always quad-
rangulable.

3 Diagonal transformation in quadrangulations

Nakamoto [4], working with topological quadrangu-
lations on surfaces, defines two diagonal transforma-
tions; the diagonal slide and the diagonal rotation,
that are shown in Figure 2. Note that, while the di-
agonal slide does not modify the coloration of the set,
the diagonal rotation changes the color of the center
of rotation (because, in other case, points with the
same color are joined).
Since the same point set can have different col-

orations, it is not always possible to change any two
quadrangulations one into each other using only di-
agonal slides. In Figure 3 two colorations of the
same point set are shown; one with four black and
four white points, and another with five white and
three black points. Since diagonal slides preserve col-
orations, it is not possible to use them to transform
one quadrangulation into the other. However, it is
easy to see that this can be done using also diagonal
rotations.
Nakamoto [4] proved that in any closed surface it is

always possible to carry one topological quadrangula-
tion of a set into any other if

1. both diagonal slides and rotations are allowed; or

2. both quadrangulations have the same number of
points of each color by using only diagonal slides.

diagonal slide

diagonal rotation

Figure 2: Diagonal transformations on quadrangula-
tions.

Figure 3: Quadrangulations of the same set with dif-
ferent colorations.

This can be seen in terms of the connectivity of
the graph of quadrangulations. The graph of quad-
rangulations of a point set is the graph having all the
quadrangulations of the set as nodes, and with adja-
centcies corresponding to diagonal slides or diagonal
rotations. Similarly, the graph of quadrangulations of
a 2-coloration has as nodes the quadrangulations of
a given 2-coloration. Since diagonal rotations change
the 2-coloration, the adjacentcies are determined only
by diagonal slides.
Both graph of quadrangulations are, in general, not

connected. In Figure 4, it is shown a 2-coloration that
admits only two quadrangulations, being not possible
to perform any diagonal slide. If we also allow diago-
nal rotations it can be shown that it is not possible to
transform one quadrangulation into the other. This
gives rise to the following theorems:

Theorem 2 There are 2-colorations with discon-
nected graph of quadrangulations.

Theorem 3 There are point sets with disconnected
graph of quadrangulations.

66



EWCG 2005, Eindhoven, March 9–11, 2005

Figure 4: A set with disconnected graph of quadran-
gulations.

Our example has disconnected graph of quadran-
gulations both as a 2-coloration and as a point set.
An open problem is to determine if both things al-
ways come together, or if there exit point sets with
connected graph of quadrangulations that admit 2-
colorations which graph of quadrangulations is not.
In spite of the graph of quadrangulations of an arbi-

trary 2-coloration is, in general, not connected, in the
next section we present a wide family of 2-colorations
having this property.

4 Onion 2-colorations

If a set of sites have an even number of vertices in its
convex hull, then it is quadrangulable, and vice-versa
[1]. This is rewritten for 2-colorations in Lemma 1,
but only as a necessary condition, since we find non-
quadrangulable 2-colorations that fulfill it, as the one
we saw in Figure 1. But, what about if we extend
Lemma 1 to the interior of the set? If the convex hull
of the 2-coloration fulfill the lemma, we remove it and
examine the convex hull of the remaining points, and
so on. A 2-coloration with this property is quadrangu-
lable and its graph of quadrangulations is connected.
We call onion 2-coloration to a 2-coloration of a

point set such that all its convex layers have an even
number of points with alternate colors. An onion
layer of an onion 2-coloration is the set of edges that
are part of a convex layers of the set. We call Oi,
with i = 0, . . . , l, to the onion layers of the onion
2-coloration, such that Oi is inside the polygon de-
fined by Oj if i > j (Figure 5). Note that the poly-
gon defined by Ol does not contain any point of the
onion 2-coloration and that O0, the convex hull, is al-
ways included in every quadrangulation of the onion
2-coloration. By definition, the points on every onion
layer satisfy Lemma 1, that implies the following re-
sult.

Proposition 4 Onion 2-colorations are quadrangu-
lable.

The main idea of the proof is to draw a triangula-
tion joining points between two consecutive onion lay-
ers. By deleting the edges matching points with the

O0
O1

Ol

Figure 5: An onion 2-coloration and its onion layers.

same color (Figure 6) we obtain a quadrangulation of
the onion 2-coloration. It should be note that we are
drawing quadrangulations of convex polygons with a
convex hole, being the general case, decide whether
a polygon with holes admits a quadrangulation, an
NP-complete problem [3].

Figure 6: By deleting the diagonals between points
with the same color we obtain quadrilaterals.

But onion 2-colorations are not the only quadran-
gulable 2-colorations, since there are quadrangulable
2-colorations with non alternate colors in some of its
convex layer (Figure 7) or with a odd number of points
on them.

Figure 7: The colors of the inner convex layer are not
alternate.

In addition to be quadrangulable, onion 2-
colorations have connected graph of quadrangula-
tions. The proof is based in the following lemmas:
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Lemma 5 Given two quadrangulations of an onion
2-coloration containing all their onion layers, we can
transform one into the other by only using diagonal
slides.

Lemma 6 Any quadrangulation of an onion 2-
coloration can be carried into another containing its
onion layers using diagonal slides.

From these lemmas it can be easily proved the
connectivity of the graph of quadrangulations of any
onion 2-coloration.

Theorem 7 The graph of quadrangulations of an
onion 2-coloration is non-empty and connected.

In particular, if the onion 2-coloration have only
one layer, we obtain the following result:

Corollary 8 The graph of quadrangulations of any
quadrangulable 2-coloration in convex position is con-
nected.

5 Conclusions and open problems

Two main ideas can be extracted from this work: to
be quadrangulable depends on the 2-coloration of the
set, and the graph of quadrangulations of both a 2-
coloration and a point set is, in general, not con-
nected. However, there exits a wide family of 2-
colorations, the onion 2-colorations, that are quad-
rangulable and which graph of quadrangulations is
connected.
There are several questions that appear all along

the present work. One is to explore new conditions
for a 2-coloration to be quadrangulable, searching for
new families of quadrangulable 2-colorations. Related
to the graph of quadrangulations, an interesting ap-
proach is to study the relationship, if it exits, between
the connectivity of the graph and the coloration of
the set. And, since the example presented (Figure 4)
of a set with disconnected graph of quadrangulations
have rows with until four collinear points, it would
be convenient to construct a new example in gen-
eral position. Probably this implies to work with sets
with greater cardinal and complexity. Finally, an-
other line for future works is, since they also admit
2-colorations, to extend this study from quadrangula-
tions to 2n-lations of point sets.

References

[1] P. Bose and G. Toussaint. Characterizing and
efficiently computing quadrangulations of planar
point sets. Computer Aided Geometric Design,
vol. 14, 1997, pp. 763-785.

[2] M. L. Lai and L. L. Schumaker. Scattered data
interpolation using piecewise polynomials of de-
gree six. SIAM Numer. Anal., 34(1997), pp.905–
921.

[3] A. Lubiw Decomposing polygonal regions into
convex quadrilaterals. Proc. Symposium on Com-
putational Geometry, 1985, pp. 97–106

[4] A. Nakamoto. Diagonal transformations in quad-
rangulations of surfaces. J. Graph Theory,
21:289–299, 1996.

[5] S. Ramaswami, P. Ramos and G. Toussaint. Con-
verting triangulations to quadrangulations Com-
putational Geometry: Theory and Applications,
Vol. 9, March 1998, pp. 257-276.

[6] G. Toussaint. Quadrangulations of planar sets.
In Proceedings of the 4th International Workshop
on Algorithms and Data Structures, pages 218–
227. Springer-Verlag, 1995.

68




