
P Systems with Anti-Matter

Rudolf Freund1, Gheorghe Păun2

1 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700, Bucharest, Romania
gpaun@us.es, curteadelaarges@gmail.com

Summary. After a short introduction to the area of membrane computing (a branch
of natural computing), we introduce the concept of anti-matter in membrane comput-
ing. First we consider spiking neural P systems with anti-spikes, and then we show the
power of anti-matter in cell-like P systems. As expected, the use of anti-matter objects
and especially of matter/anti-matter annihilation rules, turns out to be rather powerful:
computational completeness of P systems with anti-matter is obtained immediately, even
without using catalysts. Finally, some open problems are formulated, too.

1 Introduction

First we give a brief introduction to membrane computing, a branch of natural
computing having widely developed during the more than fifteen years since its
initiation, see [19]. In some details we present a specific class of membrane systems
(usually called P systems) with motivation coming from the way neurons inter-
act, the spiking neural (in short, SN) P systems. In particular, we discuss SN P
systems with anti-spikes, and then we generalize this idea, considering P systems
of any type with anti-objects: for an object a, we say that ā is an anti-object if
an annihilation rule aā → λ is assumed to exist in all membranes, which may
either be an explicit rule or else act in an implicit way by removing a pair a, ā in
zero time. These annihilation rules turn out to be rather powerful, as somehow
expected if, for example, we look at the λ-rules as the only non-context-free rules
in the Geffert normal forms, e.g., see [22].

2 Elements of Membrane Computing

Membrane computing is a branch of natural computing, aiming to abstract com-
puting models from the structure and the functioning of living cells. The models

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51396232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

170 R. Freund, Gh. Păun

obtained in that way are called P systems. Single cells (leading to cell-like P sys-
tems) as well as communities of cells, like tissues or organs (leading to tissue-like
P systems), or neural cells (the associated models are called spiking neural P sys-
tems; these are one of the main topics in the present survey paper) have been
considered in the literature. Basically, a P system consists of an arrangement of
membranes (arranged in a hierarchical manner in the cell-like case and placed in
the nodes of an arbitrary graph in the tissue-like case), which determine compart-
ments where multisets of objects are placed, together with evolution rules inspired
from biochemistry. Using these rules, the objects evolve, and these evolutions of
objects are considered as computations. A result is associated with certain com-
putations, hence, a computing device is obtained (working in the generative, the
accepting, or the computing mode).

This very general framework lead to a large number of specific classes of P
systems. Details can be found, for example, in [20] and [21]; recent information is
available at the membrane computing website [27].

As objects in a P system we may use multisets of symbols from a given (finite)
alphabet, strings, or more complex structures, such as graphs or d-dimensional ar-
rays. In the case of spiking neural P systems, only multisets over a single object –
the spike, an electrical impulse used by neurons to communicate with each other –
are used. The rules used in a P system are of various types: multiset rewriting rules
(similar to chemical reactions), string processing rules, specific rules for handling
spikes, or rules directly inspired from biology, such as symport/antiport rules (for
moving coupled symbol objects through membranes, corresponding to the func-
tioning of selective protein channels in biology), or rules for handling membranes
(dividing or creating membranes, exocytosis, endocytosis, etc.). The rules can be
used sequentially or in parallel; the basic strategy in membrane computing is to
use the rules in the maximally parallel way (in each step, a maximal multiset of
rules is used in each compartment, in the multiset inclusion sense: no rule can
be added to a chosen multiset of rules such that the resulting multiset of rules
would still be applicable). Most of the investigations carried out in the literature
concern synchronized P systems, but also non-synchronized systems were consid-
ered. In what concerns the ways to associate a result to a computation, there also
are several possibilities: usually, only halting computations are considered to be
successful (those computations which reach a configuration of the system where
no rule can be applied any more). When dealing with multisets (which is also the
case when dealing with SN P systems), the natural result of a computation is a
number, but also strings can be associated in various ways.

The computing power of these devices is rather large: Turing computability
can be obtained by many classes of P systems. In the cases when an exponential
working space can be created during the computation in polynomial time, then, by
a time-space trade-off, polynomial, often even linear, solutions to computationally
hard problems (typically, NP-complete problems, but sometimes even PSPACE-
problems) can be obtained.

P Systems with Anti-Matter 171

Power and efficiency are computer science issues. Membrane computing proved
to be rather attractive as a modeling framework, too. The reader can consult [3]
and [4] in this respect. The most numerous and advanced applications are those
in biology and biomedicine, but there are also well-investigated applications in
approximate optimization, computer graphics, robot control, etc.

In this paper, we formally introduce only the basic model of membrane com-
puting, the cell-like P systems with symbol objects (which will also be considered
in Section 5 below). Hierarchical membrane structures (which can be described by
a tree) are represented by strings of labeled matching parentheses, and the mul-
tisets over an alphabet V are represented by strings over V ; a string and all its
permutations represent the same multiset. For an alphabet V , by V ∗ we denote
the set of all strings over V , including the empty string. The length of x ∈ V ∗

is denoted by |x|; the empty string, of length zero, is denoted by λ. Basic knowl-
edge in formal language theory as well as some familiarity with basic elements of
membrane computing is assumed in what follows.

A cell-like P system, of degree m, with catalysts, is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, iin, iout)

where O is the alphabet of objects, C ⊂ O is the set of catalysts, µ is the mem-
brane structure (with m membranes), w1, . . . , wm are strings over O representing
multisets of objects present in the m regions of µ at the beginning of a compu-
tation, R1, . . . , Rm are finite sets of evolution rules associated with the regions of
µ, and iin and iout are the labels of the input and output regions, respectively; if
the input or output is taken from the environment, this is indicated by taking the
label 0 for iin or iout, respectively.

The evolution rules are multiset rewriting rules of the form u → v, where u
is a non-empty multiset over O and v = (b1, tar1) . . . (bk, tark) with bi ∈ O and
tari ∈ {here, out, in}, i.e., the objects bi in v have associated a target indication
tari. Using such a rule means “consuming” the objects of u and “producing”
the objects from b1, . . . , bk of v, where the target indication here means that the
objects remain in the same region where the rule is applied, out means that they
are sent out of the respective membrane (in this way, objects can also be sent to the
environment, when the rule is applied in the skin region), and in means that they
are sent to one of the immediately inner membranes, chosen in a non-deterministic
way; in general, the target indication here is omitted.

A rule u → v with |u| = 1 is said to be non-cooperative. A rule of the form
ca → cv, where c ∈ C, a ∈ V \C, and the objects in v are from V \C, too, is called
catalytic; C is the set of catalysts, objects which are not changed by evolution
rules. Arbitrary rules are called cooperative.

If the system is used in the generative mode, then iin is omitted, and if the
system is used in the accepting mode, then iout is omitted. The number m of
membranes in µ is called the degree of Π.

In the generative case, the set of numbers computed by Π (in the maximally
parallel non-deterministic mode) is denoted by N(Π). The family of all sets N(Π)

172 R. Freund, Gh. Păun

computed by systems Π of degree at most m ≥ 1 and using rules of form α is
denoted by NOPm(α); if there is no bound on the degree of the systems, then
the subscript m is replaced by ∗. According to the previous classification, α ∈
{ncoo, cat, coo}, with the obvious meaning.

It is known that NOP1(coo) = NOP1(cat2) = NRE, where cat2 indicates
the fact that only two catalysts are used with catalytic rules together with non-
cooperative rules, and NRE is the family of recursively enumerable (Turing com-
putable) sets of natural numbers. In turn, NOP∗(ncoo) = NREG, where NREG
is the family of length sets of regular languages (i.e., the family of semilinear sets
of natural numbers).

3 Spiking Neural P Systems

Spiking neural P systems, see [8], have a completely different architecture and
functioning, as they are not based on the standard eukaryotic cell, but on brain
biology. Here we only consider the neurons cooperating by means of spikes, elec-
trical impulses of identical forms, moving along axons. Spiking neurons are also
investigated in the current neural computing area (e.g., see [11]). We do not define
SN P systems in a formal way, instead we only describe such a system and then
also introduce anti-spikes, and we will give a simple example.

In short, an SN P system consists of a set of neurons (represented by mem-
branes) placed in the nodes of a directed graph (the arcs are called synapses) and
containing spikes, denoted by copies of the symbol a. Thus, the architecture is
that of a tissue-like P system, with only one kind of objects present in the cells.
The objects evolve by means of spiking rules, which are of the form (E/ac → a; d),
where E is a regular expression over a and c, d are natural numbers, c ≥ 1, d ≥ 0.
The meaning is that a neuron containing k spikes such that ak ∈ L(E), k ≥ c, can
consume c spikes and produce one spike, after a delay of d steps. This spike is sent
to all neurons to which a synapse exists outgoing from the neuron where the rule
was applied. There also are forgetting rules, of the form as → λ, with the meaning
that s ≥ 1 spikes are removed, provided that the neuron contains exactly s spikes.
The system works in a synchronized manner, i.e., in each time unit, every neuron
which can use a rule should do that, but the work of the system is sequential in
each neuron: only (at most) one rule is used in each neuron. One of the neurons is
considered to be the output one, and its spikes are also sent to the environment.
The moments of time when a spike is emitted by the output neuron are marked
with 1, the other moments are marked with 0. This binary sequence is called the
spike train of the system; it might be infinite if the computation does not stop.

The result of a computation is encoded in the distance between the first two
spikes sent to the environment by the (output neuron of the) system. Other ways
to associate a result with a computation were considered, for instance, the total
number of spikes emitted by the output neuron during a halting computation, or
else the number of spikes contained in the output neuron at the end of a halting

P Systems with Anti-Matter 173

computation; the spike train itself can be taken as the result of the computation,
and in this way the system generates a binary sequence (a finite string, if the
computation halts).

There are several classes of SN P systems, using various combinations of ingre-
dients – rules of restricted forms, for example, without a delay, without forgetting
rules, or extended rules, e.g., producing more than one spike, as well as asyn-
chronous SN P systems (no clock is considered, any neuron may use a rule or not),
with exhaustive use of rules (when enabled, a rule is used as many times as made
possible by the spikes present in a neuron), with certain further conditions imposed
on the halting configuration, with the same sets of rules in each neuron (the sys-
tem then is called homogeneous), containing further biological ingredients, such as
astrocytes, with inhibitory synapses, etc. For most SN P systems with unbounded
neurons (arbitrarily many spikes can be found in each of them), characterizations
of Turing computable sets of natural numbers are obtained. When the neurons
are bounded, usually characterizations of the family NREG are obtained. SN P
systems can also be used in the accepting and in the computing modes.

4 SN P Systems with Anti-Spikes

A natural feature added to an SN P system is that of anti-spikes, proposed in
[17] and then investigated in a series of papers. For the reader’s convenience, the
bibliography below contains many titles of papers dealing with this subject, yet
not all of them are explicitly referred to in the present suvey paper.

The main point of the new notion is to interpret the “anti-spikes” as “anti-
matter”, hence to assume that when a piece of matter meets the corresponding
piece of anti-matter, they will annihilate each other. This corresponds to the exis-
tence of rules of the form aā → λ, which are used immediately when a and ā are
present in the same neuron.

Thus, in an SN P system with anti-spikes, the spiking rules and the forgetting
rules are of the forms E/bc → b′c and bc → λ where E is a regular expression over
a or over ā, while b, b′ ∈ {a, ā} and c ≥ 1. If L(E) = bc, then we write the first
rule as bc → b′. As usual, a delay can be added to the spiking rules, too.

Note that we have four categories of rules, identified by (b, b′) ∈
{(a, a), (a, ā), (ā, a), (ā, ā)}. Of course, it is of interest to restrict the type of rules,
and this is the case in most papers found in the literature.

The rules are used as usual in SN P systems, with the additional fact that a
and ā “cannot stay together”, they instantaneously annihilate each other: if in a
neuron there are either objects a or objects ā, and further objects of either type
(maybe both) arrive from other neurons, such that we end with ar and ās inside,
then immediately the rule of the form aā → λ is applied in the maximal manner,
so that either the multiset of spikes ar−s – if r ≥ s – or of anti-spikes ās−r – if
s ≥ r – remains.

In the definition from [17], the mutual annihilation of spikes and anti-spikes
takes no time, so that the neurons always contain either only spikes or only anti-

174 R. Freund, Gh. Păun

spikes. That is why, for instance, the regular expressions of the spiking rules are
defined either over a or over ā, but not over both symbols. Moreover, annihilation
has priority over spiking and forgetting rules. Later, also the case when the annihi-
lation takes one time unit was considered, with explicitely using the rule aā → λ,
eventually even without priority over other rules.

The computations and the results of computations are defined in the same way
as for usual SN P systems. In most investigations, the restriction was considered
that the output neuron produces only spikes, not also anti-spikes. The anti-spikes
are sometimes used to encode, in a natural way, negative numbers.

By N2(Π) we denote the family of numbers generated by an SN P system (with
anti-spikes) as the distance between the first two spikes sent to the environment
by the output neuron, and by N2SaNPm the families of all sets N2(Π), computed
by SN P systems with anti-spikes and at most m ≥ 1 neurons. When the number
of neurons is not bounded, we replace the subscript m by ∗.

We illustrate the previous definition by an example recalled from [17]; it is,
in fact, part of the proof showing computational completeness of SN P systems
with anti-spikes (i.e., N2SaNP∗ = NRE), namely, the module which simulates
a SUB-instruction of a register machine. We present the module in the graphical
form, a usual way of presentation in membrane computing: neurons are given as
ovals containing spiking and forgetting rules, and in addition indicating the initial
spikes and anti-spikes; the synapses are represented by arrows linking the neurons.

�
�
�
�
�
�
�
�

'
&
$
%
'
&
$
%

�
�
�
�

�
�
�
�

#
"

!

�
�
�
�
�
�
�
�

�
�
�
�

�
��	

@
@@R

HHj�
�	

@
@R

J
J
J
JĴ

HHHHHHHHHj

�
�
�
���

S
S
S
SSw

���������

�

? ?

li a → a

l
(1)
i

a → a
l
(2)
i

a → ā

r

ā → a

l
(3)
i

a → a

l
(4)
i

a → a

l
(5)
i

a → λ

a2 → a

a3 → λ

l
(6)
i

a → λ

a2 → λ

a3 → a

lj lk

Fig. 1. Module SUB, simulating li : (SUB(r), lj , lk)

P Systems with Anti-Matter 175

Figure 1 shows the module associated with an instruction li : (SUB(r), lj , lk).
The module is activated when neuron σli receives a spike. Initially, no neuron
contains any spike, except for the neuron σl0 associated with l0, the initial label
of the register machine; each label has such an associated neuron, and also each
register r has associated a neuron σr. Neuron σli sends a spike to neurons σ

l
(1)
i

and σ
l
(2)
i

. In the next step, neuron σ
l
(2)
i

sends an anti-spike to neuron σr, which

corresponds to register r; at the same time, σ
l
(1)
i

sends a spike to the neurons σ
l
(3)
i

and σ
l
(4)
i

. If register r is non-empty, that is, neuron σr contains at least one a, then

ā removes one occurrence of a, which corresponds to subtracting one from register
r, and no rule is applied in σr. This means that σ

l
(5)
i

and σ
l
(6)
i

receive only two

spikes, from σ
l
(3)
i

and σ
l
(4)
i
, hence, σlj is activated, whereas σlk is not activated.

If register r is empty, then the rule ā → a is used in σr, hence, σl
(5)
i

and σ
l
(6)
i

receive three spikes, and this leads to the activation of σlk , which is the correct
continuation in this case.

The reader is referred to [17] for further details concerning the functioning of
this module, and in general, for the proof of the universality of SN P systems with
anti-spikes.

We cannot present all the developments concerning SN P systems with anti-
spikes; most of the titles of the related articles listed at the end of the paper are
self-explanatory. We only mention an important research direction in membrane
computing in general and in the SN P systems area in particular, reminding the
“old times” of investigations in formal language theory (see a survey in [7]) con-
cerning the descriptional complexity of grammars and languages: considering size
parameters for P systems. Because most of the classes of P systems are universal,
for those classes the basic question is to find the smallest number of membranes
in order to get the equivalence with Turing machines. For subuniversal classes, an
important question of interest is whether or not the number of membranes induces
an infinite hierarchy.

These questions are of interest for SN P systems, too, with or without anti-
spikes. Further questions appear, resembling those mentioned in [7]: How many
rules per neuron are needed? How many different types of neurons are needed?
Can rules of a specific type be avoided?

Another question of interest is to find universal systems for a given class of
devices with a small descriptional complexity; like in the case of universal Turing
machines, we search for fixed P systems which can simulate any P system from a
given class, as soon as the code of a particular system is introduced as an input to
the universal one. For SN P systems, the “race” was started in [18], with several
subsequent papers succeeding to decrease the complexity of the universal systems
constructed there.

According to our knowledge, for SN P systems with anti-spikes the best results
currently available are those from [24]: a universal system is constructed, for the
case of computing functions, having 75 neurons and 125 rules, with 6 types of
neurons and 8 types of rules. A related result is reported in [12], where a similar

176 R. Freund, Gh. Păun

system is described, containing 91 neurons, each of them containing only one rule,
of one of the simple forms a → a and a → ā. This once again proves the power of
annihilation rules.

5 P Systems with Anti-Matter

The idea of considering “anti-matter” objects and their corresponding matter/anti-
matter annihilation rules can be extended to all types of P systems. We briefly
discuss it here for cell-like P systems.

Formally, a cell-like P system (of degree m, with catalysts) with anti-matter is
a construct

Π = (O,AO, C, µ, w1, . . . , wm, R1, . . . , Rm, iin, iout)

where all the components are as in a usual P system and AO is a set of symbols
ā, for a ∈ O \ C (obviously, we do not allow the catalysts to have anti-objects).
In each compartment of µ we assume the matter/anti-matter annihilation rules
aā → λ to be present, for all ā ∈ AO. As in SN P systems we might assume that
these rules are used “automatically”, in zero time, as soon as they can be applied.
Yet in the following we assume the annihilation rules to be used as other rules,
yet eventually with weak priority (e.g., see [2]) over all other rules, i.e., other rules
then also may be applied if objects cannot be bound by some annihilation rule
any more. In both cases, the rules in the sets Ri, 1 ≤ i ≤ m, of the form u → v
have to obey to the condition that neither u nor v may contain both the symbol
a and its anti-matter object ā for any ā ∈ AO.

The functioning of such a system is as usual in membrane computing, keeping in
mind that the annihilation rules have to be added to all sets of rules Ri, 1 ≤ i ≤ m.
By NOaPm(ncoo, pri) we denote the family of sets of numbers generated by P
systems with at mostmmembranes, using anti-objects, with non-cooperative rules.
The parameter pri indicates the use of annihilation rules with priority over the
other rules; it is omitted if we do not use this implicit priority. If in addition to
non-cooperative rules we also allow catalytic rules and at most k catalysts, ncoo
is replaced by catk in these notations.

Although the annihilation rules are expected to add a lot of computational
power, it is still surprising that together with giving the annihilation rules pri-
ority over all other rules, non-cooperative rules are already sufficient to obtain
computational completeness, whereas without this priority condition, in addition
we need catalytic rules with one catalyst; in both cases rather simple proofs can
be obtained, whereas without these matter/anti-matter annihilation rules, non-
cooperative rules together with catalytic rules with two catalysts are needed, see
the rather complex proof given in [5].

Theorem 1. NOaP1(ncoo, pri) = NRE.

P Systems with Anti-Matter 177

Proof. Let M = (3, H, l0, lh, I) (number of registers, labels of instructions, initial
label, halt label, set if instructions) be a register machine with three registers;
register 1 is the output register containing the result at the end of a successful
computation, it is never decremented; registers 2 and 3 are empty at the begin
and at the end of a successful computation. We now construct the (generating,
hence, we omit iin) P system with anti-matter

Π = (O,AO, []1, l0, R1, 1)

with only one membrane and the following components:

O = {l, l′ | l ∈ H} ∪ {ar | r ∈ {1, 2, 3}} ∪ {#},
AO = {ā2, ā3, #̄};

the non-cooperative rules in R1 are described below.
The contents of register r is represented by the number of copies of the object

ar, r ∈ {1, 2, 3}, in the system. The P system starts with the object l0 representing
the initial label of M .

For each instruction li : (ADD(r), lj , lk) in I, r ∈ {1, 2, 3}, we take the rules

li → ljar and
li → lkar,

which obviously simulate the given ADD-instruction.
For each instruction li : (SUB(r), lj , lk) in I, r ∈ {2, 3}, we consider the three

rules
li → lj ār,
li → l′iār,
l′i → #lk.

As rules common for all SUB-instructions, we also add the rules ār → #̄, r ∈ {2, 3},
the matter/antimatter annihilation rules arār → λ and ##̄ → λ as well as the
trap rules # → ## and #̄ → ##.

When simulating a SUB-instruction li : (SUB(r), lj , lk), we have to make a non-
deterministic choice between the decrement case and the zero-test. The decrement
case of the SUB-instruction li : (SUB(r), lj , lk) is simulated by the rule li → lj ār
and the subsequent application of the annihilation rule arār → λ. If this rule is
not applicable, i.e., if register r is empty, the rule ār → #̄ will be applied instead,
which in absence of its counterpart # immediately evolves to ## and thus leads
to an infinite computation.

The zero-test is initiated with the rule li → l′iār. If register r is empty, then
ār cannot be annihilated and therefore evolves to #̄, which then annihilates the
symbol # generated by the rule l′i → #lk; if register r is not empty, ār is annihilated
by some copy of ar, hence, the trap symbol # generated by the rule l′i → #lk does
not find its anti-matter #̄ and therefore evolves to ##, thus leading to an infinite
computation. Here we find the crucial situation where we need the constraint that

178 R. Freund, Gh. Păun

annihilation rules have priority over all other rules, i.e., ār → #̄ cannot be applied
if the annihilation rule arār → λ can be applied.

The rule lh → λ is applied at the end of a successful simulation of the instruc-
tions of the register machine M , and the computation halts if no trap symbol #
is present; the number of symbols a1 in the skin membrane then represents the
result of this halting computation. In sum, we obtain N(M) = N(Π). ⊓⊔

Returning to descriptional complexity issues, it is worth noting that the P
system constructed in the preceding proof has only one membrane and only three
matter/anti-matter annihilation rules.

If we look for small universal systems, we may start with the universal register
machine U32 from [9], with 8 registers which are decremented during the computa-
tions, and apply the construction given in the preceding proof, thus needing 8+ 1
matter/anti-matter annihilation rules. An optimized P system with matter/anti-
matter annihilation rules having priority over all other rules can be found in [1].

Without this priority of the annihilation rules, the construction is not working,
hence, a characterization of the class NOaP1(ncoo) remains as an open problem.
Yet in addition using catalytic rules with one catalyst again allows us to obtain
computational completeness:

Theorem 2. NOaP1(cat1) = NRE.

Proof. We again consider a register machine M = (3,H, l0, lh, I) as in the previous
proof, and construct the (generating) catalytic P system

Π = (O,AO, []
1
, {c}, cl0, R1, 0)

with only one membrane (containing the single catalyst c) and the following com-
ponents:

O = {l, l′, l′′ | l ∈ H} ∪ {ar | r ∈ {1, 2, 3}} ∪ {#, d},
AO = {ā2, ā3, #̄};

the non-cooperative rules in R1 are described below. The output symbols a1 now
are sent to the environment, in order not to have to count the catalyst in the skin
membrane; for that purpose, we simply use the rule a1 → (a1, out).

For each instruction li : (ADD(r), lj , lk) in I, r ∈ {1, 2, 3}, we again take the
rules

li → ljar and
li → lkar.

For each instruction li : (SUB(r), lj , lk) in I, r ∈ {2, 3}, we now consider the
following four rules:

li → lj ār,
li → l′′i dār,
l′′i → l′i,
l′i → #lk.

P Systems with Anti-Matter 179

As rules common for all SUB-instructions, we again add the matter/antimatter
annihilation rules arār → λ and ##̄ → λ as well as the trap rules # → ## and
#̄ → ##, but in addition, also d → ## as well as the catalytic rules cd → c and
cār → c#̄, r ∈ {2, 3}.

The decrement case of the SUB-instruction li : (SUB(r), lj , lk) is simulated as in
the previous proof, by using the rule li → lj ār and then applying the annihilation
rule arār → λ. If this rule is not applicable, i.e., if register r is empty, the rule
ār → #̄ will be applied instead, which in absence of its counterpart # immediately
evolves to ## and thus leads to an infinite computation.

The zero-test now is initiated with the rule li → l′′i dār thus introducing the
(dummy) symbol d which keeps the catalyst busy for one step, where the catalytic
rule cd → c has to be applied in order to avoid the application of the trap rule
d → ##. If register r is empty, then ār cannot be annihilated and therefore evolves
to #̄ in the third step by the application of the catalytic rule cār → c#̄, which
symbol #̄ then annihilates the symbol # generated by the rule l′i → #lk in the
same step; if register r is not empty, ār is annihilated by some copy of ar already
in the first step, hence, the trap symbol # generated by the rule l′i → #lk does
not find its anti-matter #̄ and therefore evolves to ##, thus leading to an infinite
computation. Altough the annihilation rule arār → λ now does not have priority
over the catalytic rule cār → c#̄, maximal parallelism enforces arār → λ to be
applied, if possible, already in the first step instead of cār → c#̄, as in a successful
derivation the catalyst c first has to eliminate the dummy symbol d.

The rule lh → λ is applied at the end of a successful simulation of the in-
structions of the register machine M , and the computation halts if no trap symbol
is present; the number of symbols a1 sent out to the environment during the
computation represents the result of this halting computation. In sum, we obtain
N(M) = N(Π). ⊓⊔

6 Concluding Remarks

In this survey paper we have briefly recalled some basic ideas of membrane comput-
ing, and especially have given some information about spiking neural P systems,
including spiking neural P systems with anti-spikes. We have also extended this
idea of anti-objects (“anti-matter”) to cell-like P systems with symbol objects,
which can be proved to be computationally complete when the annihilation rules
are applied with having priority over the remaining non-cooperative rules; without
this priority, in addition catalytic rules with a single catalyst are needed to obtain
computational completeness.

Several problems are still open in this area of P systems with anti-matter. Some
of them have been formulated in this paper; the interested reader can find many
more in the literature, for instance, in [6].

180 R. Freund, Gh. Păun

References

1. A. Alhazov, B. Aman, R. Freund, Gh. Păun: Matter and anti-matter in membrane
systems. Brainstorming Week in Membrane Computing, Sevilla, February 2014.

2. A. Alhazov, D. Sburlan: Static Sorting P Systems. In: G. Ciobanu, Gh. Păun, M.J.
Pérez-Jiménez (Eds.): Applications of Membrane Computing. Natural Computing
Series, Springer, 2005, 215–252.

3. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting. Springer, Berlin, 2006.

4. P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting in Systems and Synthetic Biology. Springer, Berlin, 2014.

5. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems with-
out priorities: two catalysts are sufficient. Theoretical Computer Science, 330 (2005),
251–266.

6. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Frontiers of membrane
computing: Open problems and research topics, Intern. J. Found. Computer Sci., 24,
5 (2013), 547–623.

7. J. Gruska: Descriptional complexity of context-free languages. Proc. Symp. Math.
Found. Computer Sci., High Tatras, 1973, 71–83.

8. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

9. I. Korec: Small universal Turing machines. Theoretical Comp. Sci., 168 (1996), 267–
301.

10. K. Krithivasan, V.P. Metta, D. Garg: On string languages generated by spiking neural
P systems with anti-spikes. Intern. J. Found. Computer Sci., 22, 1 (2011).

11. W. Maass, C. Bishop, eds.: Pulsed Neural Networks. MIT Press, Cambridge, 1999.
12. V.P. Metta, A. Kelemenova: More on universality of spiking neural P systems with

anti-spikes. Manuscript, 2013.
13. V.P. Metta, K. Krithivasan, D. Garg: Some characteristics of spiking neural P systems

with anti-spikes. Proc. 11th Intern. Conf. on Membrane Computing, Jena, Germany,
August 2010, 291–303.

14. V.P. Metta, K. Krithivasan, D. Garg: Modelling and analysis of spiking neural P
systems with anti-spikes using Pnet lab. Nano Comm. Networks, 1, 2 (2011), 141–
149.

15. V.P. Metta, K. Krithivasan, D. Garg: Computability of spiking neural P systems
with anti-spikes. New Math. and Natural Comput., 8, 3 (2012), 283–295.

16. V.P. Metta, K. Krithivasan, D. Garg: Spiking neural P systems with anti-spikes as
transducers. Romanian J. Info. Sci. and Tehnology, 14, 1 (2011), 20–30.

17. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. Int. J. Comoputers,
Comm. and Control, 4, 3 (2009), 273–282.

18. A. Păun, Gh. Păun: Small universal spiking neural P systems. BioSystems, 90 (2007),
48–60.

19. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

20. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
21. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-

ford University Press, 2010.

P Systems with Anti-Matter 181

22. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 vols., Springer,
Berlin, 1997.

23. T. Song, L. Pan, J. Wang, I. Venkat, K.G. Subramanian, R. Abdullah: Normal forms
for spiking neural P systems with anti-spikes. IEEE Trans. Nanobioscience, 22, 4
(2012), 352–359.

24. T. Song, Y. Jiang, X. Shi, X. Zeng: Small universal spiking neural P systems with
anti-spikes. J. Comput. and Th. Nanoscience, 10, 4 (2013), 999–1006.

25. T. Song, X. Wang, Z. Zhang, Z. Chen: Homogeneous spiking neural P systems with
anti-spikes. Neural Comput. and Applic., DOI 10.1007/s00521-0123-1397-8 (June
2013).

26. G. Tan, T. Song, Z. Chen, X. Zeng: Spiking neural P systems with anti-spikes and
without annihilating priority working in a ”flip-flop” way. Intern. J. Computing Sci.
and Math, 4, 2 (2013), 152–162.

27. The P Systems Website: www.ppage.psystems.eu.

