
Scalable Grid-Based Implementation

for Membrane Computing

Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi, Romania
gabriel@info.uaic.ro

Summary. We first present the formal semantics of a parallel rule-based formalism
inspired by biological cells, and then provide a faithful parallel implementation of this
computational model by using GridGain and taking care of various synchronization issues.
Synchronization is achieved by using barriers and preconditions; both refer to the fact
that a membrane can apply its rules only after it has received signals from the other
related membranes. We develop a scalable parallel implementation using the MapReduce
paradigm in GridGain which allows the splitting of a task into multiple subtasks, the
parallel execution of these subtasks in parallel and the aggregation of the partial results
into a single, final result. This implementation is very close to the formal description of
this parallel model of membrane systems, a model which is computationally equivalent
to Turing machines and able to provide polynomial solutions to NP-complete problems.

1 Introduction

Membrane systems are essentially parallel and nondeterministic computing models
inspired by the compartments of (eukaryotic) cells and their biochemical reactions.
The structure of a cell is represented by a set of hierarchically embedded mem-
branes, all of which are contained inside a skin membrane. The molecular species
(ions, proteins, etc.) floating inside cellular compartments are represented by mul-
tisets of objects described by means of symbols over a given alphabet. Objects
can be modified or communicated between adjacent compartments. Chemical re-
actions are represented by evolution rules which operate on the objects, as well as
on the compartmentalized structure (by dissolving, dividing, creating, or moving
membranes).

Membrane systems (also called P systems) perform parallel computations in the
following way: starting from an initial configuration (the initial membrane struc-
ture and the initial multisets of objects placed inside the membranes), a system
evolves by applying the evolution rules of each membrane in a nondeterministic
manner. A rule is applicable when all the objects which appear in its left hand
side are available in the membrane where the rule is placed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51396178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

120 G. Ciobanu

Since membrane systems aim to abstract computing ideas and models from
the structure and the functioning of living cells, several extensions come from
both biology (aiming to model more and more biological phenomena) and com-
puter science (aiming to add new computing features). Their computing power
and efficiency have been investigated using the approaches of formal languages,
grammars, register machines and complexity theory. Membrane systems are pre-
sented together with many variants and examples in [7]. Several applications of
these systems are presented in [5]. An updated bibliography can be found at the
P systems web page http://ppage.psystems.eu. The state of the art is presented in
the handbook published recently by Oxford University Press [8].

In this paper we present a paralel implementation of membrane systems by us-
ing GridGain [9], using a new appealing technology. The implementation is derived
after studying some synchronization issues in membrane systems by defining their
operational semantics and describing the parallel (sub)steps of their evolutions.

2 Operational Semantics of the Membrane Systems

The basic model of membrane computing is usually referred to as a transition
membrane systems In this model, objects are represented using symbols from a
given alphabet, and each symbol from this alphabet can appear inside a region in
many different copies. A membrane system is composed of membranes which do
not intersect, and which are all contained within a skin membrane. Each membrane
can contain multisets of objects, evolution rules and other membranes. The objects
inside a membrane evolve in a maximal parallel manner according to the evolution
rules inside the same membrane. According to [7], maximal parallel “means that
we assign objects to rules, non-deterministically choosing the objects and the rules,
until no further assignment is possible.”

First we present an abstract syntax for membrane systems, and then we a
structural operational semantics of these systems by means of three sets of infer-
ence rules corresponding to maximal parallel rewriting, parallel communication,
and parallel dissolving.

In general, operational semantics provide a way of rigorously describing the
evolution of a computing system. Configurations are states of a transition system,
and a computation consists of a sequence of transitions from one configuration to
another, until a final configuration is reached (if the computation terminates, that
is). Structural operational semantics provides a framework for defining a formal
description of a computing system. In basic membrane systems, a computation
is regarded as a sequence of parallel applications of rules in various membranes,
followed by a communication step and a dissolving step. A structural operational
semantics of membrane systems emphasizes the deductive nature of membrane
computing by describing the transition steps through a set of inference rules. Con-

sidering a set R of inference rules of the form
premises

conclusion
, the evolution of a

membrane system can be presented as a deduction tree.

Scalable Grid-Based Implementation for Membrane Computing 121

A sequence of transition steps represents a computation. A computation is
successful if this sequence is finite, namely there is no rule applicable to the objects
present in the last committed configuration. In a halting committed configuration,
the result of a successful computation is the total number of objects present either
in the membrane considered as the output membrane, or in the outer region.

2.1 Configurations and Transitions

First we present an inductive definition of the membrane structure, the sets of
configurations for a membrane system, and an intuitive definition for the transi-
tion systems, which is given by considering each transition step: maximal parallel
rewriting, parallel communication, and parallel dissolving.

Let O be a finite alphabet of objects over which we consider the free commu-
tative monoid O∗

c , whose elements are multisets. The empty multiset is denoted
by empty. Objects can be enclosed in messages together with a target indica-
tion. We have here messages of typical form (w, here), out messages (w, out),
and in messages (w, inL). For the sake of simplicity, hereinafter we consider
that the messages with the same target indication merge into one message:
∏

i∈I(vi, here) = (w, here),
∏

i∈I(vi, inL) = (w, inL),
∏

i∈I(vi, out) = (w, out),
with w =

∏

i∈I vi, I a non-empty set, and (vi)i∈I a family of multisets over O.
We use the mappings rules and priority to associate to a membrane label the set

of evolution rules and the priority relation over rules (when this exists) : rules(Li) =
Ri, priority(Li) = ρi, and the projections L and w which return from a membrane
its label and its current multiset, respectively.

The set M(Π) of membranes for a P system Π, and the membrane structures
are defined inductively, as follows:

• if L is a label, and w is a multiset over O ∪ (O × {here}) ∪ (O × {out}) ∪ {δ},
then 〈 L | w 〉 ∈ M(Π); 〈 L | w 〉 is called a simple (or elementary) membrane,
and it has the structure 〈〉;

• if L is a label, w is a multiset over O ∪ (O × {here}) ∪ (O × {inL(Mj)| j ∈
[n]}) ∪ (O × {out}) ∪ {δ}, M1, . . . ,Mn ∈ M(Π), n ≥ 1, where each membrane
Mi has the structure µi, then 〈L|w;M1, . . . ,Mn〉 ∈ M(Π); 〈L|w;M1, . . . ,Mn〉
is called a composite membrane having the structure 〈µ1, . . . , µn〉.

We conventionally suppose the existence of a set of sibling membranes denoted
by NULL such that M,NULL = M = NULL,M and 〈L |w ; NULL 〉 = 〈L |w 〉.
The use ofNULL significantly simplifies several definitions and proofs. LetM∗(Π)
be the free commutative monoid generated by M(Π) with the operation (,) and
the identity element NULL. We defineM+(Π) as the set of elements fromM∗(Π)
without the identity element. Let M+, N+ range over non-empty sets of sibling
membranes, Mi over membranes, M∗, N∗ range over possibly empty multisets of
sibling membranes, and L over labels. The membranes preserve the initial labeling,
evolution rules and priority relation among them in all subsequent configurations.

122 G. Ciobanu

Therefore in order to describe a membrane we consider its label and the current
multiset of objects together with its structure.

A configuration for a P system Π is a skin membrane which has no messages
and no dissolving symbol δ, i.e., the multisets of all regions are elements in O∗

c .
We denote by C(Π) the set of configurations for Π.

An intermediate configuration is an arbitrary skin membrane in which we may
find messages or the dissolving symbol δ. We denote by C#(Π) the set of interme-
diate configurations. We have C(Π) ⊆ C#(Π).

Each membrane system has an initial configuration which is characterized by
the initial multiset of objects for each membrane and the initial membrane struc-
ture of the system. For two configurations C1 and C2 of Π, we say that there is a
transition from C1 to C2, and write C1 ⇒ C2, if the following steps are executed
in the given order:

1. maximal parallel rewriting step: each membrane evolves in a maximal parallel
manner;

2. parallel communication of objects through membranes by sending and receiving
messages;

3. parallel membrane dissolving, consisting in dissolving the membranes contain-
ing δ.

The last two steps take place only if there are messages or δ symbols resulting
from the first step, respectively. If the first step is not possible, then neither are
the other two steps; we say that the system has reached a halting configuration.

2.2 Maximal Parallel Rewriting Step

We briefly present an operational semantics for membrane systems, considering
each of the three steps. First we formally define the maximal parallel rewriting
mpr
=⇒L for a multiset of objects in one membrane, and we extend it to maximal

parallel rewriting
mpr
=⇒ over several membranes. Some preliminary notions are re-

quired.

Definition 1. The irreducibility property w.r.t. the maximal parallel rewriting re-
lation for multisets of objects, membranes, and for sets of sibling membranes is
defined as follows:

• a multiset of messages and the dissolving symbol δ are L-irreducible;
• a multiset of objects w is L-irreducible iff there are no rules in rules(L) ap-

plicable to w with respect to the priority relation priority(L);
• a simple membrane 〈 L | w 〉 is mpr-irreducible iff w is L-irreducible;
• a non-empty set of sibling membranes M1, . . . ,Mn is mpr-irreducible iff Mi

is mpr-irreducible for every i ∈ [n]; NULL is mpr-irreducible;
• a composite membrane 〈 L | w ; M1, . . . ,Mn 〉 is mpr-irreducible iff w is

L-irreducible, and the set of sibling membranes M1, . . . ,Mn is mpr-irreducible.

Scalable Grid-Based Implementation for Membrane Computing 123

The priority relation is a form of control on the application of rules. In the
presence of a priority relation, no rule of a lower priority can be used during the
same evolution step when a rule with a higher priority is used, even if the two
rules do not compete for the same objects. We formalize the conditions imposed
by the priority relation on rule applications in the definition below.

Definition 2. Let M be a membrane labeled by L, and w a multiset of objects.
A non-empty multiset R = (u1 → v1, . . . , un → vn) of evolution rules is (L,w)-
consistent if:

- R ⊆ rules(L),
- w = u1 . . . unz, so each rule r ∈ R is applicable on w,
- (∀r ∈ R, ∀r′ ∈ rules(L)) r′ applicable on w implies (r′, r) /∈ priority(L) (we have

(r1, r2) ∈ priority(L) iff r1 > r2),
- (∀r′, r′′ ∈ R) (r′, r′′) /∈ priority(L),
- the dissolving symbol δ has at most one occurrence in the multiset v1 . . . vn.

Maximal parallel rewriting relations
mpr
=⇒L and

mpr
=⇒ are defined by the follow-

ing inference rules:

For each w = u1 . . . unz ∈ O+
c such that z is L-irreducible, and (L,w)-consistent

rules (u1 → v1, . . . , un → vn),

(R1)
u1 . . . unz

mpr
=⇒L v1 . . . vnz

For each w ∈ O+
c , w

′ ∈ (O∪Msg(O)∪{δ})+c , and mpr-irreducible M∗ ∈ M∗(Π),

(R2)
w

mpr
=⇒L w′

〈 L | w ; M∗ 〉
mpr
=⇒ 〈 L | w′ ; M∗ 〉

For each L-irreducible w ∈ O∗
c , and M+,M

′
+ ∈ M+(Π),

(R3)
M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w ; M ′

+ 〉

For each w ∈ O+
c , w

′ ∈ (O ∪Msg(O) ∪ {δ})+c , M+,M
′
+ ∈ M+(Π),

(R4)
w

mpr
=⇒L w′,M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w′ ; M ′

+ 〉

For each M,M ′ ∈ M(Π), and M+,M
′
+ ∈ M+(Π),

(R5)
M

mpr
=⇒ M ′,M+

mpr
=⇒ M ′

+

M,M+
mpr
=⇒ M ′,M ′

+

124 G. Ciobanu

For each M,M ′ ∈ M(Π), and mpr-irreducible M+ ∈ M+(Π),

(R6)
M

mpr
=⇒ M ′

M,M+
mpr
=⇒ M ′,M+

We note that
mpr
=⇒ for simple membranes can be described by rule (R2) with

M∗ = NULL.

Remark 1. M is mpr-irreducible iff there does not exist M ′ such that M
mpr
=⇒ M ′.

Proposition 1. Let Π be a membrane system. If C ∈ C(Π) and C ′ ∈ C#(Π) such

that C
mpr
=⇒ C ′, then C ′ is mpr-irreducible.

The formal definition of
mpr
=⇒ given above corresponds to the intuitive description of

maximal parallelism. The nondeterminism is given by the associativity and com-
mutativity of the concatenation operation over objects used in R1. The parallelism

of the evolution rules in a membrane is also given by R1: u1 . . . unz
mpr
=⇒L v1 . . . vnz

says that the rules of the multiset (u1 → v1, . . . , un → vn) are applied simultane-
ously. The fact that the membranes evolve in parallel is described by rulesR3−R6.

2.3 Parallel Communication of Objects

We say that a multiset w is here-free/out-free/inL-free if it does not contain any
here/out/inL messages, respectively. For w a multiset of objects and messages, we
introduce the operations obj, here, out, and inL as follows:

obj(w) is obtained from w by removing all messages,

here(w) =

{

empty if w is here-free,
w′′ if w = w′(w′′, here) ∧ w′ is here-free;

out(w) =

{

empty if w is out-free,
w′′ if w = w′(w′′, out) ∧ w′ is out-free;

inL(w) =

{

empty if w is inL-free,
w′′ if w = w′(w′′, inL) ∧ w′ is inL-free.

We consider the extension of the operator w (previously defined over mem-
branes) to non-empty sets of sibling membranes by setting w(NULL) = empty
and w(M1, . . . ,Mn) = w(M1) . . .w(Mn).

We recall that the messages with the same target merge in one larger message.

Definition 3. The tar-irreducibility property for membranes and for sets of
sibling membranes is defined as follows:

• a simple membrane 〈 L | w 〉 is tar-irreducible iff w is here-free and L 6=
Skin ∨ (L=Skin ∧ w out-free);

• a non-empty set of sibling membranes M1, . . . ,Mn is tar-irreducible iff Mi

is tar-irreducible for every i ∈ [n]; NULL is tar-irreducible;

Scalable Grid-Based Implementation for Membrane Computing 125

• a composite membrane 〈 L | w ; M1, . . . ,Mn 〉, n ≥ 1, is tar-irreducible iff:
w is here-free and inL(Mi)-free for every i ∈ [n], L 6= Skin ∨ (L = Skin ∧
w is out-free), w(Mi) is out-free for all i ∈ [n], and the set of sibling membranes
M1, . . . ,Mn is tar-irreducible;

Notation. We treat messages of the form (w′, here) as a particular communi-
cation inside a membrane, and we substitute (w′, here) by w′. We denote by w the
multiset obtained by replacing (here(w), here) with here(w) in w. For instance, if
w = a (bc, here) (d, out) then w = abc (d, out), where here(w) = bc. We note that
inL(w) = inL(w), and out(w) = out(w).

The parallel communication relation
tar
=⇒ is defined by the following inference

rules:

For each tar-irreducible M∗ ∈ M∗(Π) and multiset w such that
here(w) 6= empty, or L = Skin ∧ out(w) 6= empty, or there exists Mi ∈ M∗

with
inL(Mi)(w)out(w(Mi)) 6= empty,

(C1)
〈 L | w ; M∗ 〉

tar
=⇒ 〈 L | w′ ; M ′

∗ 〉

where

w′ =

{

obj(w) out(w(M∗)) if L = Skin,
obj(w) (out(w), out) out(w(M∗)) otherwise;

and
w(M ′

i) = obj(w(M ′
i)) inL(Mi)(w), for all Mi ∈ M∗

For each M1, . . . ,Mn,M
′
1, . . . ,M

′
n ∈ M+(Π), and multiset w,

(C2)
M1, . . . ,Mn

tar
=⇒ M ′

1, . . . ,M
′
n

〈 L | w ; M1, . . . ,Mn 〉
tar
=⇒ 〈 L | w′′ ; M ′′

1 , . . . ,M
′′
n 〉

where

w′′ =

obj(w) out(w(M ′
1, . . . ,M

′
n)) if L = Skin,

obj(w) (out(w), out) out(w(M ′
1, . . . ,M

′
n))

otherwise;
and each M ′′

i is obtained from M ′
i by replacing

its resources with

w(M ′′
i) = obj(w(M ′

i)) inL(M ′
i)
(w), for all i ∈ [n]

For each M,M ′ ∈ M(Π), and tar-irreducible M+ ∈ M+(Π),

(C3)
M

tar
=⇒ M ′

M,M+
tar
=⇒ M ′,M+

126 G. Ciobanu

For each M ∈ M(Π), M+ ∈ M+(Π),

(C4)
M

tar
=⇒ M ′,M+

tar
=⇒ M ′

+

M,M+
tar
=⇒ M ′,M ′

+

Remark 2. M is tar-irreducible iff there does not exist M ′ such that M
tar
=⇒ M ′.

Proposition 2. Let Π be a membrane system. If C ∈ C#(Π) with messages and

C
tar
=⇒ C ′, then C ′ is tar-irreducible.

2.4 Parallel Membrane Dissolving

If the special symbol δ occurs in the multiset of objects of a membrane labeled by L,
that membrane is dissolved, its evolution rules and the associated priority relation
are lost, and its contents (objects and membranes) is added to the contents of the
surrounding membrane. We say that a multiset w is δ-free if it does not contain
the special symbol δ.

Definition 4. The δ-irreducibility property for membranes and for sets of sib-
ling membranes is defined as follows:

• a simple membrane is δ-irreducible iff it has no messages;
• a non-empty set of sibling membranes M1, . . . ,Mn is δ-irreducible iff every

membrane Mi is δ-irreducible, for 1 ≤ i ≤ n; NULL is δ-irreducible;
• a composite membrane 〈 L | w ; M+ 〉 is δ-irreducible iff w has no messages,

M+ is δ-irreducible, and w(M+) is δ-free;

Parallel dissolving relation
δ

=⇒ is defined by the following inference rules:

For each M∗ ∈ M∗(Π), δ-irreducible 〈 L2 | w2δ ; M∗ 〉, and label L1,

(D1)

〈 L1 | w1 ; 〈 L2 | w2δ ; M∗ 〉 〉
δ

=⇒ 〈 L1 | w1w2 ; M∗ 〉

For each M+ ∈ M+(Π), M ′
∗ ∈ M∗(Π), δ-free multiset w2, multisets w1, w

′
2, and

labels L1, L2

(D2)
〈 L2 | w2 ; M+ 〉

δ
=⇒ 〈 L2 | w′

2 ; M′
∗ 〉

〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1 ; 〈 L2 | w′
2 ; M′

∗ 〉 〉

For each M+ ∈ M+(Π), M ′
∗ ∈ M∗(Π), multisets w1, w2, w

′
2, and labels L1, L2

(D3)
〈 L2 | w2δ ; M+ 〉

δ
=⇒ 〈 L2 | w′

2δ ; M′
∗ 〉

〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1w′
2 ; M′

∗ 〉

For each M+ ∈ M+(Π), M ′
∗, N

′
∗ ∈ M∗(Π), δ-irreducible 〈 L | w ; N+ 〉, and

multisets w′, w′′,

(D4)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | w′ ; M′

∗ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | w′ ; M′
∗, N+ 〉

Scalable Grid-Based Implementation for Membrane Computing 127

(D5)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | ww′ ; M′

∗ 〉〈 L | w ; N+ 〉
δ

=⇒ 〈 L | ww′′ ; N′
∗ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | ww′w′′ ; M′
∗, N′

∗ 〉

Remark 3. M is δ-irreducible iff there does not exist M ′ such that M
δ

=⇒ M ′.

Proposition 3. Let Π be a membrane system. If C ∈ C#(Π) is tar-irreducible

and C
δ

=⇒ C ′, then C ′ is δ-irreducible.

It is worth noting that C ∈ C(Π) iff C is tar-irreducible and δ-irreducible.
According to the standard description in membrane computing, a transition step
between two configurations C,C ′ ∈ C(Π) is given by: C ⇒ C ′ iff C and C ′ are
related by one of the following relations:

either C
mpr
=⇒;

tar
=⇒ C ′,

or C
mpr
=⇒;

δ
=⇒ C ′,

or C
mpr
=⇒;

tar
=⇒;

δ
=⇒ C ′.

The three alternatives in defining C ⇒ C ′ are given by the existence of mes-
sages and dissolving symbols along the system evolution. Starting from a config-
uration without messages and dissolving symbols, we apply the “mpr” rules and
get an intermediate configuration which is mpr-irreducible; if we have messages,
then we apply the “tar” rules and get an intermediate configuration which is tar-
irreducible; if we have dissolving symbols, then we apply the dissolving rules and
get a configuration which is δ-irreducible. If the last configuration has no messages
or dissolving symbols, then we say that the transition relation ⇒ is well-defined
as an evolution step between the first and last configurations.

Proposition 4. The relation ⇒ is well-defined over the entire set C(Π) of config-
urations.

Examples of inference trees, as well as the proofs of the results are presented in
[1] and [2].

3 Synchronization Issues in Implementing P Systems

It is evident from the operational semantics that there are several synchronization
aspects related to the evolution of a membrane system.

The relationship between the synchronous and the asynchronous in computing
systems, particularly in massively-parallel and multiprocessor computing systems,
will remain a challenging topic for many years to come. There are reasons to think
that the asynchronous approach has some advantages; however the synchronous
methodology prevails in the modern computing systems architecture. As if this
is not enough, different fields treat the concepts of synchrony and asynchrony

128 G. Ciobanu

somewhat differently. The main terms (parallelism, concurrency, time) should be
clarified in order to discuss the synchronous and asynchronous issues. In our ap-
proach we work with a “causal” time (defined as the partial order on some events
resulting from their cause-effect relationships) rather a physical time (defined as
an independent physical variable related to a clock). The concept of causal time
was formulated initially by Aristotle (If nothing happens, no time); it can be use-
ful in systems dealing with events defining cause-effect relationships. The abstract
model of a finite state machine corresponds to the model of an asynchronous sys-
tem evolving in logical time; a possible conversion to a synchronous approach is
given by a barrier synchronization (as an engineering solution) in order to man-
age unpredictable variations of the delays introduced by real physical components.
An algorithm (its program) consists of a sequence of steps which perform some
actions. Asynchrony is usually treated as the dependence of the number of steps
required to obtain the result on the input data. In the case of a fully sequential algo-
rithm (program), such treatment of asynchrony is important only for performance
evaluation. Parallel algorithms and programs present new and challenging tasks.
Certain steps of an algorithm can be performed concurrently. Representing an al-
gorithm (program) in the form suitable for concurrent implementation is reduced
to the cause-effect relationships between the operations (processes, commands) in
the algorithm. Thus a parallel specification is a procedure for introducing logical
time into the algorithm. An implementation of a global synchronous system can
be given by delivering a termination signal from the processors (processes) of the
system. Difficulties appear when several processes have a shared resource, and
non-synchronized events may occur. A possible solution of a synchronous imple-
mentation that eliminates the problems of physical asynchrony is as follows:

• every process can be in two phases: active and passive;
• a process can run only when active;
• to transit from passive to active a process has to receive a signal;
• after an active process executes, it signals other passive processes;

Initially we activate some processes, which after their executions signal pas-
sive processes. This repeats until all processes have terminated. Following this
scenario, deadlock can occur if the process dependency graph contains cycles. In
this scenario, process can be synchronized using a barrier. A process barrier is
an concurrent abstraction through which multiple processes can be synchronized.
Thus a passive process can be considered a process that is waiting at the barrier,
and by passing the barrier it becomes an active one.

We can apply this type of synchronization to membrane systems, by allowing
a membrane to evolve only after it has passed the barrier. To model this, we use
a set of antecedents and a set of descendants for each membrane when describing
the system. To apply its rules, a membrane needs to receive signals from all of its
antecedents. After it applies its rules, the membrane signals all of its descendants.
The set of antecedents specifies how many times a signal needs to be received from
each membrane. The set of descendants specifies the membranes that need to be
signaled after the application of rules.

Scalable Grid-Based Implementation for Membrane Computing 129

Using this mechanism, we can control the relative evolution speed of the an-
tecedents of a membrane. This approach allows to specify that a certain membrane
can repeat its step several times before sending its signal to the descendents. In
this way we can have a parameterized synchronization between membranes, and
this aspect could be very useful in modeling biological phenomena. The evolution
of a membrane can be described by the following steps which are repeated until
no rule can be applied.

1. collect signals from all the antecedents;
2. apply the rules after receiving all the signals;
3. signal all descendants.

4 A Grid-Based Implementation of P Systems

We present here a grid implementation of membrane systems in which we empha-
size the notion of computation and synchronization. We employ a synchroniza-
tion mechanism based on certain preconditions expressing the consistency of the
global state of the system. This synchronization mechanism has been introduced to
control the dependency relation between membranes. We propose a synchronous
model of execution used to coordinate membrane evolution.

To achieve scalability we make use of the grid paradigm MapReduce. The
paradigm is defined by two main steps: map, and reduce. The map step allows
splitting a task into multiple jobs that execute in parallel on the grid nodes. The
reduce step aggregates the result of each job, and returns the task result.

Thus the simulation of a membrane system can be viewed as a grid task. The
jobs associated with this task define the execution of each membrane. Hence the
number of jobs is equal to the number of membranes. To model the proposed
synchronization mechanism between membranes, a communication between jobs
is required.

We have selected GridGain [9] as our grid platform because it provides all
the required features, and it is easily deployed on multiple platforms. GridGain
is a Java-based open source grid computing infrastructure, released under LGPL
license. It provides a zero deployment model, meaning that a node can be deployed
by running a script, or by creating a node instance. A valuable feature of the system
is its support for advanced load balancing and scheduling by providing early and
late load balancing that are defined by load balancing and collision (scheduling)
resolution. Another important feature is pluggable fault-tolerance with several
popular implementations available out-of-the-box. It allows the failover of logic
and not only the data. The most notable features of GridGain that we use are:
tasks and jobs modeled according to the MapReduce paradigm, communication
between grid jobs, and on-demand class loading.

The main steps of the simulation are: (1) Build a membrane system from an
specification file; (2) Using the generated membrane system, construct and execute
a grid job: (i) Map: create a job for each membrane; (ii) Reduce: gather all the

130 G. Ciobanu

public class Membrane {
private List<MembraneLabel> childrenLabels ;
private List<Rule> rules ;
private HashMultiset contents ;
private HashMultiset incomingObjects ;
private MembraneLabel label ;
private MembraneLabel parentLabel ;
private HashMap<MembraneLabel , Integer> antecedents ;
private List<MembraneLabel> descendants ;
private int appliedRules ; //number o f app l i e d r u l e s in t h i s

s t ep

public Membrane ()
// t e s t i f the membrane conta ins a mu l t i s e t
public boolean contains (HashMultiset multiset)
// s t o r e a mu l t i s e t t h a t r e s u l t e d in t h i s e v o l u t i on s t ep
public void enqueMultiset (HashMultiset multiset)
//add the o b j e c t s t h a t r e s u l t e d in t h i s e v o l u t i on s t ep
public void endEvolution ()
// re turn the l i s t o f a p p l i c a b l e r u l e s
public List<Rule> getApplicableRules ()

}

Fig. 1. Membrane Class

responses from the jobs and create the resulting membrane system.
The simulation repeats step 2 as long as a rule is applied. Each generated job con-
tains an object that describes a membrane from the system. The job is responsible
for the correct simulation of the evolution of the membrane. Thus it needs to syn-
chronize with other membranes, and also to apply different rules. The result of the
job consists of the final state of the simulated membrane. We have used a modular
design for the entities of the system in which we separated the objects defining
the grid behavior from those defining the membrane systems. Thus we implement
several abstractions that model various notions such as: membranes, rules, mem-
brane objects, etc. For the grid behavior we define the following concepts: task, job,
barrier.

In Figure 1 we describe the members and main methods of class Membrane. The
object is responsible only for operations that modify the contents of a membrane.
The evolution logic is implemented using the Rule and EvolutionVisitor objects.
To model the rules of a membrane system we used a extensible approach. Each
rule can be seen as a list of constraints; a constraint is responsible for checking if
its precondition is valid (via method check), and for applying its postcondition on
a membrane (via method apply).

Scalable Grid-Based Implementation for Membrane Computing 131

public class Rule extends RuleConstraint {
List<RuleConstraint> constraints ;

public Rule ()
public void apply (Membrane membrane) {

for (RuleConstraint constraint : constraints) {
constraint . apply (membrane) ;

}
}
public boolean check (Membrane membrane) {

boolean isApplicable = true ;
Iterator<RuleConstraint> iter = constraints . iterator () ;
while (isApplicable && iter . hasNext ()) {

isApplicable = isApplicable && iter . next () . check (membrane)
;

}
return isApplicable ;

}
}

Fig. 2. Rule Class

From a software engineering perspective, the rule follows the composite pattern.
In Appendix1, we present the RuleConstraint class and in how a constraint multiset
can be implemented. The main methods of the Rule class are presented in Figure 2.
Using these abstractions we can easily implement rules with various ingredients,
only by describing constraints and aggregating them into a new type of Rule. The
evolution of a membrane is performed by the EvolutionVisitor object described.
The method localMembraneEvolution defines the logic of a single step of evolution.
A step is simulated by the repeated application of rules.

A grid task is defined by the class PsTask, which follows the MapReduce
paradigm. The method split takes as input a membrane system, and for each
membrane creates a job that will be executed on the grid. The method reduce
receives a list of job results that contain membranes, and assembles them in a
membrane system.

A grid job is described by the PsJob object (in Appendix). This object contains
a membrane which holds the data, and a barrier used for synchronization. The main
method of this class is execute, in which the evolution of a membrane is executed.
The evolution consists of a three-step loop: (i) wait at the barrier for incoming
signals, (ii) after receiving the signals, apply the rules, and (iii) after applying the
rules, signal the descendants. The result of the job is a maximally parallel step of
the membrane.

1 Available online at www.gcn.us.es/12bwmc proceedings

132 G. Ciobanu

public class PsTask{
public MembraneSystem reduce (List results) {

MembraneSystem result = new MembraneSystem () ;
int appliedRules = 0 ;
for (GridJobResult gridJobResult : results) {

Membrane data = gridJobResult . getData () ;
result . getMembranes () . put (data . getLabel () , data) ;
appliedRules += data . getAppliedRules () ;

}
result . setAppliedRules (appliedRules) ;
return result ;

}
protected List<GridJob> split (MembraneSystem arg) {

List<PsJob> jobs = new ArrayList<PsJob>() ;
for (Membrane mbr : arg . getMembranes () . values ()) {

jobs . add (new PsJob (mbr)) ;
}
return jobs ;

}
}

Fig. 3. PsTask Class

Membrane synchronization is achieved by using a special form of barrier. The
barrier waits to be signaled from each antecedent membrane a specified number
of times. After this, it releases the job that called the method waitAt. The barrier
also listens for termination signals. When it receives such a signal it informs the
waiting job that it should finish its execution.

5 Example

We provide a simple example to illustrate the developed simulator. The system is
composed of two membranes m1, m2. Membrane m1 contains a2000 and has rules
a → b, and b2 → d, while membrane m2 contains a40000b1000c5000 and has rules
a2 → b, and c2 → d. The signaling part is denoted by the contents of wait, and
signal. Those include a sequence of membranes and the number of times they have
to signal. Notice that m2 has to wait to be signaled by m1 two times before it can
apply a rule. The parent of m2 is m1, which is the skin membrane.

/∗ PsGrid input f i l e ∗/
membrane m1 /∗name of the membrane∗/ :

skin /∗name of the parent∗/{
children {

m1 /∗name of ch i l dren ∗/
}

Scalable Grid-Based Implementation for Membrane Computing 133

contents {
a ˆ{2000}/∗ contents of the membrane∗/

}
rules {

/∗ ru l e s of the membrane∗/
[aˆ{1} ==> b ˆ{1}]
[bˆ{2} ==> d ˆ{1}]

}
wait{

/∗ the antecedents ∗/
}
signal {

m2 /∗ the descendants ∗/
}

}
membrane m2 : m1{

children {
}
contents {

a ˆ{40000} b ˆ{1000} c ˆ{5000}
}
rules {

[aˆ{2} ==> b ˆ{1}]
[cˆ{2} ==> d ˆ{1}]

}
wait{

m1 ˆ{2}
}
signal {
}

}

We also present the log from each node of the grid. The log shows the order
in which membrane jobs arrive at each node, and the actions they execute. The
number of rule applications executed in a certain step is written at the end of the
lines (after #). Notice that the job ends if it receives a terminate signal, or if the
membrane did not apply any rules in this step.

[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#6%null%][PsJob] Received membrane with

contents : m1 : [a ˆ{2000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2}
−> d]]] #0

[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#10%null%][PsJob] Received membrane with

contents : m2 : [b ˆ{1000} c ˆ{5000} a ˆ{40000}] [[Rule : in m2 [aˆ{2} −> b

] , Rule : in m2 [cˆ{2} −> d]]] #0
[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#10%null%][PsJob] Waiting at barrier : m2
[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#6%null%][PsJob] Waiting at barrier : m1
[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#6%null%][PsJob] Passing the barrier : m1
[2 0 : 2 6 : 5 6 , 8 7 5] [INFO] [gridgain−#6%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#6%null%][PsJob] After evolution : m1 : [b
ˆ{2000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2} −> d]]] #2000

[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#6%null%][PsJob] Waiting at barrier : m1
[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#6%null%][PsJob] Passing the barrier : m1
[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#10%null%][PsJob] Passing the barrier : m2
[2 0 : 2 6 : 5 6 , 9 0 6] [INFO] [gridgain−#6%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] After evolution : m1 : [d
ˆ{1000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2} −> d]]] #1000

[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] Waiting at barrier : m1
[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] Passing the barrier : m1
[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] Sending signal to

descendants

134 G. Ciobanu

[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] After evolution : m1 : [d
ˆ{1000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2} −> d]]] #0

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] After evolution : m2 : [d
ˆ{2500} b ˆ{21000}] [[Rule : in m2 [aˆ{2} −> b] , Rule : in m2 [cˆ{2}
−> d]]] #22500

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Waiting at barrier : m2
[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Passing the barrier : m2
[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] After evolution : m2 : [d
ˆ{2500} b ˆ{21000}] [[Rule : in m2 [aˆ{2} −> b] , Rule : in m2 [cˆ{2}
−> d]]] #0

Fig. 4. PsGrid Screen After Executing the Example

The simulator has a simple but flexible graphical interface. A screen-shot after
executing a simulation is presented in Figure 4. The first row presents the initial
configuration of the membrane system. The second row presents the contents of
the membranes after the simulation.

Even though this example is simple, the implementation can benefit from sev-
eral features of GridGain, and provide a complex parallel implementation of mem-
brane systems. The main points are that the implementation is faithful to the

Scalable Grid-Based Implementation for Membrane Computing 135

formal description of the membrane systems, and it is also scalable to a high
number of membranes (which is the case in cell biology simulations).

6 Conclusion

Hierarchies are often used in modeling and simulation for computational biology.
A hierarchical perspective of the cell considers components structured into classes
of similar kinds, e.g. golgi, ER, and nucleus form organelles, i.e. membrane-bound
compartments of the cell. New models of membrane systems need to be simulated
on complex hardware systems in order to provide a valuable feedback to biologists.
Membrane computing is a branch of natural computing using an explicit hierarchi-
cal description coming exactly from the structure and functioning of the living cell.
The main areas where membrane computing has been used as a modeling frame-
work (biology and bio-medicine, linguistics, economics, computer science, etc.) are
presented in [5]. In that volume, several implementations (mainly using sequential
computational environments) for simulating various types of cell-like membrane
systems are presented in [6]. We consider that the simulation of P systems with
sequential computers is a complex task because membrane systems are intrinsically
parallel and nondeterministic computational devices, and their computation trees
are difficult to store and handle with one processor. Therefore it is necessary to
look for parallel and scalable implementations able to simulate as close as possible
the formal description of the membrane systems.

In this paper we present a faithful parallel implementation of membrane sys-
tems using GridGain, emphasizing on the synchronization problems appearing
in membrane computing. Thus we hope to offer a more suitable simulator for
membrane systems, opening a new possibility of using membrane computing as a
parallel and nondeterministic modeling framework for addressing structural and
dynamical aspects of complex systems modeling phenomena in cell biology where
huge number of elements are used (some phenomena are presented in [5]).

In the papers devoted to membrane systems it is not mentioned how the mem-
branes (or groups of membranes) interact or synchronize. The usual thinking is
that membrane systems are synchronized locally (a step of a membrane is given by
the parallel application of rules), and behave asynchronously at the global level.
We emphasize here the global aspects, by adding a form of parameterized barrier
synchronization between membranes.

There are several software simulators for P systems; however almost all of them
are on sequential hardware, and so they do not match the parallel nature of P sys-
tems. A parallel implementation of P systems (one of the very few, if not the
unique working in a parallel hardware setting) is presented in [4]. It uses a cluster
of 64 dual processors, and an MPI library in order to describe the communication
and synchronization of parallel processes. In that parallel simulator, the rules are
implemented as threads. At the system initialization phase, one thread is created
for each rule. Within one membrane, several rules can be applied concurrently.

136 G. Ciobanu

This parallelism between rule applications within one membrane is modeled with
multithreading. Rule applications are performed in terms of rounds. To synchro-
nize each thread (rule) within the system, two barriers implemented as mutexes
are associated with a thread. At the beginning of each round, the barrier that the
rule thread is waiting on is released by the primary controlling thread. After the
rule application is done, the thread waits for the second barrier, and the primary
thread locks the first barrier. During the following round it would repeat the above
procedure, releasing and locking alternating barriers. Since many rules are execut-
ing concurrently and they are sharing resources, a mutual exclusion algorithm is
necessary.

The communication and synchronization between membranes is implemented
using the Message Passing Interface library of functions for parallel computation.
The execution is performed in terms of rounds. At the end of each round, every
membrane exchanges messages with all its children and parent before proceeding
to the next round. Another concern is the termination detection problem. When
the system is no longer active, there is no rule in any membrane that is applicable,
all the membranes must be able to be informed, and to terminate. Once the skin
membrane detects the termination, it broadcasts this information to all the other
membranes. Thereafter, the system terminates and the output is written to a
specified file. Fundamental distributed algorithms in the framework of membrane
systems are presented in [3].

References

1. Andrei, O., Ciobanu, G. and Lucanu, D. Operational Semantics and Rewriting Logic
in Membrane Computing, Electronic Notes of Theoretical Computer Science vol.156,
57–78, 2006.

2. Andrei, O., Ciobanu, G. and Lucanu, D. A Rewriting Logic Framework for Op-
erational Semantics of Membrane Systems. Theoretical Computer Science vol.373,
163–181, 2007.

3. G. Ciobanu. Distributed Algorithms over Communicating Membrane Systems.
Biosystems vol.70, Elsevier, 123–133, 2003.

4. G. Ciobanu, W. Guo. P Systems Running on a Cluster of Computers. Membrane
Computing, Lecture Notes in Computer Science vol.2933, Springer, 123–139, 2004.

5. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.). Applications of Membrane Com-
puting. Natural Computing Series, Springer, 2006.

6. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. Available Membrane
Computing Software. In Applications of Membrane Computing [5], Springer, 411–436,
2006.

7. Păun, Gh. Membrane Computing. An Introduction. Springer, 2002.
8. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.
9. Website GridGain: http://gridgain.com.

