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Summary. In this paper we consider P systems with linear membrane structures (only
one membrane is elementary) with at most one object. We raise and attack the question
about the computational power of such systems, depending on the number of membrane
labels, kinds of rules used, and some other possible restrictions.

1 Introduction

P systems with symbol objects are formal computational models of parallel dis-
tributed multiset processing. In the scope of the present research, we only deal
with one object, so the model is reduced to sequential distributed tree rewriting
controlled by one traveller object with a finite memory. Moreover, we assume the
membrane structure to be linear (the tree is a path), with one or two possible
membrane labels. Hence, we are interested in controlled rewriting of strings over
one or two symbols.

Unbounded linear membrane structures have received the attention of re-
searchers in the past, see, e.g., [4] and [3]. In the latter paper, the authors spoke
about the generation languages by representing strings a1 · · · an as labels mem-
branes arranged in a linear structure as

[
a1

[
a2

· · · [
an

]
an

· · · ]
a2

]
a1
.

A different example of research where unbounded membrane structures played a
crucial role for obtaining an important result (the computational completeness of
P systems with active membranes without polarizations) is given in [1], improved
in terms of presentation and object/symbol/membrane label complexity in [2].

This research direction, focusing on the membrane structure (rather than the
multiset of objects in a designated region) as the result of the computation of a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51396091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


38 A. Alhazov, R. Freund, S. Ivanov

P system, has been recalled during the 12th Brainstorming Week on Membrane
Computing in Sevilla. The technique proposed there how to generate (the de-
scription of) recursively enumerable sets of vectors of non-negative integers, using
membrane structures with only two labels (0 and 1), where the number of mem-
branes labeled by 1 remains bounded by a constant throughout the computation,
is explained in Section 3. It was also conjectured that:

With one label and at most one “traveler” we can only characterize linear
sets, even with membrane generation and deletion.

We confirm this conjecture in Section 4. Finally, in Section 5 we discuss variants
of the model leading to weak computational completeness.

2 P Systems with Membrane Creation and Dissolution

A P system with membrane creation and dissolution is a construct defined as
follows:

Π = (O,H, µ, h1, · · · , hn, w1, · · · , wn, R) where

• O is the (finite) alphabet of objects;
• H is the (finite) alphabet of membrane labels;
• µ is the initial membrane structure consisting of n membranes labeled with

elements of H;
• hi ∈ H, 1 ≤ i ≤ n, is the initial label of the membrane i;
• wi ∈ O∗, 1 ≤ i ≤ n, is the string which represents the initial contents of

membrane i;
• R is the set of rules.

The rules in R are of one of the following types:

(b) [h2
a[h1

]h1
]h2

→ [h′
2
[h′

1
b ]h′

1
]h′

2
,

a, b ∈ O, h1, h2, h
′
1, h

′
2 ∈ H – send-in rule,

(c) [h2
[h1

a ]h1
]h2

→ [h′
2
b[h′

1
]h′

1
]h′

2
,

a, b ∈ O, h1, h2, h
′
1, h

′
2 ∈ H – send-out rule,

(d) [h2
[h1

a ]h1
]h2

→ [h′
2
b ]h′

2
,

a, b ∈ O, h1, h2, h
′
2 ∈ H – membrane dissolution rule,

(e) [
h1

a ]
h1

→ [
h′
1
[
h2

b ]
h2

]
h′
1
,

a, b ∈ O, h1, h2, h
′
1 ∈ H – membrane creation rule.

A rule of type (b) consumes the symbol a in a membrane with label h1 and puts
a symbol b into an inner membrane, rewriting the labels of the involved membranes.
Symmetrically, a rule of type (c) consumes an instance of a in a membrane with
label h1, which is located within a membrane with label h2, and puts an instance
of b into the latter membrane, rewriting the labels.
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A rule of type (e) consumes an instance of a in membrane with label h1 and
adds to it a new membrane with label h1, with an instance of b inside. The label
of the original membrane is rewritten to h′

1. Symmetrically, a rule of type (d)
consumes an instance of a in a membrane with label h1, which is located within
a membrane with label h2, copies all the symbols from the membrane with label
h1 to its parent membrane, discards the former membrane, adds a b to the latter
membrane and rewrites its label to h′

2.
The rules are applied in the maximally parallel way, with the restriction that

in one derivation step at most one rule of types (b), (c), (d), and (e) can be applied
per each membrane labeled by h1 in the definition of the rules given above.

A configuration Ck of the system Π consists of the description of the membrane
structure µk, the labeling of the membranes, and the multisets over O representing
the contents of the regions. A configuration is called halting if no more rules are ap-
plicable any more. A computation of Π is a sequence of configurations (Ck)1≤k≤m,
where C1 is the initial configuration, Cm is a halting configuration, and Ck+1 is
obtained from Ck by applying the rules from R.

Note: In the following, we will restrict ourselves to P systems with a linear
membrane structure. In such systems, membrane creation should never be applied
in a non-elementary membrane, otherwise a non-linear membrane structure would
be obtained, which is unwanted in the model of the current paper. In Section 3,
the P system is constructed in such a way that the object triggering membrane
creation would only appear in the elementary membrane. However, in Sections 4
and 5, the setup is more restricted (e.g., one label only), which would yield too
restrictive P systems. To overcome this, we impose the following restriction: the
membrane creation rule is disabled in the non-elementary membranes. We refer to
this rule kind as (ee). In a similar way, we are interested in membrane dissolution
rules which are disabled in the non-elementary membranes, and we denote them
by (de). Clearly, for each of these membrane dissolution and creation operations,
the constructions in Section 3 work for either variant (emphasizing (de), otherwise
the decrement could be simplified). The regularity conjecture originally assumed
only elementary dissolution to be used as well as results only to be obtained at
halting with the object in the elementary membrane.

In Section 5 we also consider the following type of rule (introduced already in
[3]; we have removed the object in the inner membrane on the right side to let the
systems considered in the paper have at most one object during the computation):

(f) [
h1

a ]
h1

→ [
h′
1
b[

h2
]
h2

]
h′
1
,

a, b ∈ O, h1, h2, h
′
1 ∈ H – membrane duplication rule:

the membrane h1, in the presence of an object a, is duplicated, that is, the label
h1 is changed into h′

1, the object a is replaced by b and a new inner membrane
labeled by h2 is created; all the contents of membrane h1 (membranes or objects
except this copy of object b) is now inside membrane h2.

Note: In [3] the authors have assumed the outer membrane to be the newly
created one; it makes no difference as long as we can change both labels by this
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rule. However, we prefer to view the inner membrane as the new membrane. This
lets us keep h′

1 = h1.
Moreover, also the following simplifications/restrictions are made to the rule

types in Section 5: membranes h2, h
′
2 are not mentioned in the notation of rules

(b), (c) and (d), which means that the rules mentioned above act independently
of the external membranes and do not modify them:

(br) a[
h1

]
h1

→ [
h′
1
b ]

h′
1
, a, b ∈ O, h1, h

′
1 ∈ H,

(cr) [h1
a ]h1

→ b[h′
1
]h′

1
, a, b ∈ O, h1, h

′
1 ∈ H,

(dr) [h1
a ]h1

→ b, a, b ∈ O, h1 ∈ H.

3 Length P Systems

In what follows we will consider a special class of P systems with membrane
creation and dissolution. A length P system Π is a P system with membrane
creation and dissolution which has the following properties:

• the membrane structure is linear in every configuration, i.e., every membrane
has at most one inner membrane;

• the membranes in any halting configuration of Π are labeled with two labels
only.

Consider a halting configuration C of a length P system Π and construct the
sequence of membrane labels (hi)1≤i≤n, in which h1 corresponds to the label of the
skin membrane, h2 to the label of the membrane inner to the skin membrane, etc.,
and n is the number of membranes in C. Since hi is a member of a two-element
set, we can interpret this sequence as a vector of numbers coded in unary by runs
of one label and separated by instances of the other label. This vector of numbers
will be considered as the output of the length P system Π.

Following the same convention, we can define the input of Π as a two-label
membrane structure coding a certain vector of numbers.

We will now show that length P systems with the input supplied via the mem-
brane structure are computationally complete. To achieve this goal we will pick an
arbitrary register machine M and simulate it with the length P system Π1 which
only uses two labels H = {0, 1}, only the skin membrane is not empty in the initial
configuration and contains qs, and the sequence of initial membrane labels written
as a string h1h2 · · ·hn has the form 110R110R21 · · · 10Rm1, where Ri, 1 ≤ i ≤ m,
is the value of the i-th register of M.

The evolution of the system starts with the rule

[h qs[1 ]1 ]h → [h [1 q1,1 ]1 ]h, 0 ≤ h ≤ 1,

where the symbol q1,1 represents the first instruction in the program of M and
also keeps the information about the fact that it is located in the region of the
membrane structure corresponding to the first register of M.
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To simulate an increment of the i-th register of M, we need to add a mem-
brane to the membrane structure and assure that the sequence of labels changes
from 110R11 · · · 10Ri1 · · · 10Rm1 to 110R11 · · · 10Ri+11 · · · 10Rm1. We start with the
symbol ql,1 in the inner membrane of the skin, where l is the label of the increment
operation, and we move it to the innermost membrane, counting the registers we
traverse on that way:

[h ql,j [0 ]0 ]h → [h [0 ql,j ]0 ]h,
[
h
ql,j [1 ]

1
]
h
→ [

h
[
1
ql,j+1 ]1 ]h, 1 ≤ j ≤ m, 0 ≤ h ≤ 1.

When we reach the end marker of the last register, we go into the innermost
membrane and add a new membrane:

[1 ql,m+1 ]1 → [1 [0 sl,m+1 ]0 ]1.

We have now changed the sequence of labels from 110R11 · · · 10Ri1 · · · 10Rm1
to 110R11 · · · 10Ri1 · · · 10Rm10.

The series of s-symbols will now swap this new membrane label 0 with the
labels of inner membranes, in order to obtain the new 0 label in the zone of the
membrane structure corresponding to register Ri:

[0 [0 sl,j ]0 ]0 → [0 sl,j [0 ]0 ]0,
[
1
[
0
sl,j ]0 ]1 → [

0
sl,j−1[1 ]

1
]
0
, i < j ≤ m+ 1.

When we produce the symbol sl,i, we have already pushed all labels correspond-
ing to the registers with numbers greater than i towards the innermost membrane
and we have added a 0-labeled membrane to the zone corresponding to the i-th
register. The following rules move the s-symbol back into the skin membrane:

[
h
[
0
sl,j ]0 ]h → [

h
sl,j [0 ]

0
]
h
,

[
h
[
1
sl,j ]1 ]h → [

h
sl,j−1[1 ]

1
]
h
, 1 ≤ j ≤ i, 0 ≤ h ≤ 1.

Finally, sl,0 produces the symbol corresponding to the next instruction l′ of
the register machine:

[
h
sl,0[1 ]

1
]
h
→ [

h
[
1
ql′,1 ]1 ]h, 0 ≤ h ≤ 1.

The simulation of a decrement and zero-check of the i-th register of M is
symmetric to the simulation of an increment: we start with finding the zone of the
membrane structure corresponding to the i-th register:

[
h
ql,j [0 ]

0
]
h
→ [

h
[
0
ql,j ]0 ]h,

[
h
ql,j [1 ]

1
]
h
→ [

h
[
1
ql,j+1 ]1 ]h, 1 ≤ j < i, 0 ≤ h ≤ 1.

If the value of the register is zero, the symbol ql,i immediately encounters
another membrane with the label 1, so it produces the corresponding signal symbol:

[
1
ql,i[1 ]

1
]
1
→ [

1
[
1
zl,i+1 ]1 ]1.



42 A. Alhazov, R. Freund, S. Ivanov

The signal symbol then bubbles up into the skin membrane:

[
h
[
0
zl,j ]0 ]h → [

h
zl,j [0 ]

0
]
h
,

[h [1 zl,j ]1 ]h → [h zl,j−1[1 ]1 ]h, 1 ≤ j ≤ i, 0 ≤ h ≤ 1.

Finally, in the outer membranes, zl,0 produces the symbol coding the next
instruction l′, corresponding to unsuccessful decrement:

[
h
zl,0[1 ]

1
]
h
→ [

h
[
1
ql′,1 ]1 ]h, 0 ≤ h ≤ 1.

If, however, ql,i detects that the i-th register is not empty, it produces a different
signal symbol:

[1 ql,i[0 ]0 ]1 → [1 [0 dl,i ]0 ]1.

This symbol moves all membrane labels one step outwards:

[
0
dl,j [0 ]

0
]
0
→ [

0
[
0
dl,i ]0 ]0, i ≤ j ≤ m,

[
0
dl,j [1 ]

1
]
0
→ [

1
[
0
dl,i+1 ]0 ]1, i ≤ j ≤ m.

When it reaches the end of the zone of the membrane structure corresponding
to the m-th register, dl,m+1 dissolves the innermost membrane:

[
1
[
0
dl,m+1 ]0 ]1 → [

1
sl,m+1 ]1.

Now the s-symbols go outwards into the skin membrane:

[
h
[
0
sl,j ]0 ]h → [

h
sl,j [0 ]

0
]
h
,

[h [1 sl,j ]1 ]h → [h sl,j−1[1 ]1 ]h, 1 ≤ j ≤ m+ 1, 0 ≤ h ≤ 1.

And finally, sl,0 generates the symbol coding the next operation l′′, correspond-
ing to a successful decrement:

[
h
sl,0[1 ]

1
]
h
→ [

h
[
1
ql′′,1 ]1 ]h, 0 ≤ h ≤ 1.

Note: The construction can be rewritten such that only one membrane par-
ticipates on the left side of any rule, but then the total number of membranes
labeled 1 will no longer remain a constant, but will still stay bounded. In the
construction presented above, however, the number of membranes labeled by 1 is
constant during the computation, namely, it is m+ 2. In the construction above,
membrane creation and membrane dissolution rules do not modify the label of the
outer membrane, while the communication rules either keep unchanged the labels
of the two membranes they work with, or they swap them. The number of mem-
branes labeled by 1 may be reduced by one, by starting with the skin labeled by 0;
this does not affect the proof. Moreover, with a technique mentioned in the end of
Section 5 the innermost membrane labeled 1 may be avoided. For the special case
m = 2, in Section 5 we present a construction when, using membrane duplication,
we avoid even the membrane labeled by 1 which separates the representation of
the two registers, by keeping track of this position with the object itself.

Before that, in the following section, we proceed with the conjecture that length
P systems with one label only generate regular sets of numbers, in case of elemen-
tary membrane creation, elementary membrane dissolution and communication
rules.
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4 On the Regularity Conjecture

Clearly, any regular set of numbers can be generated with rules (e) only, simulat-
ing each rule pa → q, p → qh of a finite automaton (for which, without restricting
generality we require that every state except qh is non-final and has at least one
outgoing transition) by rules [

0
p ]

0
→ [

0
[
0
q ]

0
]
0
and [

0
p ]

0
→ [

0
[
0
qh ]0 ]0, respec-

tively. Here, the skin and the elementary membrane are to be seen as additional
endmarkers (as otherwise only numbers ≥ 2 could be generated). The latter can
be avoided by additionally using a rule of type (d) [0 [0 qh ]0 ]0 → [0 q

′
h ]0.

There are two possible reasons why the power of length P systems with one
label and one object is restricted. The first reason (R1) is that the object can
never detect that it is in the skin (unless we additionally allow the skin to have a
distinguished label). Indeed, if C ⇒ C ′ is one computation step, then it is easy to
see (just by looking at all kinds of rules) that

[
0
C ]

0
⇒ [

0
C ′ ]

0
(1)

is also a valid computation step. This immediately generalizes to multiple mem-
brane levels and multiple derivation steps:

C ⇒∗ C ′ −→ [0 · · · [0︸ ︷︷ ︸
n

C ]0 · · · ]0 ⇒∗ [0 · · · [0︸ ︷︷ ︸
n

C ′ ]0 · · · ]0. (2)

The second reason (R2) is that the total membrane depth can only be in-
creased from the elementary membrane (unless we additionally allow membrane
duplication rules). Let us denote by C ⇒dive C ′ a “membrane dive”, i.e., such a
computation fragment that the object is in the elementary membrane in both C
and in C ′, but never in the intermediate configurations. Let us also denote by ⟨n, a⟩
the configuration consisting of a linear structure of n membranes, the elementary
one containing object a:

⟨n, a⟩ = [
0
· · · [

0︸ ︷︷ ︸
n

a ]
0
· · · ]

0
.

Clearly, for any a, b ∈ O, one of the following cases is true:

• There exists some minimal value n ∈ N for which ⟨n, a⟩ ⇒dive ⟨n, b⟩ is true.
Let us denote this value by n(a, b). We recall from (2) that ⟨n, a⟩ ⇒dive ⟨n, b⟩
holds for any n ≥ n(a, b).

• ⟨n, a⟩ ⇒dive ⟨n, b⟩ is not true for any n ∈ N.

We denote by n̄ the maximum of values n(a, b) over the first case. We denote
by N the set of all numbers generated by the length P system not exceeding n̄.
We denote by A the set of all objects a ∈ O such that ⟨n̄, a⟩ is reachable in the
length P system.

It is easier to confirm the conjecture for the case when the membrane dissolu-
tion is only allowed for the elementary membranes. Then, the power of the length
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P system is described by the union of the finite set N with the power (plus num-
ber N) of a partially blind 1-register machine starting in states from A, where
the chain rules a → b correspond to the relation ⟨n̄, a⟩ → ⟨n̄, b⟩, and the incre-
ment/decrement instructions are associated to the rules creating and dissolving
elementary membranes. It is known, see, e.g., [5], that the number sets generated
by partially blind 1-register machines is NMAT = NREG. Finally, in this case
it is immediate that the membrane structure cannot change between the last time
the object is in the elementary membrane and the halting.

Note: The regularity conjecture remains valid even if non-elementary mem-
branes can be dissolved. Indeed, a similar (non-constructive) argument can be
made; we only describe it informally . For any two symbols a, b ∈ O, either there
exists some minimal number m ∈ N such that ⟨m, a⟩ ⇒ ⟨m+ 1, b⟩, and we denote
it by m(a, b), or this derivation is not possible for any m ∈ N. Then the behaviour
of the length P system can be decomposed into a finite part (the membrane struc-
ture depth not exceeding the maximum of all defined values m(a, b)), and a regular
part defined by the binary relation over O which is the domain where m(a, b) is
defined. As for the computation between the last time the object is in the ele-
mentary membrane and the halting (in case the halting is not in the elementary
membrane), this should also preserve regularity, because without being able to
test for skin and without returning to the elementary membrane, we just have a
finite control walking across the unilabeled membrane structure, and membrane
dissolution in this case can only perform some regular erasing transformation.

5 Weak Computational Completeness

In this section we show that we can construct length P systems with one label
which are weakly computationally complete, assuming the following ingredients:

• Membrane duplication rules are allowed (nullifying reason R2).
• The skin can be distinguished (nullifying reason R1) either by being the only

membrane with another label (s = 1), or by having its own set of rules Rs. We
use the first case for the presentation of the result.

• As typical in membrane computing, the dissolution is not limited to elementary
membranes.

• Membrane creation rules are disabled in the non-elementary membranes. (Al-
ternatively, if one allows to also have special rules for the elementary membrane,
we may forbid membrane creation in the rest of the system).

The result relies on simulating 2-register machines, storing the register values
in the multiplicity of membranes, using the object to separate the two numbers.

[
1
[
0
· · · [

0︸ ︷︷ ︸
n1

a [
0
· · · [

0︸ ︷︷ ︸
n2

]
0
· · · ]

0
]
0
· · · ]

0
]
1

(3)
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We first present a simpler construction, assuming an additional elementary
membrane labeled 1. In this case, membrane creation rules are not even needed.

Indeed, the first register is tested for zero by using the skin rules (duplicate,
enter, dissolve). The second register is tested for zero by entering one membrane,
checking its label and exiting it.

The increment is done by a duplication rule (f), in case of the first register
followed by entering the newly created membrane.

The decrement is performed by a dissolution rule (d), in case of the second
register preceded by moving the object into the next membrane.

We proceed to the formal description of the simulation (membrane label h
stands for any of 0 or 1).

(l1 : A(1), l2, l3) is performed as:

[
h
l1 ]h → [

h
l′1[0 ]

0
]
h
, l′1[0 ]

0
→ [

0
l2 ]0, l′1[0 ]

0
→ [

0
l3 ]0.

(l1 : A(2), l2, l3) is performed as:

[
h
l1 ]h → [

h
l2[0 ]

0
]
h
, [

h
l1 ]h → [

h
l3[0 ]

0
]
h
.

(l1 : S(1), l2, l3) is performed as:

[0 l1 ]0 → l2,

[
1
l1 ]1 → [

1
l′1[0 ]

0
]
1
, l′1[0 ]

0
→ [

0
l′′1 ]0, [

0
l′′1 ]0 → l3.

(l1 : S(2), l2, l3) is performed as:

l1[0 ]
0
→ [

0
l′1 ]0, [

0
l′1 ]0 → l2,

l1[1 ]1 → [1 l
′
1 ]1, [1 l

′
1 ]1 → l3[1 ]1.

Notice that the first three operations above (A(1), A(2) and S(1)) operate identi-
cally also in the absence of the elementary membrane labeled 1, and so does the
first line of S(2), corresponding to the decrement case. Using membrane creation
(e) (immediately followed by dissolution) to test for the membrane elementarity,
it is possible to avoid the extra elementary membrane with 1, and stay with the
representation (3): we replace the last two rules of the construction above with the
following ones:

[
h
l1 ]h → [

h
[
0
l′′1 ]0 ]h, [0 l

′′
1 ]0 → l3.

In this way, using only one label for non-skin membranes, weak computational
completeness of length P systems is shown with one object, by taking advantage
of rules creating non-elementary membranes under the assumption that elementary
membrane creation is disabled in the non-elementary membranes.

6 Discussion

We have introduced P systems with a linear membrane structure (i.e., only one
membrane is elementary) with at most one object. The result of such systems,
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called length P systems, is either the total number of membranes at halting, or the
vector of numbers of consecutive membranes labeled 0. In Section 3 we presented
the simulation of register machines with any fixed number of registers.

The power of length P systems with one object and one membrane label de-
pends on two factors: whether the object can detect being in the skin membrane,
and whether non-elementary membrane creation is allowed. The first factor is re-
lated to the zero-test of the “first” register, and the second factor is related to
the possibility of effectively operating with two numbers instead of one. Since the
regularity conjecture assumed that these two ingredients are not allowed, we have
confirmed the conjecture.

In Section 5 we have shown that removing both of these conditions leads to P
systems being weakly computationally complete. Questions arise about the inter-
mediate extensions.

We now formulate the following the following two conjectures:

Conjecture 1. Length P systems produce only regular languages even when mem-
brane duplication is allowed (i.e., without reason R2). The intuition behind the
conjecture is that such P systems relate to 2-register machines, where one register
is blind (i.e., it can be incremented and decremented, but cannot be tested for
zero, and the machine’s computation is discarded without the result if decrement
of zero is attempted).

Conjecture 2. Length P systems produce only regular languages even if the skin
membrane has a distinguished label (i.e., without reason R1). The intuition behind
the conjecture is that such P systems should relate to 1-register machines, but for
the proof many more cases would have to be investigated.

In an extended version of this paper we plan to consider length P systems where
the number of membranes labeled by 1 is not bounded, considering binary strings
as the results instead of vectors.
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