
Matter and Anti-Matter in Membrane Systems

Artiom Alhazov1, Bogdan Aman2, Rudolf Freund3, Gheorghe Păun4

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, MD-2028, Chişinău, Moldova
artiom@math.md

2 Institute of Computer Science, Romanian Academy, Iaşi, Romania
bogdan.aman@iit.academiaromana-is.ro

3 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

4 Institute of Mathematics, Romanian Academy, Bucharest, Romania
gpaun@us.es

Summary. The concept of a matter object being annihilated when meeting its corre-
sponding anti-matter object is investigated in the context of membrane systems, i.e., of
(distributed) multiset rewriting systems applying rules in the maximally parallel way.
Computational completeness can be obtained with using only non-cooperative rules be-
sides these matter/anti-matter annihilation rules if these annihilation rules have priority
over the other rules. Without this priority condition, in addition catalytic rules with one
single catalyst are needed to get computational completeness. Even deterministic sys-
tems are obtained in the accepting case. Universal P systems with a rather small number
of rules – 57 for computing systems, 59 for generating and 52 for accepting systems –
can be constructed when using non-cooperative rules together with matter/anti-matter
annihilation rules having weak priority. Allowing anti-matter objects as input and/or
output, we even get a computationally complete computing model for computations on
integer numbers. Interpreting sequences of symbols taken in from and/or sent out to
the environment as strings, we get a model for computations on strings, which can even
be interpreted as representations of elements of a group based on a computable finite
presentation.

1 Introduction

Membrane systems (usually called P systems) can be considered as distributed
multiset rewriting systems, where all objects – if possible – evolve in parallel in
the membrane regions and may be communicated through the membranes. Mem-
brane systems were introduced in [15] and since then have become an emerging
field of research. Overviews can be found in the monograph [16] and the handbook
of membrane systems [17]; for actual news and results we refer to the P systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51396084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A. Alhazov et al.

webpage [19]. Computational completeness (computing any partial recursive re-
lation on non-negative integers) can be obtained with using cooperative rules or
with catalytic rules (eventually) together with non-cooperative rules. In this pa-
per, we use another concept to avoid cooperative rules in general: for any object a
(matter), we consider its anti-object (anti-matter) a− as well as the corresponding
annihilation rule aa− → λ, which is assumed to exist in all membranes; this an-
nihilation rule could be assumed to remove a pair a, a− in zero time, but here we
use these annihilation rules as special non-cooperative rules having priority over
all other rules in the sense of weak priority (e.g., see [1], i.e., other rules then also
may be applied if objects cannot be bound by some annihilation rule any more).
The idea of anti-matter has already been considered in another special variant
of P systems with motivation coming from modeling neural activities, which are
known as spiking neural P systems; for example, spiking neural P systems with
anti-matter (anti-spikes) were already investigated in [14]. Moreover, in [5] the
power of anti-matter for solving NP-complete problems is exhibited.

As expected (for example, compare with the Geffert normal forms, see [18]),
the annihilation rules are rather powerful. Yet it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with the
annihilation rules having priority, we already get computational completeness with-
out using any catalyst; without giving the annihilation rules priority, we need one
single catalyst. Even more surprising is the result that with priorities we obtain
deterministic systems in the case of accepting P systems. Moreover, we show how
rather small universal P systems with anti-matter can be obtained based on the
universal register machine U32 constructed by Korec, see [12]. Allowing anti-matter
objects as input and/or output, we even get a computationally complete comput-
ing model for computations on integer numbers. Finally, by interpreting sequences
of symbols taken in from and/or sent out to the environment as strings, we also
consider P systems with anti-matter as computing/accepting/generating devices
for string languages or even for languages over a group based on a computable
finite presentation.

2 Prerequisites

The set of integers is denoted by Z, while the set of non-negative integers by
N. Given an alphabet V , a finite non-empty set of abstract symbols, the free
monoid generated by V under the operation of concatenation is denoted by V ∗.
The elements of V ∗ are called strings, the empty string is denoted by λ, and
V ∗\{λ} is denoted by V +. For an arbitrary alphabet {a1, . . . , an}, the number
of occurrences of a symbol ai in a string x is denoted by |x|ai , while the length
of a string x is denoted by |x| = Σai |x|ai . The Parikh vector associated with x
with respect to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary
language L over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and
is denoted by Ps(L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL, while for families of languages over a

Matter and Anti-Matter in Membrane Systems 3

one-letter (d-letter) alphabet, the corresponding sets of non-negative integers are
denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by ⟨af(a1)
1 , . . . , a

f(an)
n ⟩ or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset ⟨am1

1 , . . . , amn
n ⟩ or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset ⟨am1

1 , . . . , amn
n ⟩ by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [4] and [18].

Register machines.

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

3 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
multisets of objects placed in the membrane regions, and the evolution rules. The
membrane structure is a hierarchical arrangement of membranes, in which the
space between a membrane and the immediately inner membranes defines a re-
gion/compartment. The outermost membrane is called the skin membrane, the
region outside is the environment. Each membrane can be labeled, and the label

4 A. Alhazov et al.

(from a set Lab) will identify both the membrane and its region; the skin mem-
brane is identified by (the label) 1. The membrane structure can be represented
by an expression of correctly nested labeled parentheses, and also by a rooted tree
(with the label of a membrane in each node and the skin in the root). The multisets
of objects are placed in the compartments of the membrane structure and usually
represented by strings of the form am1

1 . . . amn
n .

The evolution rules are multiset rewriting rules of the form u → v, where
u ∈ O◦ and v = (b1, tar1) . . . (bk, tark) with bi ∈ O◦ and tari ∈ {here, out, in}
or tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k. Using such a rule means
“consuming” the objects of u and “producing” the objects from b1, . . . , bk of v,
where the target here means that the objects remain in the same region where
the rule is applied, out means that they are sent out of the respective membrane
(in this way, objects can also be sent to the environment, when the rule is applied
in the skin region), in means that they are sent to one of the immediately inner
membranes, chosen in a non-deterministic way, and inj means that they are sent
into the specified inner membrane. In general, the target indication here is omitted.

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, lin, lout)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at the
beginning of a computation, R1, . . . , Rm are finite sets of evolution rules, asso-
ciated with the regions of µ, lin is the label of the membrane region where the
inputs are put at the beginning of a computation, and lout indicates the region
from which the outputs are taken; lout/lin being 0 indicates that the output/input
is taken from the environment.

If a rule u → v has |u| > 1, then it is called cooperative (abbreviated coo);
otherwise, it is called non-cooperative (abbreviated ncoo). In catalytic P systems
non-cooperative as well as catalytic rules of the form ca → cv are used, where
c is a catalyst – a special object that never evolves and never passes through a
membrane, but it just assists object a to evolve to the multiset v. In a purely
catalytic P system only catalytic rules are allowed. In both catalytic and purely
catalytic P systems, in their description O is replaced by O,C in order to specify
those objects from O that are the catalysts in the set C.

The evolution rules are used in the non-deterministic maximally parallel way,
i.e., in any computation step of Π a multiset of rules is chosen from the sets
R1, . . . , Rm in such a way that no further rule can be added to it so that the ob-
tained multiset would still be applicable to the existing objects in the membrane
regions 1, . . . ,m. A configuration of a system is given by the membranes and the
objects present in the compartments of the system. Starting from a given initial
configuration and applying evolution rules as described above, we get transitions
among configurations; a sequence of transitions forms a computation. A compu-
tation is halting if it reaches a configuration where no rule can be applied any
more.

Matter and Anti-Matter in Membrane Systems 5

In the generative case, a halting computation has associated a result, in the
form of the number of objects present in membrane lout in the halting configuration
(lin can be omitted). The set of non-negative integers and the set of (Parikh)
vectors of non-negative integers obtained as results of halting computations in Π
are denoted by Ngen(Π) and Psgen(Π), respectively.

In the accepting case, for lin ̸= 0, we accept all (vectors of) non-negative inte-
gers whose input, given as the corresponding numbers of objects in membrane lin,
leads to a halting computation (lout can be omitted); the set of non-negative inte-
gers and the set of (Parikh) vectors of non-negative integers accepted in that way
by halting computations inΠ are denoted byNacc (Π) and Psacc (Π), respectively.

For the input being taken from the environment, i.e., for lin = 0, we need an
additional target indication come; (a, come) means that the object a is taken into
the skin from the environment (all objects there are assumed to be available in
an unbounded number). The multiset of all objects taken from the environment
during a halting computation then is the multiset accepted by this accepting P
system, which in this case we shall call a P automaton [3]; the set of non-negative
integers and the set of (Parikh) vectors of non-negative integers accepted by halting
computations in Π are denoted by Naut (Π) and Psaut (Π), respectively.

A P system Π can also be considered as a system computing a partial recursive
function (in the deterministic case) or even a partial recursive relation (in the non-
deterministic case), with the input being given in a membrane region lin ̸= 0 as
in the accepting case or being taken from the environment as in the automaton
case. The corresponding functions/relations computed by halting computations in
Π are denoted by ZYα (Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, α ∈ {acc, aut}.

Computational completeness for (generating) catalytic P systems can be achieved
when using two catalysts or with three catalysts in purely catalytic P systems, and
the same number of catalysts is needed for P automata; in accepting P systems,
the number of catalysts increases with the number of components in the vectors
of natural numbers to be analyzed [7]. It is a long-time open problem how to char-
acterize the families of sets of (vectors of) natural numbers generated by (purely)
catalytic P systems with only one (two) catalysts. Using additional control mecha-
nisms as, for example, priorities or promoters/inhibitors, P systems with only one
(two) catalyst(s) can be shown to be computationally complete, e.g., see Chapter
4 in [17]. Last year several other variants of control mechanism have been shown to
lead to computational completeness in (purely) catalytic P systems using only one
(two) catalyst(s), see [6], [9], and [10]. In this paper we are going to investigate the
power of using matter/antimatter annihilation rules – with the astonishing result,
that no catalysts are needed any more in case the annihilation rules have weak
priority over the other rules.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
P systems with at most m membranes and cooperative rules and with non-
cooperative rules is denoted by YδOPm (coo) and YδOPm (ncoo), respectively. The
family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by (purely)

6 A. Alhazov et al.

catalytic P systems with at most m membranes and at most k catalysts is denoted
by YδOPm (catk) (YδOPm (pcatk)). The following characterizations are known:

Theorem 1. For any m ≥ 1 and any Y ∈ {N,Ps},

Y REG = YgenOPm (ncoo) ⊂ YgenOPm (coo) = Y RE.

Theorem 2. For any m ≥ 1, d ≥ 1, δ ∈ {gen, aut},

PsaccOPm (catd+2) = PsaccOPm (pcatd+3) = NdRE.

PsδOPm (cat2) = PsδOPm (pcat3) = PsRE.

4 Using Matter and Anti-Matter

This concept to be used in (catalytic) P systems is a direct generalization of the
idea of anti-spikes from spiking neural P systems (see [14]): for each object a we
introduce the anti-matter object a−. We can look at these anti-matter objects a−

as objects of their own or else we may extend the notion of a (finite) multiset
over the (finite) alphabet V , V = {a1, · · · , an}, as a mapping f : V −→ N to
a mapping f : V −→ Z now also allowing negative values. In a usual way, such

an extended multiset on Z is represented by
⟨
a
f(a1)
1 , · · · , af(an)

n

⟩
. A unique string

representation for such an extended multiset is obtained by assigning a string
over the (ordered) alphabet ⟨a1, a1−, · · · , an, an−⟩ as a1f(a1) · · · anf(an) such that
(ai)

−m
, m > 0, is represented by (ai

−)
m
, 1 ≤ i ≤ n. Any other string having the

same Parikh vector with respect to the (ordered) alphabet ⟨a1, a1−, · · · , an, an−⟩
can be used for representing the multiset given by f as well.

As in spiking neural P systems with anti-spikes, also in cell-like P systems
we might consider the annihilation of matter and anti-matter objects to happen
in zero-time or in an intermediate step between normal derivation steps in the
maximally parallel mode. Whenever related matter a and anti-matter a− meet,
they annihilate each other, as, for example, in an extended multiset on Z matter a
and anti-matter a− cannot exist at the same moment, hence, also not in a string
representing an extended multiset on Z. Yet in this paper we consider both objects
and anti-objects to be handled by usual evolution rules; the annihilation of matter
and anti-matter objects then corresponds to an application of the (non-context-
free!) rule aa− → λ. (Purely) catalytic P systems thus can be extended to

• allow for annihilation rules of the form aa− → λ (and for catalytic anni-
hilation rules caa− → c, where c is a catalyst) over an (ordered) alphabet
⟨a1, a1−, · · · , an, an−⟩, or

• to work on extended multisets over the (ordered) alphabet ⟨a1, · · · , an⟩.

In contrast to the case described above, now in an instantaneous description
of a configuration of a P system both matter and anti-matter objects may ap-
pear. When working with context-free or catalytic rules over an (ordered) alpha-
bet ⟨a1, a1−, · · · , an, an−⟩, we may give the matter/anti-matter annihilation rules

Matter and Anti-Matter in Membrane Systems 7

weak priority over all other rules – in order to not have matter a and anti-matter
a− in some configuration at the same moment and let them “survive” for longer.

We now consider catalytic P systems extended by also allowing for annihilation
rules aa− → λ, with these rules having weak priority over all other rules, i.e., other
rules can only be applied if no annihilation rule could still bind the corresponding
objects. The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, and the
family of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed
by such extended P systems with at most m membranes and k catalysts is denoted
by YδOPm (cat(k), antim/pri) and ZYαOPm (cat(k), antim/pri); we omit /pri for
the families without priorities.

The matter/anti-matter annihilation rules are so powerful that we only need
the minimum number of catalysts, i.e., zero!

Theorem 3. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim/pri) = Y RE and
ZYαOPn (cat(k), antim/pri) = ZY RE.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a one-
membrane P system, initially containing only the object l0, which simulates M .
The contents of register r is represented by the number of copies of the object ar,
1 ≤ r ≤ m, and for each object ar we also consider the corresponding anti-object
ar

−. The instructions of M are simulated as follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → arl2 and l1 → arl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

and the annihilation rules

arar
− → λ, 1 ≤ r ≤ m, and ##− → λ

as well as the trap rules

#− → ## and # → ##;

these last two rules lead the system into an infinite computation whenever a
trap symbol is left without being annihilated.
The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar

− and l1
′ → #l3.

8 A. Alhazov et al.

The symbol # generated by the second rule l1
′ → #l3 can only be eliminated

if the anti-matter ar
− generated by the first rule l1 → l1

′ar
− is not annihilated

by ar, i.e., only if register r is empty.
The decrement case for instruction l1 is simulated by the rule

l1 → l2ar
−.

The anti-matter ar
− either correctly annihilates one matter ar thus decrement-

ing the register r or else traps an incorrect guess by forcing the symbol ar
− to

evolve to #− and then to ## in the next two steps in case register r is empty.
• lh : HALT . Simulated by lh → λ.

When the computation in M halts, the object lh is removed, and no further
rules can be applied provided the simulation has been carried out correctly,
i.e., if no trap symbols # are present in this situation. The remaining objects
in the system represent the result computed by M . ⊓⊔

Without this priority of the annihilation rules, the construction is not work-
ing, hence, a characterization of the families YδOPn (ncoo, antim) as well as
ZYαOPn (ncoo, antim) remains as an open problem. Yet in addition using catalytic
rules with one catalyst again allows us to obtain computational completeness:

Theorem 4. For any n ≥ 1, k ≥ 1, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim) = Y RE and
ZYαOPn (cat(k), antim) = ZY RE.

Proof. We again consider a register machine M = (m,B, l0, lh, P) as in the previ-
ous proof, and construct the catalytic P system

Π = (O, {c} , []
1
, cl0, R1, lin, 1) with

O = {ar, ar− | 1 ≤ r ≤ m} ∪ {l, l′, l′′ | l ∈ B} ∪ {#,#−, d} ,

with the single catalyst c in the skin membrane. The results now are sent to the
environment, in order not to have to count the catalyst in the skin membrane; for
that purpose, we simply use the rule ai → (ai, out) for the output symbols ai (we
assume that output registers of M are only incremented).

For each ADD-instruction l1 : (ADD (j) , l2, l3) in P , we again take the rules

l1 → arl2 and l1 → arl3.

For each SUB-instruction l1 : (SUB (r) , l2, l3), we now consider the four rules

l1 → l2ar
−,

l1 → l′′1dar
−,

l′′1 → l′1, and
l′1 → #l3.

Matter and Anti-Matter in Membrane Systems 9

As rules common for all SUB-instructions, we again add the matter/antimatter
annihilation rules

arar
− → λ and ##− → λ

as well as the trap rules

→ ## and #− → ##,

but in addition, also
d → ##

as well as the catalytic rules

cd → c and car
− → c#−, 1 ≤ r ≤ m.

The decrement case is simulated as in the previous proof, by using the rule l1 →
l2ar

− and then applying the annihilation rule arar
− → λ. The zero-test now is

initiated with the rule li → l′′i dar
− thus introducing the (dummy) symbol d which

keeps the catalyst busy for one step, where the catalytic rule cd → c has to be
applied in order to avoid the application of the trap rule d → ##. If register
r is empty, then ar

− cannot be annihilated and therefore evolves to #− in the
third step by the application of the catalytic rule car

− → c#−, which symbol #−

afterwards annihilates the symbol # generated by the rule l′i → #lk in the same
step; if register r is not empty, ar

− is annihilated by some copy of ar already in
the first step, hence, the trap symbol # generated by the rule l′i → #lk does not
find its anti-matter #− and therefore evolves to ##, thus leading to an infinite
computation. Altough the annihilation rule arar

− → λ now does not have priority
over the catalytic rule car

− → c#−, maximal parallelism enforces arar
− → λ to

be applied, if possible, already in the first step instead of car
− → c#−, as in a

successful derivation the catalyst c first has to eliminate the dummy symbol d.
The rule lh → λ is applied at the end of a successful simulation of the in-

structions of the register machine M , and the computation halts if no trap symbol
is present; the symbols sent out to the environment during the computation
represent the result of this halting computation. ⊓⊔

In the accepting case, with priorities, we can even simulate the actions of a
deterministic register machine in a deterministic way, i.e., for each configuration
of the system, there can be at most one multiset of rules applicable to it.

Theorem 5. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},

YdetaccOPn (cat(k), antim/pri) = Y RE and
FunYdetaccOPn (cat(k), antim/pri) = FunY RE.

Proof. We only show how the SUB-instructions of a register machine M =
(m,B′, l0, lh, P) can be simulated in a deterministic way without introducing a
trap symbol and therefore causing infinite loops by them:

10 A. Alhazov et al.

Let B = {l | l : (SUB (r) , l′, l′′) ∈ P} and, for every register r,

M̃r =
{
l̃ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̃r
− =

{
l̃− | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r =
{
l̂ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r
− =

{
l̂− | l : (SUB (r) , l′, l′′) ∈ P

}
.

We now take the rules
ar

− → M̃r
−M̂r

and the annihilation rules arar
− → λ for every register r as well as l̂l̂− → λ and

l̃l̃− → λ for all l ∈ B. Then a SUB-instruction l1 : (SUB (r) , l2, l3), with l1 ∈ B,
l2, l3 ∈ B′, 1 ≤ r ≤ m, is simulated by the rules

l1 → l̄1ar
−
,

l̄1 → l̂1
−(M̃r \ {l̃1}),

l̂1
− → l2(M̃r

− \ {l̃1−}), and
l̃1

− → l3(M̂r
− \ {l̂1−}).

The symbol l̂1
− generated by the second rule is eliminated again and replaced

by l̃1
− if ar

− is not annihilated (which indicates that the register is empty). ⊓⊔

5 Small Universal P Systems with Anti-Matter

In [12], several variants of universal register machines were exploited. The main
interesting variant for the results presented in this paper is shown in Figure 1.

In the diagram of the universal register machine U32 in Figure 1, the operations
used on the registers are: the zero-test on register i is indicated by a rhomboid
inclosing the encryption Ri, and in the case that the contents of register i is zero,
the next operation is the one to be reached with the arc labeled by z; the increment
operation is depicted by a rectangle with the encryption RiP , and the decrement
operation by a rectangle with the encryption RiM (as the decrement operation
RiM is always preceded by the corresponding zero-test, it can always be carried
out). The states are depicted directly at the corresponding operations; q1 is the
initial state, and the state where the U32 stops is indicated by STOP in Figure 1.

Remark 1. The universal register machine U32 uses a very sophisticated number-
theoretic encoding of the enumeration of a specific variant of register machines.
The code of the register machine to be simulated is put into register 1, the input
number into register 2 (where also the output will be computed). The instructions
are decoded in the Instruction reader part and the Decoder part (which essentially
performs a division by three), and these instructions work on the registers 0, 2,
and 3 (as we know, e.g., see [13], three registers are sufficient to simulate any
other register machine). Thus, U32 can compute any partial recursive function
f : N → N (with input and output number in register 2) in the same way as the
register machine encoded by the number in register 1 computes f. For the following

Matter and Anti-Matter in Membrane Systems 11

Start -

Simulation block

R3P

q31

R3M

q28

R0M

q26

R2M

q24

R2P

q30

R0P

q29

��@@
@@��R3

z

q27

��@@
@@��R0

z

q25

��@@
@@��R2

z

q23

6

�

� �

?

� �

�

� �

?

��@@
@@��R4 z

q32

Stop-

6

Decoder
��@@
@@��R5z

q20

R5M

q19

��@@
@@��R5z

q18

R5M

q17

��@@
@@��R5z

q16

R4P

q22

R5M

q21

� -
?

6

?

�
?

?

� �

Instruction reader

R4M

q15

R7P

q3

R1M

q2

��@@
@@��R1 z

q1

R6P

q6

R5M

q5

��@@
@@��R5

zq4

��@@
@@��R4

z

q14

��@@
@@��R6z

q13

R5P

q9

R6M

q8

��@@
@@��R6z

q7

��@@
@@��R7

z

q10

R7M

q11

R1P

q12

� �

?

�

?

� -

6

-

�

6

? ? ?

6

? ?

?
�

?

�

Fig. 1. The universal register machine U32.

12 A. Alhazov et al.

constructions it is important to note that U32 only stops when having finished the
simulation of the register machine encoded in register 1 with the input in register 2,
but enters an infinite computation otherwise.

A thorough analysis of the universal register machine U32 shows that when
it halts not only register 2 as the output register, but also register 6 and regis-
ter 1 (still containing the code of the register machine to be simulated) may be
non-empty. On the other hand, due to the features of the 3-register machine as
constructed in [13] and simulated by U32 in registers 0, 2, and 3, at the end of a
computation registers 0 and 3 are empty (observe that the emptiness of these reg-
isters cannot be inferred from the program of U32); in the accepting case, register 2
is empty, too.

In order to produce better descriptional complexity results with respect to
the number of rules than those we would immediately get when applying the
constructions given in the proof of Theorem 3, we introduce a generalization of
register machines or counter automata.

Generalized counter automata.

For a register machine M = (m,B, l0, lh, P) consider the more general type of
instructions i : (q,M−, N,M+, q

′), where q, q′ ∈ Q are states, N ⊆ R is a set of
registers, and M−,M+ are multisets of registers. Such a register machine applies
instruction i as follows: first, multiset M− is subtracted from the register values
(i.e., for each register j ∈ R, M−(j) is subtracted from the contents of register j;
if at least one resulting value would be negative, the machine is blocked without
producing any result); second, the subset N of registers is checked to be zero
(if at least one of them is found to be non-zero, the machine is blocked without
producing any result); third, the multiset M+ is added to the register values (i.e.,
for each register j ∈ R, M+(j) is added to the contents of register j), and finally
the state changes to q′.

The work of such a register machine, now also called a generalized counter
automaton and written M = (m,B, l0, qh, P), consists of derivation steps applying
instructions, chosen in a non-deterministic way, associated with the current state.
The computation starts in the initial state q0, and we say that it halts if the
final state qh has been reached (which replaces the condition of reaching the final
HALT-instruction labeled by lh).

Theorem 6. There exist small universal P systems with non-cooperative rules and
matter/anti-matter annihilation rules – with 9 annihilation rules and, in total, 52
rules in the accepting case, 59 rules in the generating case, and 57 rules in the
computing case.

Proof. We start with a translation of the P system from Theorem 4 in [8] (ob-
tained from the universal register machine U32 machine in [12]). This sequential

Matter and Anti-Matter in Membrane Systems 13

antiport P system with forbidden contexts can be written with the instructions of
a generalized counter automaton as follows:

1 : (q1, ⟨1⟩ , {}, ⟨7⟩ , q1), 10 : (q18),
⟨
53
⟩
, {}, ⟨4⟩ , q18),

2 : (q1, ⟨⟩ , {1}, ⟨6⟩ , q4), 11 : (q18, ⟨⟩ , {5, 3}, ⟨0⟩ , q1),
3 : (q4, ⟨5⟩ , {}, ⟨6⟩ , q4), 12 : (q18,

⟨
52, 0

⟩
, {5, 2}, ⟨⟩ , q1),

4 : (q4, ⟨6⟩ , {5}, ⟨5⟩ , q10), 13 : (q18,
⟨
52, 2

⟩
, {5}, ⟨⟩ , q1),

5 : (q10, ⟨7, 6⟩ , {}, ⟨1, 5⟩ , q10), 14 : (q18,
⟨
52
⟩
, {5, 2, 0}, ⟨⟩ , q1)

6 : (q10, ⟨7⟩ , {6}, ⟨1⟩ , q4), 15 : (q18, ⟨3, 4⟩ , {5}, ⟨⟩ , q1),
7 : (q10, ⟨⟩ , {6, 7}, ⟨⟩ , q1), 16 : (q18, ⟨5, 4⟩ , {5}, ⟨2, 3⟩ , q1).
8 : (q10, ⟨6, 4⟩ , {7}, ⟨⟩ , q1),
9 : (q10, ⟨6, 5⟩ , {7, 4}, ⟨⟩ , q18),

The system constructed in [8] halts when none of the rules 10 to 16 can be
applied any more. For halting with the generalized counter automaton we have
to define a halting state qh and instructions how to reach this halting state. The
details of this halting in the generalized counter automaton and how to halt in
the P system to be constructed in the following, depending on the mode the
automaton is used for – generating, accepting, computing – will be discussed later
in the proof. We first show how these 16 instructions of the generalized counter
automaton listed above can be simulated by a P system with anti-matter.

For a generalized counter automaton M = (m,B, l0, qh, P), let

k = 1 + max
i:(q,M−,N,M+,q′)∈P

(|M−|, |N |).

We consider the following rules (common for different instructions of M):

#− → #k, # → #k, ##− → λ, ar → #−, ara
−
r → λ, r ∈ R.

Now we present the simulation of instruction i : (q,M−, N,M+, q
′) ∈ P . First we

consider the case when M− and N have no common elements, and moreover, we
also assume that M− does not overlap with M+ (otherwise such an instruction
can be split into two instructions; notice that this condition is already satisfied in
the rules given above).

q → li
∏

r∈N
ar

−, li → q′(
∏

r∈N
#)(

∏
r∈M−

ar
−)

∏
r∈M+

ar.

Indeed, the zero-test is successful if none of the objects a−r generated in the first
step annihilates with the corresponding register symbols ar; they have to change
into objects #− to annihilate with the same number of objects # produced in the
next step. The decrement is successful if all objects ar

− generated in the second
step annihilate with the corresponding register symbols ar. If either decrement or
zero-test fail, then at least either one # or one #− will be produced without its
annihilation partner, leading to producing objects # in a geometric progression,
ensuring that such computations do not produce any result (notice that no objects
or #− are produced in the first step of the simulation of any instruction).

14 A. Alhazov et al.

If the zero-test set N is empty, then the first step is a simple renaming, and
thus can be combined with the second step, yielding just one rule

q → q′(
∏

r∈M−
ar

−)
∏

r∈M+

ar.

Clearly, if M− and N overlap, such an instruction can be broken down into two
subsequent instructions of the generalized counter automaton. However, a more
efficient solution with only three rules exists:

q → li
∏

r∈M−
ar

−, li → l′i
∏

r∈N
ar

−, l′i → q(
∏

r∈N
#−)

∏
r∈M+

ar.

The direct translation of the instructions of the generalized counter automaton
given in the table at the beginning of the proof yields the following rules:

1 : q1 → q1a1
−a7,

2 : q1 → l2a1
−, l2 → q4#a6,

3 : q4 → q4a5
−a6,

4 : q4 → l4a5
−, l4 → q10#a6

−a5,
5 : q10 → q10a7

−a6
−a1a5,

6 : q10 → l6a6
−, l6 → q4#a7

−a1,
7 : q10 → l7a6

−a7
−, l7 → q1##,

8 : q10 → l8a7
−, l8 → q1#a6

−a4
−,

9 : q10 → l9a7
−a4

−, l9 → q18##a6
−a5

−,
10 : q18 → q18a5

−a5
−a5

−a4,
11 : q18 → l11a5

−a3
−, l11 → q1##a0,

12 : q18 → l12a5
−a5

−a−0 , l12 → l′12a5
−a2

−, l′12 → q1##,
13 : q18 → l13a5

−a5
−a2

−, l13 → l′13a5
−, l′13 → q1#,

14 : q18 → l14a5
−a5

−, l14 → l′14a5
−a2

−a0
−, l′14 → q1###,

15 : q18 → l15a5
−, l15 → q1#a3

−a4
−,

16 : q18 → l16a5
−a4

−, l16 → l′16a5
−, l′16 → q1#a2a3,

In the accepting case, the input/output register 2 as well as the registers 0 and
3 are empty (see Remark 1); in order to reach the STOP in Figure 1, starting
from q10, register 6 must be non-empty, but registers 4, 5, 2, and 0 must be empty.
Hence, we add the additional rule

17 : (q10, ⟨6⟩ , {4, 5, 2, 0}, ⟨⟩ , qh),

which is simulated by the rules

17 : q10 → l17a4
−a5

−a2
−a0

−, l17 → qh####a6
−.

As the rules with l7 and l′12 on the left side have the same right side, we can
replace l′12 by l7, thus decreasing the number of non-cooperative rules by one.

On the other hand, we have to add the rules

ar → #−, 0 ≤ r ≤ 7,

Matter and Anti-Matter in Membrane Systems 15

and the trap rules
#− → #5 and # → #5

as well as the annihilation rules

(##− → λ) and (arar
− → λ), 0 ≤ r ≤ 7.

In sum, we obtain the universal P system with anti-matter

Π = (O, []1, q1, R1, 1) where
O = {l2, l4, l6, l7, l8, l9, l11, l12, l13, l′13, l14, l′14, l15, l16, l′16, l17}

∪ {q1, q4, q10, q18, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

with the rules in R1 as described above; in total, the number of rules is 52, where
9 of them are the model-defined annihilation rules.

For the computing case, we have to re-introduce the state q32 of U32, i.e., we
replace instructions 15, 16, and 17 in the table of instructions for the generalized
counter automaton by the instructions 15′, 16′, 17′, and 18′; moreover we have to
“clean” registers 1 and 6 (see Remark 1) and therefore to add the state q′h and
another three instructions:

15′ : (q18, ⟨3⟩ , {5}, ⟨⟩ , q32),
16′ : (q18, ⟨5⟩ , {5}, ⟨2, 3⟩ , q32),
17′ : (q32, ⟨4⟩ , {}, ⟨⟩ , q1),
18′ : (q32, ⟨⟩ , {4}, ⟨⟩ , q′h),
19′ : (q′h, ⟨1⟩ , {}, ⟨⟩ , q′h),
20′ : (q′h, ⟨6⟩ , {}, ⟨⟩ , q′h),
21′ : (q′h, ⟨⟩ , {1, 6}, ⟨⟩ , qh).

These instructions can be simulated by the following rules:

15′ : q18 → l15a5
−, l15 → q32#a3

−,
16′ : q18 → l16a5

−, l16 → l′16a5
−, l′16 → q32#a2a3,

17′ : q32 → q1a4
−,

18′ : q32 → l18a4
−, l18 → q′h#,

19′ : q′h → q′ha1
−,

20′ : q′h → q′ha6
−,

21′ : q′h → qha1
−a6

−, qh → ##.

In that way, we obtain a universal P system Π ′ with anti-matter having 57 rules,
i.e., 49 non-cooperative rules and 9 model-defined annihilation rules:

Π ′ = (O′, []1, q1, R
′
1, 1, 1) where

O′ = {l2, l4, l6, l7, l8, l9, l11, l12, l13, l′13, l14, l′14, l15, l16, l′16, l18}
∪ {q1, q4, q10, q18, q32, q′h, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

and R′
1 contains the rules 1 to 14, 15′ to 21′ as well as the rules ar → #−,

0 ≤ r ≤ 7, the trap rules #− → #4 and # → #4 as well as the annihilation rules

16 A. Alhazov et al.

(##− → λ) and (arar
− → λ), 0 ≤ r ≤ 7. The P system now halts with the skin

membrane only containing copies of the symbol a2 representing the output value.
In fact, this construction could also be used for the accepting case, where we

could already stop with q′h, as we need not “clean” registers 1 and 6; in total this
would yield only one rule more, i.e., 53 instead of 52 rules.

Finally, in the generating case, we start with the new initial state q0 and add
the two rules q0 → a2q0 and q0 → q1, which allows us to produce, in a non-
deterministic way, an input for U32 simulating the identity function on the domain
of the set to be generated by the P system, i.e., we get a P system with 59 rules.
⊓⊔

6 When Matter/Anti-Matter Annihilation Generates
Energy

The matter/anti-matter annihilation may also be assumed to result in the genera-
tion of a specific amount of “energy”, which is also well motivated by physics. In the
definitions of these systems, the matter/anti-matter annihilation rules arar

− → λ
are replaced by arar

− → e where e is a symbol denoting this special amount of
energy.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, and the set
of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed
by such P systems with at most m membranes and k catalysts is denoted by
YδOPm (cat(k), antimen/pri) and ZYαOPm (cat(k), antimen/pri); we omit /pri
for the families without priorities.

The following results are immediate consequences of the corresponding Theo-
rems 3 and 5 – in both cases, each matter/anti-matter annihilation rule xx− → λ
is replaced by xx− → e where e is this symbol denoting a special amount of energy,
and, in addition, we add the rule e → λ:

Corollary 1. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antimen/pri) = Y RE and
ZYαOPn (cat(k), antimen/pri) = ZY RE.

Corollary 2. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},

YdetaccOPn (cat(k), antimen/pri) = Y RE and

FunYdetaccOPn (cat(k), antimen/pri) = FunY RE.

But we can even show more, i.e., omitting the rule e → λ and leaving the
amount of energy represented by the number of copies of e in the system, the
energy inside the system at the end of a successful computation is a direct measure
for the number of SUB-instructions simulated by the P system or even a measure
for the number of all instructions which were simulated.

Matter and Anti-Matter in Membrane Systems 17

Corollary 3. The construction in the proof of Theorem 3 can be adapted in such
a way that the simulation of each instruction of the register machine takes exactly
three steps (including the annihilation rules), and moreover, the number of en-
ergy objects e at the end of a successful computation exactly equals the number of
instructions simulated.

Proof. Let M = (m,B, l0, lh, P) be a register machine. Following the construction
given in the proof of Theorem 3, the instructions of M now can be simulated as
follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → l1
′,

l1
′ → l1

′′,
l1

′′ → earl2,
l1

′′ → earl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

arar
− → e, 1 ≤ r ≤ m,

##− → e,
#− → ##,
→ ##.

The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar

−,
l1

′ → #l1
′′, and

l1
′′ → l3;

– the symbol # generated by the second rule l1
′ → #l1

′′ can only be elim-
inated if the anti-matter ar

− generated by the first rule l1 → l1
′ar

− is
not annihilated by ar, i.e., only if register r is empty; e is generated by
##− → e.

The decrement case for instruction l1 is simulated by the rules

l1 → l̃1ar
−
,

l̃1 → l̃′1,

l̃′1 → l2;

– here, e is generated by arar
− → e.

• lh : HALT . Simulated by the rules

lh → lh
′,

lh
′ → lh

′′,
lh

′′ → e.

18 A. Alhazov et al.

In each case, exactly one symbol e is generated during each cycle of three steps
simulating an instruction of M . ⊓⊔
Remark 2. Let M be a register machine and

RS(M) = {(n,m) | n ∈ L(M), n is computed by M in m steps}.

Then, according to [2], RS is recursive. Hence, although L(M) may not be recur-
sive, RS(M) is recursive in any case.

Now let L ∈ NRE and L = L (M) for a register machine M . Following the
construction given in the proof of Corollary 3, we can construct a P system with
energy Π such that Ps (Π) = RS(M).

7 Computing with Integers

As already discussed in Section 4, given an alphabet V = {a1, · · · , ad} we may
extend the notion of a (finite) multiset over V as a mapping f : V −→ N to a
mapping f : V −→ Z now also allowing negative values, with a unique string
representation for such an extended multiset being obtained by assigning a string
over the (ordered) alphabet ⟨a1, a1−, · · · , ad, ad−⟩ as a1

f(a1) · · · adf(ad) such that
(ai)

−m
, m > 0, is represented by (ai

−)
m
, 1 ≤ i ≤ d. Besides this canonical

representation of f by the string a1
f(a1) · · · adf(ad), any other string having the

same Parikh vector with respect to the (ordered) alphabet ⟨a1, a1−, · · · , ad, ad−⟩
can be used for representing the multiset given by f as well. According to these
definitions, matter and related anti-matter cannot be present in the same string or
multiset over the alphabet {a1, a1−, · · · , ad, ad−}. Obviously, their is a one-to-one
correspondence between vectors from Zd and the corresponding Parikh vectors
over ⟨a1, a1−, · · · , ad, ad−⟩, which can also be viewed as vectors over Z2d: for any
of these vectors v = (v1, v2, · · · , v2d−1, v2d), we have either v2i−1 = 0 or v2i = 0
(or both), for all 1 ≤ i ≤ d.

In order to specify that now we are dealing with d-dimensional vectors of in-

teger numbers, we use the notation PsZ
d

: the family of sets of integer numbers

PsZ
d

δ (Π), δ ∈ {gen, acc, aut}, and the family of functions/relations ZPsZ
d

α (Π),
Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed by such P systems with at most

m membranes and k catalysts is denoted by PsZ
d

δ OPm (cat(k), antim/pri) and

ZPsZ
d

α OPm (cat(k), antim/pri); we omit /pri for the families without priorities.
Moreover, the family of recursively enumerable sets of d-dimensional vectors of

integer numbers is denoted by PsZ
d

RE, the corresponding functions/relations by

ZPsZ
d

RE.

Theorem 7. For any d ≥ 1 we have that:

• for any n ≥ 1, k ≥ 0, δ ∈ {gen, acc, aut}, α ∈ {acc, aut}, and Z ∈ {Fun,Rel},

PsZ
d

δ OPn (cat(k), antim/pri) = PsZ
d

RE and

ZPsZ
d

α OPn (cat(k), antim/pri) = ZPsZ
d

RE;

Matter and Anti-Matter in Membrane Systems 19

• for any n ≥ 1, k ≥ 1, δ ∈ {gen, acc, aut}, α ∈ {acc, aut}, and Z ∈ {Fun,Rel},

PsZ
d

δ OPn (cat(k), antim) = PsZ
d

RE and

ZPsZ
d

α OPn (cat(k), antim) = ZPsZ
d

RE;

• for any n ≥ 1, and k ≥ 0,

PsZ
d

detaccOPn (cat(k), antim/pri) = PsZ
d

RE and

FunPsZ
d

detaccOPn (cat(k), antim/pri) = FunZPsZ
d

RE.

Proof. As we have shown in Section 4, all variants of P systems with anti-matter
mentioned in the theorem are computationally complete when dealing with mul-
tisets over any arbitrary alphabet, being able to simulate the actions of a register
machine. Hence, as any d-dimensional vector of integer numbers can be represented
by a 2d-dimensional vector of non-negative integers, which can be processed in the
usual way by register machines and thus simulated by all the variants of P systems
with anti-matter mentioned in the theorem, we only have to solve the technical
detail how to get this 2d-dimensional vector of non-negative integers from a given
d-dimensional vector of integer numbers represented by symbols over the (ordered)
alphabet ⟨a1, a1−, · · · , ad, ad−⟩: given the input in an input membrane ̸= 0, we
there just make a first step using in parallel the non-cooperative rules ai → [ai,+]
and ai

− → [ai,−], 1 ≤ i ≤ d. Then the multisets over these symbols can be handled
in the usual way, now both of them having the corresponding anti-matter objects
[ai,+]

−
and [ai,−]

−
. In a similar way, we can take the input from the environ-

ment by using rules of the form q → p (ai, come) [ai,+] or q → p (ai
−, come) [ai,−]

where q, p represent states of the register machine. The symbols ai and ai
− then

are not needed any more and can be eliminated by the rules ai → λ and ai
− → λ.

The remaining computations in the respective P system then can be carried out
by simulating the actions of a register machine. ⊓⊔

8 Computing with Languages

P systems with anti-matter, as most of the computationally complete variants of
P systems, can also be considered as language generating devices – the objects
sent out can be concatenated to strings over a given alphabet, and the objects
taken in during a halting computation can be assumed to form a string. For sake
of simplicity, we may assume that in each computation step, at most one symbol is
sent out or taken in; otherwise, as usual, e.g., see [3], we may take any permutation
of the symbols sent out or taken in to be part of a string to be considered as output
or input, respectively. Obviously, according to this method of getting an input
string, for the accepting case only the automaton variant is to be considered now,
as otherwise we would have to take an encoding of the input string by a multiset.

20 A. Alhazov et al.

8.1 Languages over Strings

Let V be a finite alphabet. The set of strings (over V) generated or accepted (in
the sense of automata) by a P system with anti-matter Π is denoted by LV

δ (Π),
δ ∈ {gen, aut}, the function/relation computed by Π is denoted by ZLV

aut (Π),
Z ∈ {Fun,Rel}. The family of sets LV

δ (Π), δ ∈ {gen, aut}, and the family of
functions/relations ZLV

aut (Π), Z ∈ {Fun,Rel}, computed by such P systems with
at most m membranes and k catalysts is denoted by LV

δ OPm (cat(k), antim/pri)
and ZLV

autOPm (cat(k), antim/pri), respectively; we omit /pri for the families
without priorities; cat (0) is used as a synonym for ncoo. If the alphabet is arbitrary,
we omit the superscript V in these notations. Moreover, the languages over V
in RE are denoted by REV , the corresponding family of functions/relations by
ZREV .

The use of anti-matter and of matter/anti-matter annihilation rules (having
priority over other rules) allows us to give a simple example how to generate an
even non-context-free string language:

Example 1. Consider the P system with anti-matter

Π = (O, []1, q1, R1, 1) where
O = {a, b, c} ∪ {b−, c−} ∪ {q1, q2, q3},
R1 = {q1 → q2, q2 → q3, q3 → λ, q1 → q1 (a, come) b−c−}

∪ {q2 → q2 (b, come) , q3 → q3 (c, come)}
∪ {a → λ} ∪ {x → x, x− → x−, xx− → λ | x ∈ {b, c}} .

The reader may easily verify that

L
{a,b,c}
aut (Π) = {anbncn | n ≥ 0} .

For each symbol a taken in with state q1 (which is eliminated in the next step
by a → λ) using the rule q1 → q1 (a, come) b−c−, an anti-matter object for both
b and c is generated. The anti-matter objects b− are eliminated in state q2, and
afterwards the anti-matter objects c− are eliminated in state q3. The computation
only halts (with empty skin membrane) after having used the rule q3 → λ if and
only if an equal number of objects a, b, and c has been taken in, as otherwise,
the rules x → x or x− → x−, x ∈ {b, c}, keep the system in an infinite loop if
too many x or not enough x have been taken in, respectively. Observe that this
system also works if we do not require priority of the annihilation rules, but then,
for each successful computation accepting the string anbncn, n ≥ 1, there exist
inifinite computations where we use one of the rules x− → x− again and again
instead of letting x− being annihilated by xx− → λ. Hence, we may say that

{anbncn | n ≥ 0} ∈ L
{a,b,c}
aut OP1 (ncoo) .

Theorem 8. For any arbitrary alphabet V we have that:

Matter and Anti-Matter in Membrane Systems 21

• for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

LV
δ OPn (cat(k), antim/pri) = REV and

ZLV
autOPn (cat(k), antim/pri) = ZREV ;

• for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

LV
δ OPn (cat(k), antim) = REV and

ZLV
autOPn (cat(k), antim) = ZREV .

Proof. As we have shown in Section 4, all variants of P systems with anti-matter
mentioned in the theorem are computationally complete when dealing with mul-
tisets, being able to simulate the actions of a register machine. Hence, by well-
known techniques, input symbols composing an input string can be encoded as
numbers in an input register and thus as a multiset in the simulating P system
with anti-matter. In the same way, the results of a computation in the P system
can be decoded from the multiset representing the output register of the under-
lying register machine. An input symbol a ∈ V is taken in by rules of the form
q → p (a, come) where q, p represent states of the register machine, and sent out
by rules of the form q → p (a, out). ⊓⊔

8.2 Languages over Computable Finite Presentations of Groups

Strings may be used in a wider sense as repesentations of group elements. In order
to establish these more general results, we first need some definitions and examples
from group theory, e.g., see [11].

Groups and Group Presentations

Let G = (G′, ◦) be a group with group operation ◦. As is well-known, the group
axioms are

• closure: for any a, b ∈ G′, a ◦ b ∈ G′,
• associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
• identity : there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e for all a ∈ G′, and
• invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

Moreover, the group is called commutative, if for any a, b ∈ G′, a ◦ b = b ◦ a. In
the following, we will not distinguish between G′ and G if the group operation is
obvious from the context.

For any element b ∈ G′, the order of b is the smallest number n ∈ N such that
bn = e provided such an n exists, and then we write ord (b) = n; if no such n
exists, {bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) = ∞.

22 A. Alhazov et al.

For any set B, B−1 is defined as the set of symbols representing the inverses
of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. We now consider the strings in(

B ∪B−1
)∗

and two strings as different unless their equality follows from the group

axioms, i.e., for any a, b, c ∈
(
B ∪B−1

)∗
, a◦b◦b−1◦c = a◦c; using these reductions,

we obtain a set of irreducible strings from those in
(
B ∪B−1

)∗
, the set of which

we denote by I (B). Then the free group generated by B is F (B) = (I (B) , ◦) with
the elements being the irreducible strings over B∪B−1 and the group operation to
be interpreted as the usual string concatenation, yet, obviously, if we concatenate
two elements from I (B), the resulting string eventually has to be reduced again.
The identity in F (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group G
if every element a from G can be written as a finite product/sum of elements from
B, i.e., a = b1 ◦ · · · ◦ bm for b1, . . . , bm ∈ B. In this paper, we restrict ourselves to
finitely presented groups, i.e., having a finite presentation ⟨B | R⟩ with B being
a finite generator set and moreover, R being a finite set of relations among these
generators. In a similar way as in the definition of the free group generated by B,
we here consider the strings in B∗ reduced according to the group axioms and the
relations given in R. Informally, the group G = ⟨B | R⟩ is the largest one generated
by B subject only to the group axioms and the relations in R. Formally, we will
restrict ourselves to relations of the form b1 ◦ · · · ◦ bm = c−1 with b1, . . . , bm, c ∈ B,
which equivalently may be written as b1 ◦ · · · ◦ bm ◦ c = e; hence, instead of such
relations we may specify R by strings over B yielding the group identity, i.e.,
instead of b1 ◦ · · · ◦ bm = c−1 we take b1 ◦ · · · ◦ bm ◦ c (these strings then are called
relators).

Example 2. The free group F (B) = (I (B) , ◦) can be written as ⟨B | ∅⟩ (or even
simpler as ⟨B⟩) because it has no restricting relations.

Example 3. The cyclic group of order n has the presentation ⟨{a} | {an}⟩ (or, omit-
ting the set brackets, written as ⟨a | an⟩); it is also known as Zn or as the quotient
group Z/Zn.

Example 4. Z is a special case of an Abelian group generated by (1) and its inverse
(−1), i.e., Z is the free group generated by (1). Zd is an Abelian group generated by
the unit vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0). It is well known
that every finitely generated Abelian group is a direct sum of a torsion group and
a free Abelian group where the torsion group may be written as a direct sum of
finitely many groups of the form Z/pkZ for p being a prime, and the free Abelian
group is a direct sum of finitely many copies of Z.

Example 5. A very well-known example for a non-Abelian group is the hexagonal
group with the finite presentation

⟨
a, b, c | a2, b2, c2

⟩
. All three generators a, b, c

are self-inverse.

Remark 3. Unfortunately, given a finite presentation of a group ⟨B | R⟩, in gen-
eral it is not even decidable whether the group presented in that way is finite or

Matter and Anti-Matter in Membrane Systems 23

infinite. Hence, in this paper we restrict ourselves to infinite groups where the
word equivalence problem u = v is decidable, or equivalently, there is a decision
procedure telling us whether, given two strings u and v, u ◦ v−1 = e. In that case,
we call ⟨B | R⟩ a recursive or computable finite group presentation.

As a first example we now consider the set (“language”) of all one-dimensional
vectors:

Example 6. Consider the P system

Π = ({q0, q+, q−, qh}, []1, q0, R1, 1) where
R1 = {q0 → qh, q+ → qh, q− → qh}

∪ {q0 → (+1)q+, q+ → (+1)q+, q0 → (−1)q−, q− → (−1)q−}.

In order to generate the empty string, corresponding with the zero-vector (0), we
simply apply q0 → qh. We may also choose to generate a positive or a negative
vector, i.e., we start with q0 → (+1)q+ or q0 → (−1)q−, respectively. After n− 1
applications of the rules q+ → (+1)q+ and q− → (−1)q− as well as of the final
rule q+ → qh or q− → qh, respectively, we have sent out a string representing the
unique irreducible representation of the vector (+n) or (−n), respectively.

Remark 4. The reader may easily verify that, given any finitely generated Abelian
group, such a regular P system exists which generates all strings representing the
(unique, with respect to a complete order on the positive generators) irreducible
representations of the group elements. For non-commutative groups with relators,
such trivial representations are not possible.

If we do not require irreducibility of the string sent out to the environment,
then of course, for any finitely generated group, we can generate representations
of all its elements very easily:

Example 7. Given a finite presentation of a group ⟨B | R⟩, with B− = B, consider
the P system

Π = ({q0}, []1, q0, R1, 1) where
R1 = {q0 → λ} ∪ {q0 → gq0 | g ∈ B}.

Most of the strings sent out now will not be reduced.

Remark 5. In general, as long as we have given the group by a computable finite
presentation, for a mechanism having the full power of Turing computability, we
can require that the “strings” sent out to the environment are irreducible ones.
Hence, for a given recursively enumerable set L of elements over the computable
finite presentation ⟨B | R⟩ of a group, such a mechanism can generate the irre-
ducible string representations of the elements in L. Thus, the results collected in
the following theorem are obvious consequences of the results stated in Theorem 8.

24 A. Alhazov et al.

Let ⟨B | R⟩ be the computable finite presentation of a group. The set of
string representations (of elements of this group with respect to this finite pre-
sentation ⟨B | R⟩) generated or accepted (in the sense of automata) by a P

system with anti-matter Π is denoted by L
⟨B|R⟩
δ (Π), δ ∈ {gen, aut}, the func-

tion/relation computed by Π is denoted by ZL
⟨B|R⟩
aut (Π), Z ∈ {Fun,Rel}. The

family of sets L
⟨B|R⟩
δ (Π), δ ∈ {gen, aut}, and the family of functions/relations

ZL
⟨B|R⟩
aut (Π), Z ∈ {Fun,Rel}, computed by such P systems with at most m

membranes and k catalysts is denoted by L
⟨B|R⟩
δ OPm (cat(k), antim/pri) and

ZL
⟨B|R⟩
aut OPm (cat(k), antim/pri), respectively; we omit /pri for the families with-

out priorities. If the computable finite group presentation may be an arbitrary
one, we omit the superscript ⟨B | R⟩ in these notations. The family of recursively
enumerable sets of elements over the computable finite presentation ⟨B | R⟩ of a
group is denoted by RE⟨B|R⟩, the corresponding family of recursively enumerable
functions/relations by ZRE⟨B|R⟩, Z ∈ {Fun,Rel}.
Theorem 9. Let ⟨B | R⟩ be the computable finite presentation of a group. Then
we have that:

• for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
⟨B|R⟩
δ OPn (cat(k), antim/pri) = RE⟨B|R⟩ and

ZL
⟨B|R⟩
aut OPn (cat(k), antim/pri) = ZRE⟨B|R⟩;

• for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
⟨B|R⟩
δ OPn (cat(k), antim) = RE⟨B|R⟩ and

ZL
⟨B|R⟩
aut OPn (cat(k), antim) = ZRE⟨B|R⟩.

Proof. As for string languages, all computations can be carried out by simulating
register machines, hence, again the results from Section 4 apply. Moreover, as
already mentioned in Remark 5, the additional computations can also be carried
out in this way, as ⟨B | R⟩ is computable. ⊓⊔
Remark 6. Let us mention that the results obtained in Theorem 9 for arbitrary
computable finite presentations ⟨B | R⟩ of a group can also be applied to the
infinite Abelian groups Zd with their canonical group presentations by the unit
vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0). Keeping in mind that there
is a one-to-one correspondence between the representation of a vector in Zn by a
multiset of symbols and the corresponding string representing this multiset, most
of the results shown in Theorem 7 are special cases of the respective results stated
in Theorem 9.

9 Summary

We have shown that only non-cooperative rules together with matter/anti-matter
annihilation rules are needed to obtain computational completeness in P systems

Matter and Anti-Matter in Membrane Systems 25

working in the maximally parallel derivation mode if annihilation rules have weak
priority; without priorities, one catalyst is needed. In the case of accepting P
systems we were able to even get deterministic systems. Allowing anti-matter
objects as input and/or output, we have even obtained a computationally complete
computing model for computations on integer numbers. Interpreting sequences of
symbols taken in from and/or sent out to the environment, we have also got
a model for computations on strings, where strings can even be interpreted as
representations of elements of a group based on a computable finite presentation.

There may be a lot of other interesting models of P systems allowing for in-
troducing anti-matter objects and matter/anti-matter annihilation rules. Several
problems remain open even for the models presented here, for example, can we
avoid both catalysts and priorities. Moreover, the number of rules needed for uni-
versal P systems with anti-matter might still be reduced. Finally, the variants of P
systems with anti-matter computing on sets of integer numbers and on languages
of strings, even considered as representations of elements of a group based on a
computable finite presentation, deserve more detailed investigations.

References

1. A. Alhazov, D. Sburlan: Static Sorting P Systems. In: G. Ciobanu, Gh. Păun, M.J.
Pérez-Jiménez (Eds.): Applications of Membrane Computing. Natural Computing
Series, Springer, 2005, pp. 215–252.

2. M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun: Event-Related Outputs of Compu-
tations in P Systems. Journal of Automata, Languages and Combinatorics 11 (3),
263–278 (2006).

3. E. Csuhaj-Varjú, Gy. Vaszil: P Automata or Purely Communicating Accepting P
Systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing. International Workshop, WMC-CdeA 2002 Curtea de Argeş, Romania,
August 19–23, 2002. Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, pp. 219–233.

4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
1989.

5. D. Dı́az-Pernil, F. Peña-Cantillana, M. A. Gutiérrez-Naranjo: Antimatter as a Fron-
tier of Tractability in Membrane Computing. Brainstorming Week in Membrane
Computing, Sevilla, February 2014.

6. R. Freund: Purely Catalytic P Systems: Two Catalysts Can Be Sufficient for Com-
putational Completeness. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin
(Eds.): CMC14 Proceedings – The 14th International Conference on Membrane Com-
puting, Chişinău, August 20–23, 2013. Institute of Mathematics and Computer Sci-
ence, Academy of Sciences of Moldova, 2013, pp. 153–166.

7. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems
without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science 330,
251–266 (2005).

8. R. Freund, M. Oswald: A Small Universal Antiport P System with Forbidden Con-
text. In: H. Leung, G. Pighizzini (Eds.): 8th International Workshop on Descriptional
Complexity of Formal Systems - DCFS 2006, Las Cruces, New Mexico, USA, June

26 A. Alhazov et al.

21 - 23, 2006. Proceedings DCFS, New Mexico State University, Las Cruces, New
Mexico, USA, 2006, pp. 259–266.

9. R. Freund, M. Oswald: Catalytic and Purely Catalytic P Automata: Control Mecha-
nisms for Obtaining Computational Completeness. In: S. Bensch, F. Drewes, R. Fre-
und, F. Otto (Eds.): Fifth Workshop on Non-Classical Models of Automata and Ap-
plications (NCMA 2013), OCG, Wien, 2013, pp. 133–150.

10. R. Freund, Gh. Păun: How to Obtain Computational Completeness in P Systems with
One Catalyst. In: T. Neary and M. Cook: Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013, EPTCS
128, 47–61 (2013).

11. D. F. Holt, B. Eick, E. A. O’Brien: Handbook of Computational Group Theory. CRC
Press, 2005.

12. I. Korec: Small Universal Register Machines. Theoretical Computer Science 168,
267–301 (1996).

13. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

14. L. Pan, Gh. Păun: Spiking Neural P Systems with Anti-Matter. International Journal
of Computers, Communications & Control 4 (3), 273–282 (2009).

15. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

16. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
17. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
18. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
19. The P Systems Website: www.ppage.psystems.eu.

