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Summary. Membrane fission is a process by which a biological membrane is split into
two new ones in such a way that the contents of the initial membrane is separated and dis-
tributed between the new membranes. Inspired by this biological phenomenon, membrane
separation rules were considered in membrane computing. In this paper we deal with cell-
like P systems with membrane separation rules that use symport/antiport rules (such
systems compute by changing the places of objects with respect to the membranes, and
not by changing the objects themselves) as communication rules. Specifically we study
a lower bound on the length of communication rules with respect to the computational
efficiency of such kind of membrane systems; that is, their ability to solve computation-
ally hard problems in polynomial time by trading space for time. The main result of this
paper is the following: communication rules involving at most three objects is enough
to achieve the computational efficiency of P systems with membrane separation. Thus,
a polynomial time solution to SAT problem is provided in this computing framework. It
is known that only problems in P can be solved in polynomial time by using minimal
cooperation in communication rules and membrane separation, so the lower bound of the
efficiency obtained is an optimal bound.

1 Introduction

In a eukaryotic cell, the lipid membranes serve as concentration barriers allowing
to incorporate material from its environment (in the case of the cell membrane),
or exchange material between compartments. This is done by means of a simple
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three-step process whose last step is membrane fission, consisting in splitting it
into two new membranes [6].

The biological phenomenon of membrane fission process was incorporated in
membrane computing [11] as a new kind of computational rules, called membrane
separation rules, in the framework of polarizationless P systems with active mem-
branes [1]. These rules were associated with different subsets of the working al-
phabet. In [7], a new definition of separation rules in the framework of P systems
with active membranes was introduced, where there exists a distinguished parti-
tion of the working alphabet into two subsets such that each separation rule is
associated with that predefined partition. By applying such a rule, two new mem-
branes are created, the object triggering it is consumed and the remaining objects
are distributed among the newly created membranes. A uniform and polynomial
time solution to SAT problem by a family of P systems with active membranes and
membrane separation rules was given in [1].

Networks of membranes, which compute by communication only in the form
of symport/antiport rules, were considered in [9]. These networks aim to abstract
the biological phenomenon of trans-membrane transport of couples of chemical
substances, in the same or opposite directions. Such rules are used both for com-
munication with the environment and for direct communication between different
membranes. Membrane fission was introduced into tissue-like P systems with sym-
port/antiport rules through cell separation rules yielding tissue P systems with cell
separation [8]. The computational efficiency of these systems was investigated and
a tractability border in terms of the length of communication rules was obtained:
passing from 1 to 8 amounts to passing from tractability to NP–hardness [8].
Furthermore, in [15], that frontier was refined in an optimal sense with respect to
communication rules length (passing from 2 to 3).

Cell-like P systems with symport/antiport rules were introduced in [10], and
their computational completeness (five membranes are enough if at most two ob-
jects are used in the rules) was shown. In this work, we investigate the compu-
tational efficiency of this kind of P systems when membrane separation rules are
allowed. Specifically, a polynomial time solution to SAT problem by using a family
of such systems that use communication rules with length at most 3, is provided.
The hardness of the design is high and a P-Lingua simulator [4] has been helpful
to check the validity of some modules in which the solution was structured

The paper is organized as follows. Section 2 briefly describes some preliminaries
in order to make the paper self-contained. In Section 3, the modeling framework
of P systems with symport/antiport rules and membrane separation is introduced.
Section 4 describes in detail the design of a family solving SAT problem efficiently.
The solution presented is informally outlined in Section 5. Then, a formal verifi-
cation of the solution is exhaustively presented in Section 6. The paper ends with
a summary of the results and some conclusions.
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2 Preliminaries

2.1 Languages and Multisets

An alphabet Γ is a non-empty set and their elements are called symbols. A string
u over Γ is a mapping from a natural number n ∈ N onto Γ . Number n is called
length of the string u and it is denoted by |u|. The empty string (with length 0) is
denoted by λ. A language over Γ is a set of strings over Γ .

A multiset over an alphabet Γ is an ordered pair (Γ, f), where f is a mapping
from Γ onto the set of natural numbers N. For each x ∈ Γ we say that f(x) is the
multiplicity of x in that multiset. The support of a multiset m = (Γ, f) is defined
as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite set.
We denote by ∅ the empty multiset. Let us note that a set is a particular case of
a multiset when each symbol of the support has multiplicity 1.

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for
each x ∈ Γ . We say that m1 is contained in m2 and we denote it by m1 ⊆ m2, if
f1(x) ≤ f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted by
m1 \m2, is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and
g(x) = 0 otherwise.

2.2 Graphs

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the
tree) is distinguished from the others. In a rooted tree the concepts of ascendants
and descendants are defined in a usual way. Given a node x (different from the
root), if the last edge on the (unique) path from the root of the tree to the node
x is {x, y} (in this case, x 6= y), then y is the parent of node x and x is a child of
node y. The root is the only node in the tree with no parent (see [2] for details).

2.3 Encoding ordered pairs of natural numbers

The pair function 〈n,m〉 = ((n + m)(n + m + 1)/2) + n is a polynomial–time
computable function from IN× IN onto IN which is also a primitive recursive and
bijective function.

3 P systems with symport/antiport rules with membrane
separation

In this section we introduce a kind of cell-like P systems that use communica-
tion rules capturing the biological phenomenon of trans-membrane transport of
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chemical substances. Specifically, two processes have been considered. The first
one allows a multiset of chemical substances to pass through a membrane in the
same direction. In the second one, two multisets of chemical substances (located
in different biological membranes) only pass with the help of each other (i.e., an
exchange of objects between both membranes happens).

Next, we introduce an abstraction of these operations in the framework of P
systems with symport/antiport rules following [10]. In these models, the mem-
branes are not polarized.

Definition 1. A P system with symport/antiport rules and membrane separation
(SAS P system, for short) of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout),

where

1. Γ is a finite alphabet;
2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;
3. E ( Γ ;
4. Σ is an (input) alphabet strictly contained in Γ such that E ⊆ Γ \Σ;
5. µ is a rooted tree whose nodes are injectively labelled with 1, . . . , q (the root of

the tree is labelled with 1);
6.M1, . . . ,Mq are finite multisets over Γ \Σ;
7. Ri, 1 ≤ i ≤ q, are finite sets of communication rules over Γ of the form:

(a) Communication rules:
(a) Symport rules: (u, out) or (u, in), where u is a finite multiset over Γ

such that |u| > 0;
(b) Antiport rules: (u, out; v, in), where u, v are finite multisets over Γ such

that |u| > 0 and |v| > 0;
(b) Separation rules: [ a ]i → [Γ0 ]i [Γ1 ]i, where a ∈ Γ , i ∈ {2, . . . , q}, with

i 6= iout the label of a leaf of the tree;
8. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules and membrane separation of degree q ≥ 1

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

can be viewed as a set of q membranes, labelled with 1, . . . , q, arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane,
such that: (a)M1, . . . ,Mq represent the finite multisets of objects (symbols of the
working alphabet Γ ) initially placed into the q membranes of the system; (b) E is
the set of objects initially located in the environment of the system (labelled with
0), all of them available in an arbitrary number of copies; (c) R1, · · · ,Rq are finite
sets of communication rules over Γ (Ri is associated with the membrane i of µ);
and (d) iout represents a distinguished region which will encode the output of the
system. We use the term region i (0 ≤ i ≤ q) to refer to membrane i in the case
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1 ≤ i ≤ q and to refer to the environment in the case i = 0. The length of rule
(u, out) or (u, in) (resp. (u, out; v, in)) is defined as |u| (resp. |u|+ |v|).

For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we denote
by p(i) the parent of membrane i in the rooted tree µ. We define p(1) = 0, that
is, by convention the “parent” of the skin membrane is the environment.

An instantaneous description or a configuration at an instant t of a SA P system
is described by the membrane structure at instant t, all multisets of objects over
Γ associated with all the membranes present in the system, and the multiset of
objects over Γ − E associated with the environment at that moment. Recall that
there are infinite copies of objects from E in the environment, so that this set is not
properly changed along the computation. The initial configuration of the system
is (µ,M1, · · · ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant t
if there exists a membrane labelled with i in Ct such that multiset u is contained
in such membrane. When applying a rule (u, out) ∈ Ri to such a membrane, the
objects specified by u are sent out of that membrane into the region immediately
outside (the parent p(i) of i). Note that this can be the environment in the case
of the skin membrane.

A symport rule (u, in) ∈ Ri is applicable to a configuration Ct at an instant
t if multiset u is contained in the parent of i. When applying a rule (u, in) ∈ Ri
to a membrane labelled with i, the multiset of objects u leaves the parent of such
membrane and enters into the region defined by that membrane.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at an
instant t if there exists a membrane labelled with i in Ct such that multiset u is
contained in such membrane, and multiset v is contained in the parent of i. When
applying a rule (u, out; v, in) ∈ Ri to such a membrane, the objects specified by u
are sent out of it into the parent of i and, at the same time, the objects specified
by v are brought into that membrane i.

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct
at an instant t, if there exists an elementary membrane labelled with i in Ct,
different from the skin membrane, such that it contains object a. When applying
a separation rule [a]i → [Γ0]i [Γ1]i ∈ Ri to such a membrane in a configuration Ct,
triggered by object a, that membrane is separated into two membranes with the
same label; at the same time, object a is consumed; the objects (from the original
membrane) belonging to Γ0 are placed in the first membrane, while those from
belonging to Γ1 are placed in the second membrane. This way, several membranes
with the same label i can be present in the new membrane structure µ′ of the
system: for each membrane labelled with i 6= 1 we have an arc (p(i), i) in µ′ as a
result of the application of a membrane separation rule [a]i → [Γ0]i[Γ1]i.

Regarding the semantics of these variants, the rules of such P systems are
applied in a non-deterministic maximally parallel manner with the following im-
portant remark: when a membrane i is separated, the membrane separation rule
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is the only one from Ri which is applied for that membrane at that step. The
new membranes resulting from separation could participate in the interaction with
other membranes or the environment by means of communication rules at the next
step – providing that they are not separated once again. The label of a membrane
precisely identify the rules which can be applied to it.

Let Π be a P system with symport/antiport rules and membrane separation.
We say that configuration Ct yields configuration Ct+1 in one transition step, de-
noted by Ct ⇒Π Ct+1, if we can pass from Ct to Ct+1 by applying the rules from the
system following the above semantics. A computation of Π is a (finite or infinite)
sequence of configurations such that: (a) the first term is the initial configuration
of the system; (b) for each n ≥ 2, the n-th configuration of the sequence is obtained
from the previous configuration in one transition step; and (c) if the sequence is
finite (called a halting computation) then the last term is a halting configuration
(a configuration where no rule of the system is applicable). All the computations
start from an initial configuration and proceed as stated above; only a halting
computation gives a result, which is encoded by the objects present in the output
region iout associated with the halting configuration. For each finite multiset w
over the input alphabet Σ, a computation of Π with input multiset w starts from
the configuration of the form (µ,M1, . . . ,Miin + w, . . . ,Mq, ∅), where the input
multiset w is added to the content of the input membrane iin. That is, we have an
initial configuration associated with each input multiset w over Σ in recognizer P
systems with symport/antiport rules. We denote by Π + w the P system Π with
input multiset w.

If C = (C0, C1, . . . , Cr) of Π is a halting computation, then the length of C,
denoted by |C|, is r. For each i (1 ≤ i ≤ q), we denote by Ct(i) the finite multiset of
objects over Γ contained in all membranes labelled with i (by applying separation
rules different membranes with the same label can be created) at configuration Ct.

3.1 Recognizer P systems with symport/antiport rules

Recognizer P systems were introduced in [14], and they provide a natural frame-
work to solve decision problems by means of computational devices in membrane
computing (i.e., P systems).

Definition 2. A recognizer P system with symport/antiport rules and membrane
separation of degree q ≥ 1 is a P system with symport/antiport rules and membrane
separation of degree q such that:

1. The working alphabet has two distinguished symbols yes and no;
2. initial multisets are finite multisets over Γ \ Σ such that at least one copy of

yes or no is present in some of them;
3. the output region is the environment (iout = 0);
4. all computations halt;
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5. if C is a computation of the system, then either symbol yes or symbol no (but
not both) must have been released into the environment, and only at the last
step of the computation.

Let us notice that if a recognizer P system has a symport rule of the type (u, in) ∈
R1 then the multiset u must contain some object from Γ \ E because on the
contrary, it might exist non-halting computations of Π.

We say that a computation C of a recognizer P system is an accepting compu-
tation (respectively, rejecting computation) if object yes (respectively, object no)
appears in the environment associated with the corresponding halting configura-
tion of C, and neither object yes nor no appears in the environment associated
with any non–halting configuration of C.

We denote by CSC(k) the class of all recognizer P systems with sym-
port/antiport rules and membrane separation (for elementary membranes) such
that the length of the communication rules of the system is at most k.

3.2 Polynomial complexity classes of recognizer P systems with
symport/antiport rules

Next, according to [13], we define what it means to solve a decision problem by a
family of recognizer P systems with symport/antiport rules and membrane sepa-
ration.

Definition 3. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ N} of recognizer P systems with symport/antiport rules
and membrane separation or membrane separation, if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N;

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) + cod(u), then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.
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According to Definition 3, we say that the family Π provides a uniform solution
to the decision problem X. We also say that ordered pair (cod, s) is a polynomial
encoding from X in Π and s is the size mapping associated with that solution. It
is worth pointing out that for each instance u ∈ IX , the P system Π(s(u))+cod(u)
is confluent, in the sense that all possible computations of the system must give
the same answer.

If R is a class of recognizer P systems, then we denote by PMCR the set of
all decision problems which can be solved in polynomial time (and in a uniform
way) by means of recognizer P systems from R. The class PMCR is closed under
complement and polynomial–time reductions (see [13] for details). Besides, we have
P ⊆ PMCR. Indeed, if X ∈ P then we consider the family Π = {Π(n) | n ∈ N}
where Π(n) = Π(0), for each n ∈ IN, and Π(0) is a P system from R of degree 1
containing only two rules (yes, out) and (no, out). Let us consider the polynomial
encoding from X in Π defined as follows: (a) s(u) = 0, for each u ∈ IX ; and (b)
cod(u) = yes if θX(u) = 1 and cod(u) = no if θX(u) = 0. Then, the family Π
solves X according to Definition 3.

4 On Efficiency of CSC(3)

The limitations on the efficiency of P systems with membrane separation whose
symport/antiport rules involve at most two objects, have been established [5].
Specifically, it has been proved that the polynomial complexity class PMCCSC(2)

is equal to class P: only tractable problems can be efficiently solved by using fam-
ilies of P systems with membrane separation which make use of symport/antiport
rules with length at most 2. In this Section we analyze the computational efficiency
of familes of P systems from CSC(3), and it is given a polynomial time solution to
SAT problem by means of a family of such P systems, in a uniform way, according
to Definition 3.

4.1 A polynomial time solution to SAT problem in CSC(3)

Let us recall that SAT problem is the following: given a Boolean formula in conjunc-
tive normal form (CNF), to determine whether or not there exists an assignment
to its variables on which it evaluates true. This is a well known NP-complete
problem [3].

We consider a family Π = {Π(t) | t ∈ IN} of recognizer P system from
CSC(3), such that each system Π(t), with t = 〈n,m〉, will process all instances of
SAT problem (an instance is a Boolean formula ϕ in conjunctive normal form with
n variables and m clauses) provided that the appropriate input multiset cod(ϕ) is
supplied to the system.

For each n,m ∈ IN, we consider the recognizer P system from CSC(3)
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Π(〈n,m〉) = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

defined as follows:

(1)Working alphabet:

Γ = Σ ∪ E ∪ {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1}∪
{A1, B1, b1, b

′
1, c1, c

′
1, v1, q1,1, β0, β

′
0, β
′′
0 , γ0, γ

′
0, γ
′′
0 , γ
′′′
0 , f0, yes, no}∪

{f ′i | 0 ≤ i ≤ 3n+ 2m+ 1},∪{ρi,0, τi,0 | 1 ≤ i ≤ n},∪{δj,0 | 0 ≤ j ≤ m}

where the input alphabet is Σ = {xi,j , xi,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}, and the
alphabet of the environment is:

E = {αi,j,k, α′i,j,k | 1 ≤ i ≤ n− 1 ∧ 1 ≤ j ≤ 3(n− 1) ∧ 0 ≤ k ≤ 1}∪
{βj , β′j , β′′j , γj , γ′j , γ′′j , γ′′′j | 1 ≤ j ≤ 3(n− 1)}∪
{ρi,j , τi,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3n− 1}∪
{Ti,j , T ′i,j , Fi,j , F ′i,j | 1 ≤ i < j ∧ 1 ≤ j ≤ n}∪
{Ti,i, F ′i,i, Ti, Fi | 1 ≤ i ≤ n} ∪ {Ai, A′i, Bi, B′i | 2 ≤ i ≤ n+ 1}∪
{bi, b′i, ci, c′i | 2 ≤ i ≤ n} ∪ {vi | 2 ≤ i ≤ n− 1}∪
{yi, ai, wi | 1 ≤ i ≤ n− 1} ∪ {zi | 1 ≤ i ≤ n− 2}∪
{qi,j | 1 ≤ i ≤ j ∧ 2 ≤ j ≤ n− 1} ∪ {ui,j | 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 2}∪
{ti,j , fi,j , ri,j , si,j | 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 1}∪
{di,j,k, di,j,k | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 1}∪
{fr | 1 ≤ r ≤ 3n+ 2m} ∪ {ei,j , ei,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪
{δj,r | 0 ≤ j ≤ m ∧ 1 ≤ r ≤ 3n} ∪ {Ej | 0 ≤ j ≤ m} ∪ {S}

(2)The partition is {Γ0, Γ1}, where Γ0 = Γ \ Γ1 and

Γ1 = {T ′i,j F ′i,j | 1 ≤ i < j ∧ 1 ≤ j ≤ n} ∪ {F ′i,i | 1 ≤ i ≤ n}∪
{A′i, B′i | 2 ≤ i ≤ n+ 1}

(3)Membrane structure: µ = [ [ ]2 [ ]3]1. The input membrane is the membrane
labelled with 1.

(4)Initial multisets:

M1 = {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1} ∪ {ρi,0, τi,0 | 1 ≤ i ≤ n}∪
{β0, β′0, β′′0 , γ0, γ′0, γ′′0 , γ′′′0 , c1, c′1, b1, b′1, v1, q1,1, f0, yes}∪
{δj,0 | 0 ≤ j ≤ m} ∪ {f ′p | 1 ≤ p ≤ 3n+ 2m+ 1}

M2 = {A1, B1}
M3 = {f ′0, no}

(5) Rules in R1 :

1.1 Rules to generate in the membrane 1 of configuration C3p+1 (p = 1, . . . , n−
1) the objects T 2p−1

i,p+1, T
′2p−1

i,p+1 , F
2p−1

i,p+1, F
′2p−1

i,p+1 :
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(αi,0,k, out;αi,1,k, in)
(α′i,0,k, out;α

′
i,1,k, in)

(αi,1,k, out;αi,2,k, in)
(α′i,1,k, out;α

′
i,2,k, in)

(αi,2,k, out;αi,3,k, in)
(α′i,2,k, out;α

′
i,3,k, in)


1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(αi,3p,k , out;αi,3p+1,k ∆
k
i,p+1 , in) : 1 ≤ i ≤ p ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(α′i,3p,k , out;α
′
i,3p+1,k ∆

′k
i,p+1 , in) : 1 ≤ i ≤ p ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p,k , out;αi,3p+1,k , in) : p+ 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1
(α′i,3p,k , out;α

′
i,3p+1,k , in) : p+ 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p+1,k , out;αi,3p+2,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1
(α′i,3p+1,k , out;α

′
i,3p+2,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p+2,k , out;α
2
i,3p+3,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(α′i,3p+2,k , out;α
′2
i,3p+3,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3(n−1),k , out; ∆
k
i,n , in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(α′i,3(n−1),k , out; ∆
′k
i,n , in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

where ∆0
i,j = Fi,j , ∆′0i,j = F ′i,j , ∆1

i,j = Ti,j , ∆′1i,j = T ′i,j .

1.2 Rules to generate in the membrane 1 of configuration C3p+1 (p =
0, 1, . . . , n− 1) the objects B2p

p+2, B
′2p
p+2, S

2p :

(β3p , out;β3p+1 Bp+2 , in)
(β′3p , out;β

′
3p+1 B

′
p+2 , in)

(β′′3p , out;β
′′
3p+1 S , in)

(β3p+1 , out;β3p+2 , in)
(β′3p+1 , out;β

′
3p+2 , in)

(β′′3p+1 , out;β
′′
3p+2 , in)

(β3p+2 , out;β
2
3p+3 , in)

(β′3p+2 , out;β
′2
3p+3 , in)

(β′′3p+2 , out;β
′′2
3p+3 , in)


0 ≤ p ≤ n− 3

(β3(n−2) , out;β3(n−2)+1Bn , in)
(β′3(n−2) , out;β

′
3(n−2)+1B

′
n , in)

(β′′3(n−2) , out;β
′′
3(n−2)+1 S , in)

(β3(n−2)+1 , out;β3(n−2)+2 , in)
(β′3(n−2)+1 , out;β

′
3(n−2)+2 , in)

(β′′3(n−2)+1 , out;β
′′
3(n−2)+2 , in)

(β3(n−2)+2 , out;β
2
3(n−2)+3 , in)

(β′3(n−2)+2 , out;β
′2
3(n−2)+3 , in)

(β′′3(n−2)+2 , out;β
′′2
3(n−2)+3 , in)


(β3(n−1) , out;Bn+1 , in)
(β′3(n−1) , out;B

′
n+1 , in)

(β′′3(n−1) , out;S , in)
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1.3 Rules to generate in the membrane 1 of configuration C3p+1 (p =
0, 1, . . . , n− 1) the objects T 2p

p+1,p+1, T
′2p
p+1,p+1, A

2p

p+2, A
′2p
p+2:

(γ3p , out; γ3p+1 Tp+1,p+1 , in)
(γ′3p , out; γ

′
3p+1 F

′
p+1,p+1 , in)

(γ′′3p , out; γ
′′
3p+1 Ap+2 , in)

(γ′′′3p , out; γ
′′′
3p+1 A

′
p+2 , in)

(γ3p+1 , out; γ3p+2 , in)
(γ′3p+1 , out; γ

′
3p+2 , in)

(γ′′3p+1 , out; γ
′′
3p+2 , in)

(γ′′′3p+1 , out; γ
′′′
3p+2 , in)

(γ3p+2 , out; γ
2
3p+3 , in)

(γ′3p+2 , out; γ
′2
3p+3 , in)

(γ′′3p+2 , out; γ
′′2
3p+3 , in)

(γ′′′3p+2 , out; γ
′′′2
3p+3 , in)



0 ≤ p ≤ n− 3

(γ3(n−2) , out; γ3(n−2)+1 Tn−1,n−1 , in)
(γ′3(n−2) , out; γ

′
3(n−2)+1 F

′
n−1,n−1 , in)

(γ′′3(n−2) , out; γ
′′
3(n−2)+1 An , in)

(γ′′′3(n−2) , out; γ
′′
3(n−2)+1 A

′
n , in)

(γ3(n−2)+1 , out; γ3(n−2)+2 in)
(γ′3(n−2)+1 , out; γ

′
3(n−2)+2 in)

(γ′′3(n−2)+1 , out; γ
′′
3(n−2)+2 in)

(γ′′′3(n−2)+1 , out; γ
′′′
3(n−2)+2 in)

(γ3(n−2)+2 , out; γ
2
3(n−2)+3 in)

(γ′3(n−2)+2 , out; γ
′2
3(n−2)+3 in)

(γ′′3(n−2)+2 , out; γ
′′2
3(n−2)+3 in)

(γ′′′3(n−2)+2 , out; γ
′′′2
3(n−2)+3 in)


(γ3(n−1) , out; Tn,n , in)
(γ′3(n−1) , out; F

′
n,n , in)

(γ′′3(n−1) , out; An+1 , in)

(γ′′′3(n−1) , out; A
′
n+1 , in)


1.4 Rules to generate in the membrane 1 of configuration C3n the objects

T 2n−1

i , F 2n−1

i (1 ≤ i ≤ n):

(ρi,0 , out; ρi,1 , in)
(τi,0 , out; τi,1 , in)
(ρi,1 , out; ρi,2 , in)
(τi,1 , out; τi,2 , in)
(ρi,2 , out; ρi,3 , in)
(τi,2 , out; τi,3 , in)


1 ≤ i ≤ n
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(ρi,3p , out; ρi,3p+1 , in)
(τi,3p , out; τi,3p+1 , in)

(ρi,3p+1 , out; ρ
2
i,3p+2 , in)

(τi,3p+1 , out; τ
2
i,3p+2 , in)

(ρi,3p+2 , out; ρi,3p+3 , in)
(τi,3p+2 , out; τi,3p+3 , in)


1 ≤ i ≤ n ∧ 1 ≤ p ≤ n− 2

(ρi,3(n−1) , out; ρi,3(n−1)+1 , in)
(τi,3(n−1) , out; τi,3(n−1)+1 , in)

(ρi,3(n−1)+1 , out; ρ
2
i,3(n−1)+2 , in)

(τi,3(n−1)+1 , out; τ
2
i,3(n−1)+2 , in)

(ρi,3(n−1)+2 , out;Ti , in)
(τi,3(n−1)+2 , out;Fi , in)


1 ≤ i ≤ n

(Ai , out; ai , in)
(A′i , out; ai , in)
(Bi , out; ai , in)
(B′i , out; ai , in)

 1 ≤ i ≤ n− 1

(yi , out; zi wi , in) : 1 ≤ i ≤ n− 2
(yn−1 , out;wn−1 , in) :

}
(wi , out; ci+1 c

′
i+1 , in) : 1 ≤ i ≤ n− 1

(zi , out; vi+1 , in) : 1 ≤ i ≤ n− 2

}
(vi , out; y

2
i , in)

(ai , out; bi+1 b
′
i+1 , in)

}
1 ≤ i ≤ n− 1

(q1,1 , out; r1,1 , in)
(qi,j , out; r

2
i,j , in) : 1 ≤ i ≤ n− 1 ∧ i ≤ j ≤ n− 1

}
(ri,j , out; si,j ui,j , in) : 1 ≤ i ≤ n− 2 ∧ i ≤ j ≤ n− 2

(ri,n−1 , out; si,n−1 , in) : 1 ≤ i ≤ n− 1

}
(si,j , out; ti,j fi,j , in) : 1 ≤ i ≤ n− 1 ∧ i ≤ j ≤ n− 1

(u1,j , out; q1,j+1 q2,j+1 , in) : 1 ≤ j ≤ n− 2
(ui,j , out; qi+1,j+1 , in) : 2 ≤ i ≤ j ∧ 2 ≤ j ≤ n− 2

}
(Ti,j ti,j , out)
(T ′i,j ti,j , out)
(Fi,j fi,j , out)
(F ′i,j fi,j , out)

 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n



Efficiency of Symport/Antiport with Membrane Separation 337

1.5 Rules allowing that each object xi,j (meaning that xi ∈ Cj) and xi,j
(meaning that ¬xi ∈ Cj) results in the corresponding ei,j and ei,j objects
with multiplicity 2n−1 in membrane 1 of configuration Cn+1.

(xi,j , out; d
2
i,j,1 ; in)

(xi,j , out; d
2

i,j,1 ; in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

(di,j,k , out; d
2
i,j,k+1 , in)

(di,j,k , out; d
2

i,j,k+1 , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

(di,j,n−1 , out; ei,j , in)

(di,j,n−1 , out; ei,j , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

1.6 Output rule with affirmative answer: (E0 f3n+2m yes ; out).

1.7 Output rule with negative answer: (f3n+2m no ; out).

1.8 Rules to generate in the membrane 1 of configuration C3n the ob-
jects E2n

1 , and in the membrane 1 of configuration C3n+1 the objects
E2n

0 , E2n

2 , . . . , E2n

m :

(δj,3p , out; δj,3p+1, in)
(δj,3p+1 , out; δ

2
j,3p+2, in)

}
0 ≤ j ≤ m ∧ 0 ≤ p ≤ n− 1

(δj,3p+2 , out; δj,3p+3, in) 0 ≤ j ≤ m ∧ 0 ≤ p ≤ n− 2

(δ1,3(n−1)+2 , out;E1, in)

(δj,3(n−1)+2 , out; δj,3(n−1)+3, in)
(δj,3n , out;Ej , in)

}
0 ≤ j ≤ m ∧ j 6= 1

(fp , out; fp+1 ; in) 0 ≤ p ≤ 3n+ 2m− 1

1.9 Rules to remove a part of the garbage:

(ti,k Ti,k , out)
(ti,k T

′
i,k , out)

(fi,k Fi,k , out)
(fi,k F

′
i,k , out)

 1 ≤ i < k ∧ 2 ≤ k ≤ n

(ti,i Ti,i , out)
(fi,i F

′
i,i , out)

}
1 ≤ i ≤ n

(bk Bk+1 , out)
(b′k B

′
k+1 , out)

(ck Ak+1 , out)
(c′k A

′
k+1 , out)

n− 1 ≤ k ≤ n
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(6) Rules in R2 :

2.1 Separation rule: [S ]2 → [Γ0 ]2 [Γ1 ]2.

2.2 Rules to produce objects Ti,i, Ai+1, F
′
i,i, A

′
i+1 in each membrane 2:

(Ai, out; ci c
′
i, in)

(A′i, out; ci c
′
i, in)

(Bi, out; bi b
′
i, in)

(B′i, out; bi b
′
i, in)

(bi, out;Bi+1 S, in)
(b′i, out;B

′
i+1, in)

(ci, out;Ti,iAi+1, in)
(c′i, out;F

′
i,iA

′
i+1, in)


1 ≤ i ≤ n

2.3 Rules to produce an object E1 in each membrane 2 of configuration C3n+1

and an object E0 in each membrane 2 of configuration C3n+2:

(Bn+1, out;E1, in)
(B′n+1, out;E1, in)
(An+1, out;E0, in)
(A′n+1, out;E0, in)

2.4 Rules to produce a truth assignment in each membrane 2 of configuration
C3n+1:

(Ti,j , out; ti,j , in)
(T ′i,j , out; ti,j , in)
(Fi,j , out; fi,j , in)
(F ′i,j , out; fi,j , in)

 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n

(ti,j , out;Ti,j+1 T
′
i,j+1, in)

(fi,j , out;Fi,j+1 F
′
i,j+1, in)

}
1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 1

(Ti,n, out;Ti, in)
(T ′i,n, out;Ti, in)
(Fi,n, out;Fi, in)
(F ′i,n, out;Fi, in)

 1 ≤ i ≤ n

2.5 Rules to check clause Cj through the truth assignment encoded by a mem-
brane 2:

(Ej Ti, out; ei,j , in)
(Ej Fi, out; ei,j , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

2.6 Rules to restore the truth assignment encoded by a membrane 2 which
makes clause Cj true:

(ei,j , out, Ej+1 Ti, in)
(ei,j , out, Ej+1 Fi, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m− 1



Efficiency of Symport/Antiport with Membrane Separation 339

2.7 Rules to send an object E0 to membrane 1 of configuration C3n+2m+1,
meaning that some truth assignment encoded by a membrane labelled with
2 makes the input formula ϕ true:

(ei,mE0 ; out)
(ei,mE0 ; out)

}
1 ≤ i ≤ n

(7) Rules in R3 :

3.1 Rules to produce objects f ′3n+2m+1 and no in the membrane 1 of configu-
ration C3n+2m+2.

(f ′p, out; f
′
p+1, in) 0 ≤ p ≤ 3n+ 2m

(f ′3n+2m+1 no ; out)

5 An overview of the computations

A family of recognizer P systems with symport/antiport rules and membrane sepa-
ration is constructed above. For an instance of SAT problem ϕ = C1∧· · ·∧Cm, con-
sisting of m clauses Cj = lj,1∨· · ·∨lj,rj , 1 ≤ j ≤ m, where V ar(ϕ) = {x1, · · · , xn},
and lj,k ∈ {xi,¬xi | 1 ≤ i ≤ n}, 1 ≤ j ≤ m, 1 ≤ k ≤ rj . Let us assume that the
number of variables, n, and the number of clauses, m, of the input formula ϕ, are
greater or equal to 2.

The size mapping on the set of instances is defined as s(ϕ) = 〈m,n〉, for each
ϕ ∈ ISAT, and the encoding of the instance ϕ is the multiset

cod(ϕ) = {xi,j : xi ∈ Cj} ∪ {xi,j : ¬xi ∈ Cj}

That is, xi,j (respectively, xi,j) denotes variable xi (respectively, ¬xi) belonging to
clause Cj . Then, the Boolean formula ϕ will be processed by the system Π(s(ϕ))
with input multiset cod(ϕ).

Next, we informally describe how the system Π(s(ϕ)) + cod(ϕ) works, in order
to process the instance ϕ of SAT problem. The solution proposed follows a brute
force algorithm in the framework of recognizer P systems with symport/antiport
rules and membrane separation, and it consists of the following phases:

• Generation phase: using separation rules, all truth assignments for the variables
associated with the Boolean formula ϕ(x1, . . . , xn) are produced. This phase
exactly takes 3n+ 1 computation steps.

• Checking phase: checking whether or not the input formula ϕ is satisfied by
some truth assignment generated in the previous phase. This phase takes, ex-
actly, 3m+ 1 steps, being m the number of clauses of the formula ϕ.
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• Output phase: the system sends the right answer to the environment depending
on the results of the previous phase. This phase takes, exactly, 1 step if the
answer affirmative, and 2 steps if the answer is negative.

Generation phase

In this phase, all truth assignments for the variables associated with the Boolean
formula ϕ(x1, . . . , xn) are generated, by applying separation rules in membranes
labelled with 2. This way, after completing the phase, there will exist 2n membranes
labelled with 2 such that each of them encodes a different truth assignment of the
variables {x1, . . . , xn}.

This phase consists in a loop with n iterations and one additional final step.
Each iteration of the loop takes three steps and, consequently, this phase takes
3n+ 1 steps.

To do this, in the configurations of the kind C3p+2 (0 ≤ p ≤ n− 1) there exist
2p membranes labelled with 2 containing objects

Ap+2, A
′
p+2, Bp+2, B

′
p+2, Tp+1,p+1, F

′
p+1,p+1, S

along with 2p–tuples of objects (π1,p+1, π
′
1,p+1, . . . , πp,p+1, π

′
p,p+1), with π ∈

{T, F}, in such a way that the corresponding tuples are all different in the different
membranes.

Thus, a separation rule can be applied to each membrane labelled with 2.
As a consequence, in configuration C3p+3 (0 ≤ p ≤ n − 2) there will exist 2p+1

membranes labelled with 2. 2p of them will contain objects Ap+2 and Bp+2, as
well as (p+ 1)–tuples (π1,p+1, . . . , πp+1,p+1), with π ∈ {T, F}, in such a way that
πp+1,p+1 = Tp+1,p+1, and the corresponding tuples of these membranes are all
different. The other 2p membranes labelled with 2 contain the objects A′p+2 and
B′p+2, as well as (p + 1)–tuples (π′1,p+1, . . . , π

′
p+1,p+1) with π ∈ {T, F}, in such a

way that π′p+1,p+1 = F ′p+1,p+1 and the corresponding tuples of these membranes
are all different.

Finally, in configuration C3n there exist 2n membranes labelled with 2. 2n−1 of
them contain the objects An+1 and Bn+1, as well as n–tuples (π1,n, . . . , πn,n) with
π ∈ {T, F}, in such a way that πn,n = Tn,n and the corresponding tuples of these
membranes are all different. The other 2n−1 membranes labelled with 2 contain
the objects A′n+1 and B′n+1, as well as n–tuples (π′1,n, . . . , π

′
n,n) with π ∈ {T, F},

in such a way that π′n,n = F ′n,n and the corresponding tuples of these membranes
are all different.

This phase ends in the step 3n + 1, where configuration C3n+1 contains 2n

membranes labelled with 2, each one of them containing the objects An+1 and E1,
as well as n–tuples (π1, . . . , πn) with π ∈ {T, F}, and the corresponding tuples of
these membranes are all different.
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Simultaneously, during the generation phase, from the input multiset placed
initially in the skin membrane, 2n−1 copies of each object of that multiset are
generated in that membrane, corresponding to configuration Cn. Due to technical
reasons, we will change variables xi,j and xi,j by ei,j and ei,j , respectively. This is
accomplished by using the following rules from R1:

(xi,j , out; d
2
i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

(xi,j , out; d
2

i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m
(di,j,k , out; d

2
i,j,k+1 , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

(di,j,k , out; d
2

i,j,k+1 , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2
(di,j,n−1 , out; ei,j , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m
(di,j,n−1 , out; ei,j , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m


The cited multiset that codifies the input formula will be denoted by

(cod(ϕ))2
n−1

e .

Checking phase

This phase begins at computation step 3n + 2 and consists in a loop with m
iterations, taking each of them 2 steps. Hence, the checking phase takes 2m steps.

In the configuration C3n+1, the presence of an object E1 in each membrane
labelled with 2, along with the code of a truth assignment, marks the beginning of
this phase. In the first iteration of the loop, the truth assignments making clause
C1 of ϕ true are found. To do this, the following rules of R2 are applied:

(E1 Ti, out; ei,1, in)
(E1 Fi, out; ei,1, in)

}
1 ≤ i ≤ n

Simultaneously, in the computation step (3n+1)+2, the object E0 is incorporated
to each of the membranes labelled with 2 by means of the application of the
following rules of R2: (An+1, out, E0, in) and (A′n+1, out, E0, in).

At this point, the presence of an object ei,1 or an object ei,1 in a membrane
2 of the configuration C(3n+1)+1 indicates that this membrane codifies a truth
assignment making the first clause true.

In the next computation step, those membranes will incorporate an object E2

coming from the skin by applying the following rules from R2:

(ei,1, out, E2 Ti, in)
(ei,1, out, E2 Fi, in)

}
1 ≤ i ≤ n

This way, the presence of an object E2 in a membrane 2 of the configuration
C(3n+1)+2 indicates that this membrane codifies a truth assignment making true
the first clause and that is ready to check the second clause of the formula. That
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is, from this moment, the membranes labelled with 2 not making true the first
clause will not evolve.

In the j-th iteration (2 ≤ j ≤ m) of the aforementioned loop, the truth assign-
ments making true the clause Cj of the formula are checked, taking into account
that only the truth assignments containing the object Ej will be checked, since
only these membranes make clauses C1, . . . , Cj−1 of ϕ true. This is accomplished
by applying the following rules from R2:

(Ej Ti, out; ei,j , in)
(Ej Fi, out; ei,j , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

Then, the presence of an object ei,j or an object ei,j in a membrane 2 of the
configuration C(3n+1)+2·(j−1)+1 indicates that this membrane codifies a truth as-
signment making clauses C1, . . . , Cj of ϕ true. Following this, those membranes
will incorporate an object Ej+1 coming from the skin by applying the following
rules from R2:

(ei,j , out, Ej+1 Ti, in)
(ei,j , out, Ej+1 Fi, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m− 1

If the input formula ϕ is satisfiable, then in some membrane labelled with 2 of
the configuration C(3n+1)+2(m−1)+1 there will exist an object ei,m or an object ei,m.
This indicates that the truth assignment that this membrane codifies makes true
all the clauses from ϕ and, consequently, makes true the input formula. In this case,
the checking phase ends up by applying a rule fromR2 of the kind (ei,mE0 ; out) or
(ei,mE0 ; out) making an object E0 go to the skin membrane of the configuration
C(3n+1)+2(m−1)+2, where also the object f3n+2m has been produced.

If the input formula ϕ is not satisfiable, the no membrane labelled with
2 of the configuration C(3n+1)+2(m−1)+1 contains an object ei,m neither an
object ei,m. In this case, the checking phase ends up by applying the rule
(f ′3n+2m , out; f

′
3n+2m+1 , in) ∈ R3 (in fact, this is the only rule applicable to the

configuration C(3n+1)+2(m−1)+1).

The checking phase ends at step (3n+ 1) + 2(m− 1) + 2 = 3n+ 2m+ 1.

Output phase

If the input formula ϕ is satisfiable, then objects E0 and f3n+2m will appear in
the input membrane of the configuration C3n+2m+1 . Then, by applying the rule
(E0 f3n+2m yes ; out) in the skin membrane, the object yes is released into the
environment, providing and affirmative answer at computation step (3n + 1) +
2m+ 1 = 3n+ 2m+ 2.

If the input formula ϕ is not satisfiable, then objects f3n+2m and yes are
present in the skin membrane of the configuration C(3n+1)+2(m−1)+1 = C3n+2m,
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but not the object E0. In this case, the only applicable rule in the system is
(f ′3n+2m , out; f

′
3n+2m+1 , in) in the membrane 3 and in the next computation

step only the rule (f ′3n+2m+1 no ; out) ∈ R3 is applicable. Consequently, objects
f3n+2m, yes, f

′
3n+2m+1 and no appear in the skin membrane of the configuration

C3n+2m+2. Then, by applying the rule (f3n+2m no ; out) in the skin membrane, an
object no will be released into the environment, providing a negative answer in
the step 3n+ 2m+ 3.

Hence, the output phase takes 1 computation step in the case of an affirmative
answer, and 2 computation steps in the case of a negative answer.

6 A Formal Verification

In this Section we show that the family Π = {Π(〈n,m〉) | n,m ∈ IN} considered in
the previous section provides a polynomial time solution to SAT problem according
to the Definition 3.2. For that, we must prove that it is polynomially uniform
by Turing machines and that there exists a polynomial encoding (cod, s) of SAT
problem in the family Π such that Π is polynomially bounded, sound and complete
with regards to (SAT, cod, s).

6.1 Polynomial Uniformity of the Family

In this subsection, we shall show that the family Π = {Π(〈n,m〉) | n,m ∈ IN}
defined above is polynomially uniform by Turing machines. To this aim we prove
that Π(〈n,m〉) is built in polynomial time with respect to the size parameter m
and n of instances of SAT problem.

It is easy to check that the rules of a system Π(〈n,m〉) of the family are
recursively defined through the values n (that represents the number of variables
of the input formula) and m (that represents the number of clauses of the input
formula). The amount of resources to construct Π(〈n,m〉) is of a polynomial order
in the numbers n and m, as shown below:

1. The size of the working alphabet is of the order Θ(n2 ·m).
2. The initial number of cells is 3 ∈ Θ(1).
3. The initial number of objects in membranes is 9n+ 3m+ 17 ∈ Θ(max{n,m}).
4. The total number of rules is of order Θ(n2 ·m).
5. The maximum length of a rule is 3 ∈ Θ(1).

Therefore, there exists a deterministic Turing machine that builds the system
Π(〈n,m〉) in a polynomial time with respect to n and m.
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6.2 Soundness and Completeness of the Family

In the first place, we are going to justify that in the skin membrane of the con-
figuration Cn objects ei,j appear such that xi,j ∈ cod(ϕ) and objects ei,j appear
such that xi,j ∈ cod(ϕ), each of them with multiplicity 2n−1.

Theorem 1. For each k (1 ≤ k ≤ n− 1), the membrane 1 of the configuration Ck
contains the following multiset of objects:

{d2ki,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪

{d2
k

i,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Proof. By bounded induction on k. Let us start analyzing the base case k = 1.
The membrane 1 is the input membrane of the system and, consequently, contains
the multiset of objects:

cod(ϕ) = {xi,j | xi ∈ Cj ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪
{xi,j | ¬xi ∈ Cj ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Then, by applying the rules from R1 of the kind

(xi,j , out; d
2
i,j,1 ; in)

(xi,j , out; d
2

i,j,1 ; in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

to the configuration C0, membrane 1 of C1 ends containing the multiset of objects:

{d2i,j,1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪
{d2i,j,1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Consequently, the result holds for k = 1.

By induction hypothesis, let us consider k such that 1 ≤ k < n− 1 and let us
suppose the result holds for k, that is, let us suppose that the membrane 1 of the
configuration Ck contains the multiset of objects:

{d2ki,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪

{d2
k

i,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Let us see that the result also holds for k + 1.

By applying the rules of R1 of the kind

(di,j,k , out; d
2
i,j,k+1 , in)

(di,j,k , out; d
2

i,j,k+1 , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

to the configuration Ck results that the membrane 1 of Ck+1 contains the multiset
of objects:
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{d2k+1

i,j,k+1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m} ∪

{d2
k+1

i,j,k+1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Consequently, the result holds for k+1. This ends up with the proof of the theorem.
�

Next, we are going to analyse the evolution of the system thurough every phase
in the proposed solution.

Generation phase

We will denote by (cod(ϕ))e the multiset of (cod(ϕ)) where the objects xi,j and
xi,j are replaced by ei,j and ei,j , respectively. If in the multiset (cod(ϕ))e each

object has multiplicity 2k, then we will denote it by (cod(ϕ))2
k

e .

Next, let us consider the formulas θ1(p), θ2(p) and θ3(p), where p = 0, 1, . . . , n−
1. These formulas indicate the relevant contents of the configurations C3p+1, C3p+2

and C3p+3, respectively.

The formula θ1(p) captures the contents of configuration C3p+1, corresponding
to the first step of each loop iteration. The formula θ1(p) is the following:

“In configuration C3p+1 the following holds:

• In the membrane labelled with 1 we can find as relevant objects:

– ρi,3p+1 and τi,3p+1 (for 1 ≤ i ≤ n), each of them with multiplicity 1 if r = 0
and multiplicity 2p−1 if p ≥ 1.

– δj,3p+1 (for 1 ≤ j ≤ m), each of them with multiplicity 2p.

– f3p+1, yes, f
′
0, . . . , f̂

′
3p+1, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

– Ap+2 , A
′
p+2 , Bp+2 , B

′
p+2 , S, each of them with multiplicity 2p.

– Tp+1,p+1 , F
′
p+1,p+1, each of them with multiplicity 2p.

– If p = 0 it contains A1 , B1, each of them with multiplicity 1.

– If 0 ≤ p ≤ n− 2 then there also exist objects

? αi,3p+1,k, α
′
i,3p+1,k (for 1 ≤ i ≤ n−1 and 0 ≤ k ≤ 1), each of them with

multiplicity 2p−1, if 1 ≤ i ≤ n− 2, and with multiplicity 1 if p = 0.

? β3p+1, β
′
3p+1, β

′′
3p+1, each of them with multiplicity 2p.

? γ3p+1, γ
′
3p+1, γ

′′
3p+1, γ

′′′
3p+1, each of them with multiplicity 2p.

? yp+1 with multiplicity 2p+1.

? r1,p+1, r2,p+1, . . . , rp+1,p+1 with multiplicity 2p.
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– If 1 ≤ p ≤ n − 2, it contains the objects Ap+1, A
′
p+1, Bp+1, B

′
p+1, each of

them with multiplicity 2p−1.

– If 1 ≤ p ≤ n − 1, it contains the objects Ti,p+1, T
′
i,p+1, Fi,p+1, F

′
i,p+1, for

1 ≤ i ≤ p, each of them with multiplicity 2p−1.

– If also 3p+ 1 ≥ n, then it contains (cod(ϕ))2
n−1

e .”

• There exist 2p membranes labelled with 2, each of them containing objects
bp+1, b

′
p+1, cp+1, c

′
p+1 with multiplicity 1. If p ≥ 1, then each membrane la-

belled with 2 has a p-tuple of objects (π1,p, . . . , πp,p) such that π ∈ {t, f} and
the corresponding tuples are all different in the different membranes. Thus, for
example, for p = 1, there exist 21 = 2 membranes labelled with 2 such that
both of them contain objects b2, b

′
2, c2, c

′
2 and, additionally, the first of them

contains the object t1,1 and the second one f1,1. For p = 2, there exist 22 = 4
membranes labelled with 2 such that all of them contain the objects b3, b

′
3, c3, c

′
3.

In addition, one of them contains t1,2, t2,2, the second one contains f1,2, t2,2,
the third one contains t1,2, f2,2 and the fourth one contains f1,2, f2,2.

• The membrane labelled with 3 contains the objects f ′3p+1 and no with multiplic-
ity 1.

The formula θ2(p) captures the content of the configuration C3p+2 correspond-
ing to the second step of each iteration of the loop. The formula θ2(p) is the
following:

“In configuration C3p+2 the following holds:

• In membrane 1 we can find as relevant objects:

– Objects ρi,3p+1 and τi,3p+1 (for 1 ≤ i ≤ n), each of them with multiplicity
2p.

– Objects δj,3p+1 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+1.

– Objects f3p+1, yes, f
′
0, . . . , f̂

′
3p+1, . . . , f

′
3n+2m+1

– If 0 ≤ p ≤ n− 2, then it also contains objects

? αi,3p+1,k, α
′
i,3p+1,k (for 1 ≤ i ≤ n − 1 y 0 ≤ k ≤ 1), each of them with

multiplicity 2p−1 if p ≥ 1, and with multiplicity 1 if p = 0.

? β3p+1, β
′
3p+1, β

′′
3p+1, each of them with multiplicity 2p.

? γ3p+1, γ
′
3p+1, γ

′′
3p+1, γ

′′′
3p+1, each of them with multiplicity 2p.

? wp+1 and ap+1 with multiplicity 2p+1.

? s1,p+1 , . . . , sp+1,p+1, each of them with multiplicity 2p.

– If 0 ≤ p ≤ n− 3, then it also contains:
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? objects zp+1 with multiplicity 2p+1 and objects u1,p+1 , . . . , up+1,p+1,
each of them with multiplicity 2p.

– If 3p+ 1 ≥ n, then it also contains (cod(ϕ))2
n−1

e .”

• There exist 2p membranes labelled with 2, each of them containing objects
Bp+2, S,B

′
p+2, as well as objects Tp+1,p+1, Ap+2, F

′
p+1,p+1, A

′
p+2, all of them

with multiplicity 1. Also, if p ≥ 1, then each membrane labelled with 2 con-
tains 2p–tuples of objects (π1,p+1, π

′
1,p+1, . . . , πp,p+1, π

′
p,p+1), with π ∈ {T, F},

in such a way that in the different membranes, the corresponding tuples are
different with each other.

• The membrane labelled with 3 contains the objects f ′3p+1 and no.

The formula θ3(p) captures the contents of the configuration C3p+3 correspond-
ing to the third step of each loop iteration. The formula θ3(p) is the following:

“In the configuration C3p+3 the following holds:

• In the membrane 1 we can find as relevant objects:

– If 0 ≤ p ≤ n− 2, then there exist objects

? αi,3p+3,k, α
′
i,3p+3,k (for 1 ≤ i ≤ n−1 and 0 ≤ k ≤ 1), each of them with

multiplicity 2p.

? β3p+3, β
′
3p+3, β

′′
3p+3, each of them with multiplicity 2p+1.

? γ3p+3, γ
′
3p+3, γ

′′
3p+3, γ

′′′
3p+3, each of them with multiplicity 2p+1.

? ρi,3p+3 and τi,3p+3 (for 1 ≤ i ≤ n), each of them with multiplicity 2p.

? δj,3p+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+1.

? f3p+3, yes, f
′
0, . . . , f̂

′
3p+3, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

? bp+2, b
′
p+2, cp+2, c

′
p+2 , each of them with multiplicity 2p+1.

? t1,p+1, tp+1,p+1, f1,p+1, fp+1,p+1 and q1,p+2, qp+2,p+2, each of them with
multiplicity 2p.

? wp+1 and ap+1 with multiplicity 2p+1.

– If 0 ≤ p ≤ n− 3 then it also contains objects

? vp+2 with multiplicity 2p+1.

– If p = n− 1 then it also contains objects

? δj,3p+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+1.

? f3p+3, yes, f
′
0, . . . , f̂

′
3p+3, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

? Ti (for 1 ≤ i ≤ n), each of them with multiplicity 2p.
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? E1 with multiplicity 2p+1.

– If, besides, 3p+ 1 ≥ n, then it also contains (cod(ϕ))2
n−1

e .

• There exist 2p+1 membranes labelled with 2. 2p of these membranes contain
objects Ap+2 and Bp+2, as well as (p + 1)–tuples (π1,p+1, . . . , πp+1,p+1) with
π ∈ {T, F}, in such a way that πp+1,p+1 = Tp+1,p+1 and the corresponding
tuples are all different in the different membranes.

The other 2p membranes labelled with 2 contain the objects A′p+2 and B′p+2,
as well as (p+ 1)–tuples (π′1,p+1, . . . , π

′
p+1,p+1) with π ∈ {T, F}, in such a way

that π′p+1,p+1 = F ′p+1,p+1 and the corresponding tuples are all different in the
different membranes.

• The membrane labelled with 3 contains the objects f ′3p+3 and no”.

Next, we are going to prove that the formula θ(p) ≡ θ1(p)∧ θ2(p)∧ θ3(p) is an
invariant of the loop associated to the generation phase.

Theorem 2. For each p = 0, 1, . . . , n− 1, the formula θ(p) ≡ θ1(p)∧ θ2(p)∧ θ3(p)
is true

Proof. By bounded induction on p. Let us start analyzing the base case p = 0;
that is, let us show that the formula θ(0) holds. For this, we have to prove that
the formulas θ1(0), θ2(0) and θ3(0) are true.

Let us recall that the initial configuration of the system, C0 is the following:

C0(1) = {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1} ∪ {ρi,0, τi,0 | 1 ≤ i ≤ n}∪
{β0, β′0, β′′0 , γ0, γ′0, γ′′0 , γ′′′0 , c1, c′1, b1, b′1, v1, q1,1, f0, yes}∪
{δj,0 | 1 ≤ j ≤ m+ 1} ∪ {f ′p | 1 ≤ p ≤ 3n+ 2m+ 1} ∪ cod(ϕ)

C0(2) = {A1, B1}
C0(3) = {f ′0, no}

Then, the following rules are applied to the membranes as stated:

• In membrane 1 the following rules from R1 are applied:
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(αi,0,k, out;αi,1,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,0,k, out;α

′
i,1,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β0 , out;β1 B2 , in)
(β′0 , out;β

′
1 B
′
2 , in)

(β′′0 , out;β
′′
1 S , in)

(γ0 , out; γ1 T1,1 , in)
(γ′0 , out; γ

′
1 F
′
1,1 , in)

(γ′′0 , out; γ
′′
1 A2 , in)

(γ′′′0 , out; γ′′′1 A′2 , in)
(τi,0 , out; τi,1 , in) : 1 ≤ i ≤ n
(ρi,0 , out; ρi,1 , in) : 1 ≤ i ≤ n
(δj,0 , out; δj,1 , in) : 1 ≤ j ≤ m
(f0 , out; f1 , in)
(v1 , out; y

2
1 , in)

(q1,1 , out; r1,1 , in)
(xi,j , out; d

2
i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1

(xi,j , out; d
2

i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1


• In membrane 2, the following rules from R2 are applied:

(A1, out; c1 c
′
1, in)

(B1, out; b1 b
′
1, in)

}
• In membrane 3, the following rules from R3 are applied: (f ′0, out; f

′
1, in)

By applying the aforementioned rules, the configuration C1 holds the following:

• In the membrane labelled with 1 we have the objects:

– B2, S ,B
′
2, T1,1, A2, F

′
1,1, A

′
2, A1, B1, each one with multiplicity 1.

– Objects f1, yes, f
′
0, f̂
′
1, f
′
2, . . . , f

′
3n+2m+1

– Objects ρi,1 and τi,1 (for 1 ≤ i ≤ n), each one with multiplicity 1.

– Objects δj,1 (for 1 ≤ j ≤ m), each one with multiplicity 1.

– αi,1,k, α
′
i,1,k (for 1 ≤ i ≤ n− 1 y 0 ≤ k ≤ 1), each one with multiplicity 1.

– β1, β
′
1, β

′′
1 , each one with multiplicity 1.

– γ1, γ
′
1, γ

′′
1 , γ

′′′
1 , each one with multiplicity 1.

– y1 with multiplicity 21.

– r1,1 with multiplicity 1.

– For each 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m, objects d2i,j,1 such that xi,j ∈ cod(ϕ) and

objects d
2

i,j,1 such that xi,j ∈ cod(ϕ).
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• There exists 1 membrane labelled with 2 containing objects b1, b
′
1, c1, c

′
1 with

multiplicity 1.

• The membrane labelled with 3 contains the objects f ′1 and no.

Hence, the formula θ1(0) is true.

At configuration C1, the following rules are applied to the stated membranes:

• In membrane 1, the following rules from R1 are applied:

(αi,1,k, out;αi,2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,1,k, out;α

′
i,2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β1 , out;β2 , in)
(β′1 , out;β

′
2 , in)

(β′′1 , out;β
′′
2 , in)

(γ1 , out; γ2 , in)
(γ′1 , out; γ

′
2 , in)

(γ′′1 , out; γ
′′
2 , in)

(γ′′′1 , out; γ′′′2 , in)
(τi,1 , out; τi,2 , in) : 1 ≤ i ≤ n
(ρi,1 , out; ρi,2 , in) : 1 ≤ i ≤ n
(δj,1 , out; δ

2
j,2 , in) : 1 ≤ j ≤ m

(f1 , out; f2 , in)
(y1 , out; z1 w1 , in)
(r1,1 , out; s1,1 u1,1 , in)
(di,j,1 , out; d

2
i,j,2 ; in) : 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,1 , out; d
2

i,j,2 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1


• In membrane 2, the following rules from R2 are applied:

(b1, out;B2 S, in)
(b′1, out;B

′
2, in)

(c1, out;T1,1A2, in)
(c′1, out;F

′
1,1A

′
2, in)


• In membrane 3, the following rule from R3 is applied: (f ′1, out; f

′
2, in).

As a result of this, configuration C2 verifies the following:

• Membrane 1 contains the following objects:

– f1, yes, f
′
0, f̂
′
1, f
′
2, . . . , f

′
3n+2m+1, with multiplicity 1.

– ρi,1 and τi,1 (for 1 ≤ i ≤ n), each one with multiplicity 1.
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– δj,1 (for 1 ≤ j ≤ m), each one with multiplicity 1.

– If 0 ≤ n− 2, then it also contains the objects

? αi,1,k, α
′
i,1,k (for 1 ≤ i ≤ n−1 and 0 ≤ k ≤ 1), each one with multiplicity

1.

? β1, β
′
1, β

′′
1 , each one with multiplicity 1.

? γ1, γ
′
1, γ

′′
1 , γ

′′′
1 , each one with multiplicity 21.

? w1 and a1 with multiplicity 21.

– If 0 ≤ n− 3, then it also contains:

? object z1, with multiplicity 21, and objects s1,1, u1,1, each with multi-
plicity 21.

• There exists only one membrane labelled with 2 containing objects B2, S,B
′
2,

as well as objects T1,1, A2, F
′
1,1, A

′
2.

• The membrane labelled with 3 contains the objects f ′1 and no.

Hence, the formula θ2(0) is true.

At configuration C2, the following rules are applied to the stated membranes:

• In membrane 1 the following rules from R1 are applied:

(αi,2,k, out;αi,3,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,2,k, out;α

′
i,3,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β2 , out;β
2
3 , in)

(β′2 , out;β
′2
3 , in)

(β′′2 , out;β
′′2
3 , in)

(γ2 , out; γ
2
3 , in)

(γ′2 , out; γ
′2
3 , in)

(γ′′2 , out; γ
′′2
3 , in)

(γ′′′2 , out; γ′′′23 , in)
(τi,2 , out; τi,3 , in) : 1 ≤ i ≤ n
(ρi,2 , out; ρi,3 , in) : 1 ≤ i ≤ n
(δj,2 , out; δj,3 , in) : 1 ≤ j ≤ m
(f2 , out; f3 , in)
(a1 , out; b2 b

′
2 , in)

(w1 , out; c2 c
′
2 , in)

(u1,1 , out; q1,2 q2,2 , in)
(di,j,2 , out; d

2
i,j,3 ; in) : 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,2 , out; d
2

i,j,3 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1


• In membrane 2 the following separation rule from R2 is applied: [ S ]2 →

[ Γ0 ]2 [ Γ1 ]2
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• In membrane 3 the following rule from R3 is applied: (f ′2, out; f
′
3, in).

Hence, configuration C3 verifies the following:

• In membrane 1, we can find the following relevant objects (the non-relevant
objects are a1, a

′
1, b1, b

′
1, which cannot trigger any rule of the system at that

instant):

– αi,3,k, α
′
i,3,k (for 1 ≤ i ≤ n − 1 and 0 ≤ k ≤ 1), each one with multiplicity

1.

– β3, β
′
3, β

′′
3 , each one with multiplicity 21.

– γ3, γ
′
3, γ

′′
3 , γ

′′′
3 , each one with multiplicity 21.

– Objects ρi,3 and τi,3 (for 1 ≤ i ≤ n), each one with multiplicity 1.

– Objects δj,3 (for 1 ≤ j ≤ m), each one with multiplicity 21.

– Objects f3, yes, f
′
0, . . . , f̂

′
3, . . . , f

′
3n+2m+1

– If 0 ≤ n− 2, there also exist objects:

? b2, b
′
2, c2, c

′
2, v2, each one with multiplicity 21.

? t1,1, f1,1 and q1,2, q2,2, each one with multiplicity 1.

• There exist 2 membranes labelled with 2. One of them contains objects A2, B2

and T11. The other membrane contains objects A′2, B′2 and F ′11.

• The membrane labelled with 3 contains objects f ′3 and no.

Hence, the formula θ3(0) is true and, consequently, the formula θ(0) is true; that
is, the result holds for p = 0.

By induction hypothesis, let p be such that 0 ≤ p < n− 1, and let us suppose
the result holds for p; that is, the formulas θ1(p), θ2(p) and θ3(p) are true. Let us
see that the result also holds for p + 1; that is, the formulas θ1(p + 1), θ2(p + 1)
and θ3(p+ 1) are also true.

Let us notice that the configuration C3(p+1)+1 is obtained from the configuration
C3(p+1) by applying the following rules:

• In membrane 1, the following rules from R1 are applied:



Efficiency of Symport/Antiport with Membrane Separation 353

(αi,3(p+1),k, out;αi,3(p+1)+1,k∆
k
i,p+1, in) : 1 ≤ i ≤ p ∧ 0 ≤ k ≤ 1

(α′i,3(p+1),k, out;α
′
i,3(p+1)+1,k∆

′k
i,p+1, in) : 1 ≤ i ≤ p ∧ 0 ≤ k ≤ 1

(αi,3(p+1),k, out;αi,3(p+1)+1,k, in) : p+ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,3(p+1),k, out;α

′
i,3(p+1)+1,k, in) : p+ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β3(p+1) , out;β3(p+1)+1 Bp+2 , in)
(β′3(p+1) , out;β

′
3(p+1)+1 B

′
p+2 , in)

(β′′3(p+1) , out;β
′′
3(p+1)+1 S , in)

(γ3(p+1) , out; γ3(p+1)+1 T1,1 , in)
(γ′3(p+1) , out; γ

′
3(p+1)+1 F

′
1,1 , in)

(γ′′3(p+1) , out; γ
′′
3(p+1)+1 A2 , in)

(γ′′′3(p+1) , out; γ
′′′
3(p+1)+1 A

′
2 , in)

(τi,3(p+1) , out; τi,3(p+1)+1 , in) : 1 ≤ i ≤ n
(ρi,3(p+1) , out; ρi,3(p+1)+1 , in) : 1 ≤ i ≤ n
(δj,3(p+1) , out; δj,3(p+1)+1 , in) : 1 ≤ j ≤ m
(f3(p+1) , out; f3(p+1)+1 , in)
(v3(p+1)+1 , out; y

2
3(p+1)+1 , in)

(q1,1 , out; r1,1 , in) : if p = 0
(qi,j , out; r

2
i,j , in) : if p ≥ 1 ∧ 1 ≤ i ≤ j ≤ p+ 1


• In membrane 2, the following rules from R2 are applied:

(Ti,p+1, out; ti,p+1, in) : 1 ≤ i ≤ n
(T ′i,p+1, out; ti,p+1, in) : 1 ≤ i ≤ n
(Fi,p+1, out; fi,p+1, in) : 1 ≤ i ≤ n
(F ′i,p+1, out; fi,p+1, in) : 1 ≤ i ≤ n
(Ap+2, out; cp+2 c

′
p+2, in)

(A′p+2, out; cp+2 c
′
p+2, in)

(Bp+2, out; bp+2 b
′
p+2, in)

(B′p+2, out; bp+2 b
′
p+2, in)


• In membrane 3, the following rule from R3 is applied:

(f ′3(p+1), out; f
′
3(p+1)+1, in)

Hence, configuration C3(p+1)+1 verifies the following:

• In the membrane labelled with 1 we can find as relevant objects:

– ρi,3(p+1)+1 and τi,3(p+1)+1 (for 1 ≤ i ≤ n), each one with multiplicity 2p.

– δj,3(p+1)+1 (for 1 ≤ j ≤ m), each one with multiplicity 2p+1.

– f3(p+1)+1, yes, f
′
0, . . . , f̂

′
3(p+1)+1, . . . , f

′
3n+2m+1, each one with multiplicity

1.

– Ap+3 , A
′
p+3 , Bp+3 , B

′
p+3 , S, each one with multiplicity 2p+1.
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– Tp+2,p+2 , F
′
p+2,p+2, each one with multiplicity 2p+1.

– β3(p+1)+1, β
′
3(p+1)+1, β

′′
3(p+1)+1, each one with multiplicity 2p+1.

– γ3(p+1)+1, γ
′
3(p+1)+1, γ

′′
3(p+1)+1, γ

′′′
3(p+1)+1, each one with multiplicity 2p+1.

– yp+2 each one multiplicity 2p+2.

– r1,p+2, r2,p+2, . . . , rp+2,p+2, with multiplicity 2p+1.

– Ap+2, A
′
p+2, Bp+2, B

′
p+2, each one with multiplicity 2p.

– Ti,p+2, T
′
i,p+2, Fi,p+2, F

′
i,p+2, for 1 ≤ i ≤ p + 1, each one with multiplicity

2p.

– In the case 1 ≤ p ≤ n−3, it also contains objects αi,3(p+1)+1,k, α
′
i,3(p+1)+1,k

(for 1 ≤ i ≤ n− 1 and 0 ≤ k ≤ 1), each one with multiplicity 2p.

– If 3(p+ 1) + 1 ≥ n, then it also contains (cod(ϕ))2
n−1

e .

• There exist 2p+1 membranes labelled with 2, each of them containing objects
bp+2, b

′
p+2, cp+2, c

′
p+2 with multiplicity 1. Besides, each one of them contains

a (p + 1)-tuple of objects (π1,p+1, . . . πp+1,p+1) such that π ∈ {t, f} and the
tuples are all different in the different membranes.

• The membrane labelled with 3 contains the objects f ′3(p+1)+1 and no with
multiplicity 1.

Hence, the formula θ1(p+ 1) is true. To prove that the formula θ2(p+ 1) is true,
we notice that configuration C3(p+1)+2 is obtained from configuration C3(p+1)+1 by
applying the following rules to the stated membranes:

• In membrane 1, the following rules from R1 are applied:
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(αi,3(p+1)+1,k, out;αi,3(p+1)+2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,3(p+1)+1,k, out;α

′
i,3(p+1)+2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β3(p+1)+1 , out;β3(p+1)+2 , in)
(β′3(p+1)+1 , out;β

′
3(p+1)+2 , in)

(β′′3(p+1)+1 , out;β
′′
3(p+1)+2 , in)

(γ3(p+1)+1 , out; γ3(p+1)+2 , in)
(γ′3(p+1)+1 , out; γ

′
3(p+1)+2 , in)

(γ′′3(p+1)+1 , out; γ
′′
3(p+1)+2 , in)

(γ′′′3(p+1)+1 , out; γ
′′′
3(p+1)+2 , in)

(τi,3(p+1)+1 , out; τi,3(p+1)+2 , in) : 1 ≤ i ≤ n
(ρi,3(p+1)+1 , out; ρi,3(p+1)+2 , in) : 1 ≤ i ≤ n
(δj,3(p+1)+1 , out; δ

2
j,3(p+1)+2 , in) : 1 ≤ j ≤ m

(f3(p+1)+1 , out; f3(p+1)+2 , in)
(y1 , out; z1 w1 , in)
(r1,3(p+1)+1 , out; s1,3(p+1)+1 u1,3(p+1)+1 , in) : p+ 1 ≤ n− 2
(r1,3(p+1)+1 , out; s1,3(p+1)+1 in) : p+ 1 = n− 1
(di,j,3(p+1)+1 , out; d

2
i,j,3(p+1)+2 ; in) : 3(p+ 1) + 1 ≤ n− 1 ∧ 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,1 , out; d
2
i,j,2 ; in) : 3(p+ 1) + 1 ≤ n− 1 ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1

(di,j,3(p+1)+1 , out; ei,j ; in) : 3(p+ 1) + 1 = n ∧ 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,3(p+1)+1 , out; ei,j ; in) : 3(p+ 1) + 1 = n ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1

• In membrane 2, the following rules from R2 are applied:

(ti,p+1, out;Ti,p+2 T
′
i,p+2 , in)

(fi,p+1, out;Fi,p+2 F
′
i,p+2 , in)

(bp+2, out;Bp+3 S, in)
(bp+2, out;B

′
p+3, in)

(cp+2, out;Tp+2,p+2Ap+3 , in)
(c′p+2, out;F

′
p+2,p+2A

′
p+3 , in)


• In membrane 3, the following rule from R3 is applied:

(f ′3(p+1)+1, out; f
′
3(p+1)+2, in).

Hence, configuration C3(p+1)+2 verifies the following:

• In membrane 1, we can find as relevant objects:

– Objects ρi,3(p+1)+1 and τi,3(p+1)+1 (for 1 ≤ i ≤ n), each of them with
multiplicity 2p+1.

– Objects δj,3(p+1)+1 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+2.

– Objects f3(p+1)+1, yes, f
′
0, . . . , f̂

′
3(p+1)+1, . . . , f

′
3n+2m+1

– If p+ 1 ≤ n− 2 then it also contains objects

? αi,3(p+1)+1,k, α
′
i,3(p+1)+1,k (for 1 ≤ i ≤ n − 1 and 0 ≤ k ≤ 1), each of

them with multiplicity 2p.



356 L. Valencia et al.

? β3(p+1)+1, β
′
3(p+1)+1, β

′′
3(p+1)+1, each of them with multiplicity 2p+1.

? γ3(p+1)+1, γ
′
3(p+1)+1, γ

′′
3(p+1)+1, γ

′′′
3(p+1)+1, each of them with multiplic-

ity 2p.

? wp+2 and ap+2 with multiplicity 2p+1.

? s1,p+2 , . . . , sp+2,p+2, each of them with multiplicity 2p+1.

– If p+ 1 ≤ n− 3 then it also contains objects

? zp+2 with multiplicity 2p+2 and objects u1,p+2 , . . . , up+2,p+2, each with
multiplicity 2p+1.

– If, besides, 3(p+ 1) + 1 ≥ n, then it contains (cod(ϕ))2
n−1

e .

• There exist 2p+1 membranes labelled with 2 each of them containing objects
Bp+3, S,B

′
p+3, as well as the objects Tp+2,p+2, Ap+3, F

′
p+2,p+2, A

′
p+3 all of them

with multiplicity 1. Besides, each membrane labelled with 2 contains 2(p+ 1)–
tuples of objects (π1,p+2, π

′
1,p+2, . . . , πp+1,p+2, π

′
p+1,p+2) with π ∈ {T, F}, in

such a way that and the tuples are all different in the different membranes.

• The membrane labelled with 3 contains the objects f ′3(p+1)+1 and no.

Hence, the formula θ2(p+1) is true. To prove that the formula θ3(p+1) is true, we
notice that the configuration C3(p+1)+3 is obtained from the configuration C3(p+1)+2

by applying the following rules to the stated membranes:

• In membrane 1, the following rules from R1 are applied:
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(αi,3(p+1)+2,k, out;α
2
i,3(p+1)+3,k, in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(α′i,3(p+1)+2,k, out;α
′2
i,3(p+1)+3,k, in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β3(p+1)+2 , out;β
2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(β′3(p+1)+2 , out;β
′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(β′′3(p+1)+2 , out;β
′′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ3(p+1)+2 , out; γ
2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ′3(p+1)+2 , out; γ
′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ′′3(p+1)+2 , out; γ
′′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ′′′3(p+1)+2 , out; γ
′′′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(τi,3(p+1)+2 , out; τi,3(p+1)+3 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n
(ρi,3(p+1)+2 , out; ρi,3(p+1)+3 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n
(δj,3(p+1)+2 , out; δj,3(p+1)+3 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ j ≤ m
(τi,3(p+1)+2 , out;Ti , in) : p+ 1 = n− 1 ∧ 1 ≤ i ≤ n
(ρi,3(p+1)+2 , out;Fi , in) : p+ 1 = n− 1 ∧ 1 ≤ i ≤ n
(δ1,3(p+1)+2 , out;E1 , in) : p+ 1 = n− 1
(δj,3(p+1)+2 , out; δj,3(p+1)+3 , in) : p+ 1 = n− 1 ∧ 2 ≤ j ≤ m
(f3(p+1)+2 , out; f3(p+1)+3 , in)
(ap+1 , out; bp+2 b

′
p+2 , in) : p+ 1 ≤ n− 1

(wp+1 , out; cp+2 c
′
p+2 , in) : p+ 1 ≤ n− 1

(zp+1 , out; vp+2 , in) : p+ 1 ≤ n− 2
(u1,p+1 , out; q1,p+2 q2,p+2 , in) : p+ 1 ≤ n− 3
(ui,p+1 , out; qi,p+2 q2,2 , in) : p+ 1 ≤ n− 3 ∧ 1 ≤ i ≤ n− 1 ∧ 1 ≤ i ≤ p+ 1
(si,p+1 , out; t1,p+2 f1,p+2 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ p+ 1

• In membrane 2, the following separation rule from R2 is applied: [ S ]2 →
[ Γ0 ]2 [ Γ1 ]2

• In membrane 3, the following rule from R3 is applied:
(f ′3(p+1)+2, out; f

′
3(p+1)+3, in)

Hence, the configuration C3(p+1)+3 verifies the following:

• In membrane 1, we can find as relevant objects:

– If p+ 1 ≤ n− 2, then there exist objects:

? αi,3(p+1)+3,k, α
′
i,3(p+1)+3,k (for 1 ≤ i ≤ n − 1 and 0 ≤ k ≤ 1), each of

them with multiplicity 2p+1.

? β3(p+1)+3, β
′
3(p+1)+3, β

′′
3(p+1)+3, each of them with multiplicity 2p+2.

? γ3(p+1)+3, γ
′
3(p+1)+3, γ

′′
3(p+1)+3, γ

′′′
3(p+1)+3, each of them with multiplic-

ity 2p+2.

? ρi,3(p+1)+3 and τi,3(p+1)+3 (for 1 ≤ i ≤ n), each of them with multiplicity
2p+1.

? δj,3(p+1)+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+2.
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? f3(p+1)+3, yes, f
′
0, . . . , f̂

′
3(p+1)+3, . . . , f

′
3n+2m+1, each of them with mul-

tiplicity 1.

? bp+3, b
′
p+3, cp+3, c

′
p+3 , each of them with multiplicity 2p+2.

? t1,p+2, tp+2,p+2, f1,p+2, fp+2,p+2 and q1,p+3, qp+3,p+3, each of them with
multiplicity 2p+1.

? wp+2 and ap+2, with multiplicity 2p+2.

– If p+ 1 ≤ n− 3, then it also contains objects:

? vp+3, with multiplicity 2p+2.

? q1,p+3, qp+3,p+3, each of them with multiplicity 2p+1.

– If p+ 1 = n− 1, then it also contains objects:

? δj,3(p+1)+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+2.

? f3(p+1)+3, yes, f
′
0, . . . , f̂

′
3(p+1)+3, . . . , f

′
3n+2m+1, each of them with mul-

tiplicity 1.

? Ti (for 1 ≤ i ≤ n), each of them with multiplicity 2p+1.

? E1 with multiplicity 2p+2.

– If, besides, 3p+ 1 ≥ n, then it contains (cod(ϕ))2
n−1

e .

• There exist 2p+2 membranes labelled by 2. 2p+1 of them contain objects Ap+3

and Bp+3, as well as (p+ 2)–tuples (π1,p+2, . . . , πp+2,p+2) with π ∈ {T, F}, in
such a way that πp+2,p+2 = Tp+2,p+2 and all tuples are different.

The other 2p+1 membranes labelled by 2 contain the objects A′p+3 and B′p+3,
as well as (p+ 2)–tuples (π′1,p+2, . . . , π

′
p+2,p+2) with π ∈ {T, F}, in such a way

that π′p+2,p+2 = F ′p+2,p+2 and all tuples are different.

• The membrane labelled by 3 contains objects f ′3(p+1)+3 and no.

Hence, formula θ3(p+ 1) is true and, consequently, formula θ(p+ 1) is true. This
completes the proof of the theorem. �

Thus, when completing the aforementioned loop that corresponds to the gen-
eration phase, the formula θ3(n − 1) is true. Consequently, at configuration
C3(n−1)+3 = C3n, we have:

• In membrane 1, we can find as relevant objects:

– f3n, yes, f
′
0, . . . , f̂

′
3n, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

– δj,3n (for 2 ≤ j ≤ m), each of them with multiplicity 2n.
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– E1, with multiplicity 2n.

– Ti, Fi (1 ≤ i ≤ n), each of them with multiplicity 2n−1.

– (cod(ϕ))2
n−1

e .

• There exist 2n membranes labelled by 2. Half of these membranes contain
objects An+1 and Bn+1, as well as n–tuples (π1,n, . . . , πn,n) with π ∈ {T, F},
in such a way that πn,n = Tn,n and all tuples are different.

The other 2n−1 membranes labelled by 2 contain the objects A′n+1 and B′n+1,
as well as n–tuples (π′1,n, . . . , π

′
n,n) with π ∈ {T, F}, in such a way that π′n,n =

F ′n,n and all tuples are different.

• The membrane labelled by 3 contains the objects f ′3n and no.

The generation phase ends with an additional computation step that allows
going from configuration C3n to configuration C3n+1, whose content is described in
the following theorem.

Theorem 3. At configuration C3n+1 we have:

• In the membrane labelled by 1 we can find as relevant objects:

– f3n+1, yes, f
′
0, . . . , f̂

′
3n+1, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

– Ej (for 2 ≤ j ≤ m), each of them with multiplicity 2n.

– Bn+1, B
′
n+1, with multiplicity 2n−1.

– (cod(ϕ))2
n−1

e .

• There exist 2n membranes labelled by 2 each of them containing objects An+1

and E1, as well as n–tuples (π1, . . . , πn) with π ∈ {T, F}, in such a way that in
the different membranes, the corresponding tuples are different with each other.

• The membrane labelled by 3 contains the objects f ′3n+1 and no.

Proof. It is enough to take into account that configuration C3n+1 is obtained from
configuration C3n by applying the following rules to the stated membranes:

• In membrane 1, the following rules from R1 are applied:

(δj,3n , out;Ej , in) : 2 ≤ j ≤ m
(f3n , out; f3n+1 , in)

}
• In membrane 2, the following rules from R2 are applied:
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(Bn+1 , out;E1 , in)
(B′n+1 , out;E1 , in)
(Ti,n , out;Ti , in) : 1 ≤ i ≤ n
(T ′i,n , out;Ti , in) : 1 ≤ i ≤ n
(Fi,n , out;Fi , in) : 1 ≤ i ≤ n
(F ′i,n , out;Fi , in) : 1 ≤ i ≤ n


• In membrane 3, the following rule from R3 is applied: (f ′3n, out; f

′
3n+1, in).

�

Let us notice that in configuration C3n+1 each of the 2n membranes labelled by
2 codifies a truth assignment associated with the variables {x1, . . . , xn}. Thus, if
one of these membranes contains object Ti (respectively, Fi), then the membrane
codifies a truth assignment that associates the true value (resp., the false value)
to the variable xi.

Checking phase

As we explained in the computation overview, the checking phase starts at com-
putation step 3n+ 2, and consists of a loop with m iterations, taking 2 steps each.
Hence, the checking phase takes 2m steps. It is worth pointing out that at step p
of this loop, clause Cp+1 is checked.

In this phase no separation rule is applied at any computation step, so all the
following configurations have exactly 2n membranes labelled by 2.

Let us consider the formula ν1(p), for 0 ≤ p ≤ m− 2, defined as follows:

“At configuration C(3n+1)+2p+1 we have:

• In membrane labelled by 1 we can find as relevant objects:

– f(3n+1)+2p+1, yes, f
′
0, . . . , f̂

′
(3n+1)+2p+1, . . . , f

′
3n+2m+1, each of them with

multiplicity 1.

– Ej (p+ 2 ≤ j ≤ m), each of them with multiplicity 2n.

– ei,j, such that xi,j ∈ cod(ϕ) and j ≥ p+ 2, as well as objects ei,j, such that
xi,j ∈ cod(ϕ) and j ≥ p+ 2. All these objects appear with multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1 of ϕ, if and only if it contains a (single) object ei,p+1 or an
object ei,p+1, for a given i, 1 ≤ i ≤ n. Besides, in that membrane, σ keeps all
its values, T and F , except for the i-th, which has been replaced by ei,p+1 (if
the object in its place in the previous configuration was Ti) or by ei,p+1 (if the
object in its place in the previous configuration was Fi).
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• The membrane labelled by 3 contains the objects f ′(3n+1)+2p+1 and no, both with
multiplicity 1.”

Let us consider the formula ν2(p), for 0 ≤ p ≤ m− 2, defined as follows:

“At configuration C(3n+1)+2p+2 we have:

• In membrane 1, we can find as relevant objects:

– f(3n+1)+2p+2, yes, f
′
0, . . . , f̂

′
(3n+1)+2p+2, . . . , f

′
3n+2m+1, each with multiplic-

ity 1.

– Ej (p+ 3 ≤ j ≤ m), each with multiplicity 2n.

– ei,j such that xi,j ∈ cod(ϕ) and j ≥ p + 2, as well as objects ei,j such that
xi,j ∈ cod(ϕ) and j ≥ p+ 2. All these objects appear with multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1 of ϕ, if and only if it contains object Ep+2. Besides, in that
membrane, σ keeps all its values, T and F .

• Membrane 3 contains objects f ′(3n+1)+2p+2 and no, both with multiplicity 1.”

Next, we are going to prove that the formula ν(p) ≡ ν1(p)∧ν2(p) is an invariant
of the loop associated to the checking phase.

Theorem 4. For each p = 0, . . . ,m− 2, formula ν(p) ≡ ν1(p) ∧ ν2(p) holds.

Proof. By bounded induction on p. Let us start analyzing the base case p = 0;
that is, let us show that the formula ν(0) is true. For this, we have to prove that
the formulas ν1(0) and ν2(0) are true.

First of all, we notice that configuration C(3n+1)+1 is obtained from configura-
tion C(3n+1) by applying the following rules to the stated membranes:

• In membrane 1, rule (f3n+1 , out; f(3n+1)+1 , in) from R1 is applied.

• In membranes labelled by 2, the following rules from R2 can be applied:

(E1 Ti , out; ei,1 , in)
(E1 Fi , out; ei,1 , in)
(An+1 , out;E0 , in)
(A′n+1 , out;E0 , in)


A membrane labelled by 2 encodes a truth assignment σ making true clause
C1 if and only if there exists a literal li0,1 in clause C1 that is true by σ. If
li0,1 = xk, then rule (E1 Tk , out; ek,1 , in) is applied; if li0,1 = xk, then rule
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(E1 Fk , out; ek,1 , in) is applied. To sum up, either object ei,1 or object ei,1
appears in a membrane 2 if and only if the truth assignment associated to such
membrane makes true clause C1 of ϕ.

• In membrane 3, rule (f ′3n+1 , out; f
′
(3n+1)+1 , in) from R1 is applied.

Hence, configuration C(3n+1)+1 verifies the following:

• In membrane 1, we can find as relevant objects:

– f(3n+1)+1, yes, f
′
0, . . . , f̂

′
(3n+1)+1, . . . , f

′
3n+2m+1, each of them with multi-

plicity 1.

– Ej (2 ≤ j ≤ m), each of them with multiplicity 2n.

– ei,j , such that xi,j ∈ cod(ϕ) and j ≥ 1, as well as objects ei,j , such that
xi,j ∈ cod(ϕ) and j ≥ 1. All these objects appear with multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clause
C1 of ϕ if and only if it contains a (single) object ei,1 or an object ei,1, for a
given i, 1 ≤ i ≤ n. Besides, in that membrane, σ keeps all its values T and F ,
except for the i-th. There are two possible cases: (a) if the i-th object was Ti in
the previous configuration, then it has been released to the skin membrane in
this step, and replaced by ei,1; and (b) if the i-th object was Fi in the previous
configuration, then it has been released to the skin membrane in this step, and
replaced by ei,1.

• Membrane labelled by 3 contains objects f ′(3n+1)+1 and no, both with multi-
plicity 1.

Hence, formula ν1(0) holds.

Next, let us show that formula ν2(0) also holds. For this purpose, let us notice
that configuration C(3n+1)+2 is obtained from configuration C(3n+1)+1 by applying
the following rules to the stated membranes:

• In membrane 1, the rule (f(3n+1)+1 , out; f(3n+1)+2 , in) from R1 is applied.

• In membrane 2, rules from R2 of the following kind are applied:

(ei,1 , out;TiE1+1 , in)
(ei,1 , out;FiE1+1 , in)

}
Obviously, these rule will be only applied to those membranes labelled by 2
containing an object ei,1 or an object ei,1; that is, to membranes codifying a
truth assignment making the first clause true. In this case, by using the previous
rule, (a) truth assignment value associated to such membrane is restored; and
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(b) object E2 is incorporated in order for the checking process of the second
clause to start. Only membranes labelled by 2 and codifying a truth assignment
making the first clause true will carry out this checking.

• In membrane 3, rule (f ′(3n+1)+1 , out; f
′
(3n+1)+2 , in) from R1 is applied

Hence, configuration C(3n+1)+2 verifies the following:

• In membrane 1, we can find as relevant objects:

– Objects f(3n+1)+2, yes, f
′
0, . . . , f̂

′
(3n+1)+2, . . . , f

′
3n+2m+1, each of them with

multiplicity 1.

– Objects Ej (3 ≤ j ≤ m), each of them with multiplicity 2n.

– Objects ei,j , such that xi,j ∈ cod(ϕ) and j ≥ 2, as well as objects ei,j , such
that xi,j ∈ cod(ϕ) and j ≥ 2. All these objects appear with multiplicity
2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clause
C1 of ϕ, if and only if it contains an object E2. Besides, in that membrane, σ
keeps all its values, T and F .

• Membrane 3 contains the objects f ′(3n+1)+2 and no, both with multiplicity 1.

Thus, the formula ν2(0) holds and, consequently, also the formula ν(0) does;
that is, the result holds for the base case p = 1.

By induction hypothesis, let p be such that 0 ≤ p < m− 1 and let us suppose
that the result holds for p; that is, formulas ν1(p) and ν2(p) hold. Let us see that
the result also holds for p+ 1; that is, the formulas ν1(p+ 1) and ν2(p+ 1) are also
true.

In order to prove that the result holds for p+ 1,let us notice that configuration
C(3n+1)+2(p+1)+1 is obtained the configuration C(3n+1)+2(p+1) = C(3n+1)+2p+2 (let
us recall that the content of this configuration is known because we are assuming
that formula ν2(p) holds) by applying the following rules:

• In membrane 1, the following rule (f(3n+1)+2(p+1) , out; f(3n+1)+2(p+1)+1 , in)
from R1 is applied.

• In membrane 2, the following rules from R2 are applied:

(Ep+2 Ti , out; ei,p+2 , in) : 1 ≤ i ≤ n
(Ep+2 Fi , out; ei,p+2 , in) : 1 ≤ i ≤ n

}
By using these rules, if a membrane 2 codifies a truth assignment σ making
true clauses C1, . . . , Cp, Cp+1, then that membrane contains an object Ep+2 at
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configuration C(3n+1)+2(p+1). Thus, if there exists a literal li0 of clause Cp+2

that is true by the truth assignment σ, then the following holds: if li0 = xk,
then the rule (Ep+2 Tk , out; ek,p+2 , in) would be applicable, and if li0 = xk,
then the rule (Ep+2 Fk , out; ek,p+2 , in) would be applicable.

• In membrane 3, the rule (f ′(3n+1)+2(p+1) , out; f
′
(3n+1)+2(p+1)+1 , in) from R3 is

applied.

As a result of this, at configuration C(3n+1)+2(p+1)+1 we have:

• In membrane 1, we can find as relevant objects:

– Objects f(3n+1)+2(p+1)+1, yes, f
′
0, . . . , f̂

′
(3n+1)+2(p+1)+1, . . . , f

′
3n+2m+1,

each of them with multiplicity 1.

– Objects Ej (p+ 3 ≤ j ≤ m), each of them with multiplicity 2n.

– Objects ei,j , such that xi,j ∈ cod(ϕ) and j ≥ p + 3, as well as objects
ei,j , such that xi,j ∈ cod(ϕ) and j ≥ p + 3. All these objects appear with
multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1, Cp+2 of ϕ if and only if it contains a (single) object ei,p+2 or
an object ei,p+2, for a given i, 1 ≤ i ≤ n. Besides, in that membrane, σ keeps
all its values, T and F , excepting the i-th. There are two possible cases: (a) if
the i-th object was Ti in the previous configuration, then it has been released
to the skin membrane in this step, and replaced by ei,p+2; and (b) if the i-th
object was Fi in the previous configuration, then it has been released to the
skin membrane in this step, and replaced by ei,p+2.

• The membrane labelled by 3 contains objects f ′(3n+1)+2(p+1)+1 and no with
multiplicity 1.

Hence, the formula ν1(p+ 1) holds.

Next, let us show that the formula ν2(p+1) is also true. For this purpose, let us
notice that the configuration C(3n+1)+2(p+1)+2 is obtained from the configuration
C(3n+1)+2(p+1)+1 by applying the following rules to the stated membranes:

• In membrane 1 the rule (f3n+2(p+1)+1 , out; f3n+2(p+1)+2 , in) from R1 is ap-
plied.

• In membrane 2, the following rules R2 are applied:

(ei,p+2 , out;TiEp+3 , in)
(ei,p+2 , out;FiEp+3 , in)

}
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In configuration C(3n+1)+2(p+1)+1, the truth assignment σ encoded by a mem-
brane 2 makes clauses C1, . . . , Cp, Cp+1, Cp+2 true if and only if that mem-
brane contains an object ei,p+2 or an object ei,p+2. In this case, a rule of the
type (ei,p+2 , out;TiEp+3 , in) or of the type (ei,p+2 , out;FiEp+3 , in). can be
applied. Besides, if neither object ei,j nor ei,j appears in a membrane 2 of
C(3n+1)+2(p+1)+1, then that membrane will not evolve any more.

• In membrane 3, rule (f ′3n+2(p+1)+1 , out; f
′
3n+2(p+1)+2 , in) from R3 is applied.

Hence, configuration C(3n+1)+2(p+1)+2 verifies the following:

• In membrane 1, we can find as relevant objects:

– Objects f(3n+1)+2(p+1)+2, yes, f
′
0, . . . , f̂

′
(3n+1)+2(p+1)+2, . . . , f

′
3n+2m+1,

each of them with multiplicity 1.

– Objects Ej (p+ 4 ≤ j ≤ m), each of them with multiplicity 2n.

– Objects ei,j , such that xi,j ∈ cod(ϕ) and j ≥ p + 3, as well as objects
ei,j such that, xi,j ∈ cod(ϕ) and j ≥ p + 3. All these objects appear with
multiplicity 2n−1.”

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1, Cp+2 of ϕ, if and only if it contains an object Ep+3. Besides,
in that membrane, σ keeps all its values, T and F .

• Membrane 3 contains objects f ′(3n+1)+2(p+1)+2 and no with multiplicity 1.

Thus, the formula ν2(p+ 1) holds, consequently, it also formula ν(p+ 1) does;
that is, the result holds for p+ 1. This completes the proof of the theorem. �

From the Theorem 4 we deduce that the formula ν(m− 2) holds, and in par-
ticular, also formula ν2(m− 2) does. That is, at configuration C(3n+1)+2(m−2)+2 =
C(3n+1)+2(m−1) we have the following:

• In membrane, we can find as relevant objects:

– f(3n+1)+2m, yes, f
′
0, . . . , f̂

′
(3n+1)+2m, . . . , f

′
3n+2m+1, each of them with mul-

tiplicity 1.

– ei,m such that xi,m ∈ cod(ϕ) and ei,m such that xi,m ∈ cod(ϕ).

• Each of the 2n membranes labelled by 2 contains object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cm−2, Cm−1 of ϕ, if and only if it contains the object E(m−2)+2 = Em.
Besides, in that membrane σ, keeps all its values, T and F .
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• The membrane labelled by 3 contains the objects f ′(3n+1)+2m and no with
multiplicity 1.

Then, configuration C(3n+1)+2(m−1)+1 is obtained from C(3n+1)+2(m−1) by ap-
plying the following rules to the stated membranes:

• In membrane 1 rule (f(3n+1)+2(m−1) , out; f(3n+1)+2(m−1)+1 , in) from R1 is ap-
plied.

• In membranes 2, the following rules from R2 can be applied:

(Em Ti , out; ei,m , in)
(Em Fi , out; ei,m , in)

}
• In membrane 3, rule (f ′(3n+1)+2(m−1) , out; f

′
(3n+1)+2(m−1)+1 , in) from R3 is

applied.

Hence, at configuration C(3n+1)+2(m−1)+1 we have the following:

• In the membrane, 1 we can find as relevant objects:

– f(3n+1)+2(m−1)+1 = f3n+2m, yes, f
′
0, . . . , f̂

′
3n+2m, f

′
3n+2m+1, each of them

with multiplicity 1.

• Each of the 2n membranes labelled by 2 contains an object E0.
• A membrane labelled by 2 encodes a truth assignment σ making true the

clauses C1, . . . , Cm−1, Cm of ϕ if and only if it contains an object ei,m or an
object ei,m; that is, the input formula ϕ is satisfiable if and only there exists a
membrane labelled by 2 that contains an object ei,m or an object ei,m.

• The membrane labelled by 3 contains the objects f ′3n+2m, no, each of them
with multiplicity 1.

Then, configuration C(3n+1)+2(m−1)+2 is obtained from C(3n+1)+2(m−1)+1 by ap-
plying the following rules to the stated membranes:

• In a membrane 2, a rule of the type (ei,m)E0 , out) or of the type (ei,m)E0 , out)
will be applied if an only if the truth assignment σ encoded by that membrane
makes the formula ϕ true.

• In the membranes 3, rule (f ′3n+2m , out; f
′
3n+2m+1 , in) from R3 will be applied.

Consequently, at configuration C(3n+1)+2(m−1)+1 we have the following:

• Membrane 1 contains an object E0 if and only if the input formula ϕ is satis-
fiable.

• Membrane 3 contains objects f ′3n+2m+1, no, each of them with multiplicity 1.

Then, the checking phase has finished.
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Output phase

Case 1: Affirmative output.

Let us assume that input formula ϕ is satisfiable. In this case, at configuration
C3n+2m+1, the skin membrane contains some object E0 and object f3n+2m, while
membrane 3 contains objects f ′3n+2m+1 and no.

Hence, in the next computation step (leading to configuration C3n+2m+2), rule
(E0 f3n+2m yes ; out) ∈ R1 will be applied sending object yes to the environment,
and providing an affirmative answer. At the same time rule (f ′3n+2m+1 no ; out) ∈
R3 will be applied sending to the skin object no. In this case, configuration
C3n+2m+2 is halting since object f3n+2m has been sent to the environment and,
consequently rule (f3n+2m no ; out) ∈ R1 cannot be applied.

To sum up, the affirmative answer is provided in the computation step (3n +
1) + 2m+ 1 = 3n+ 2m+ 2.

Case 2: Negative output.

If the input formula ϕ is not satisfiable, then in the skin membrane of config-
uration C3n+2m+1 objects f3n+2m and yes will appear, but not the object E0. In
this case, rule (E0 f3n+2m yes ; out) ∈ R1 will not be applicable to the configu-
ration C3n+2m+1 and, consequently, the only applicable rule to this configuration
being (f ′3n+2m+1 no ; out) ∈ R3. Therefore, in the skin membrane of configuration
C3n+2m+2 objects f3n+2m, yes, f ′3n+2m+1 and no appear, but not object E0. In
this case, the rule (E0 f3n+2m yes ; out) ∈ R1 will not be applicable, being rule
(f3n+2m no ; out) ∈ R1 the only applicable to the system. Execution of this rule will
send object no to the environment, providing a negative answer at computation
step 3n+ 2m+ 3.

Hence, the output phase takes 1 step in the case of an affirmative answer, and
2 steps in the case of a negative answer.

Corollary 1. SAT ∈ PMCCSC(3).

7 P-lingua simulator as a checker of the solution

The formal verification of a solution given in the framework of a computing model
is a necessary, and usually very complex to implement, task. In order to assist
researchers in designing P system families to efficiently solve hard problems and
verifying them, simulation tools are indispensable.

The solution to SAT problem by means of a family from CSC(3) presented in
Section 4 has been extraordinarily complex. It is structured into several modules,
each of them performing a specific task. Modules have been designed and checked
separately and subsequently incorporated into the general solution. The different
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modules have been checked (in several relevant instances) with the help of the
P-Lingua simulator for the model CSC developed in [4]. Regarding the formal
verification, the simulator was used to check that the identified invariants were
corroborated in the corresponding configurations.

The P-Lingua source code that defines a cell-like P system belonging to the
family specified above and the corresponding MeCoSim custom application source
files can be found at [16].

7.1 Results of simulation

We have simulated several P systems of the defined family solving relevant in-
stances to SAT problem. Simulation results are shown in Table 1.

Table 1. Formula satisfiability and simulation time

Formula n m SAT Time (s)

(x̄1 + x̄2) · x1 · x2 2 3 F 0,233

(x̄1 + x̄2) · x2 · (x̄1 + x2) 2 3 T 0,224

(x1 + x2) · (x1 + x2 + x̄3) · x̄1 · x̄2 3 4 F 0,491

(x̄1 + x2) · x̄1 · x3 · (x̄1 + x3) 3 4 T 0,487

(x1 + x4) · (x1 + x̄4) · x3 · (x2 + x̄3 + x4) · x̄1 4 5 F 0,827

(x3+x̄4)·(x̄1+x2+x̄3+x4)·(x1+x2)·(x̄1+x2+x3+x4)·(x̄1+x3) 4 5 T 0,981

(x1 + x̄2 +x3 +x5) ·(x̄1 +x4) ·(x̄2 + x̄4) ·x4 ·x2 ·(x̄1 +x2 + x̄3 +x4) 5 6 F 2,369

(x3 + x4) · (x4 + x̄5) · (x̄1 + x2 + x̄3 + x̄4) · (x1 + x̄2 + x4)· (x1 +
x̄3 + x4) · (x3 + x5)

5 6 T 2,312

(x3 + x5 + x6) · (x3 + x̄4 + x5 + x̄6) · x̄3 · x̄6 · (x1 + x̄2 + x̄3 + x5 +
x6) · (x1 + x4 + x5) · (x̄5 + x6)

6 7 F 4,877

(x̄1 + x̄2 + x5) · (x2 + x3) · (x3 + x̄5 + x̄6) · (x̄1 + x2 + x̄3 + x4 +
x5 +x6) · (x̄2 + x̄3) · (x2 +x3 +x6) · (x1 + x̄2 +x3 +x4 +x5 +x6)

6 7 T 4,195

(x̄5 + x̄6 + x̄7) · (x3 + x̄4 +x7) · (x̄1 +x3 +x5 +x6 + x̄7) · (x1 +x3 +
x̄5 + x6 + x7) · (x2 + x6) · (x2 + x̄6) · x̄2 · (x2 + x3 + x4 + x̄5 + x7)

7 8 F 10,320

(x̄2 + x5 + x6 + x7) · (x2 + x̄4 + x̄5 + x̄7) · (x1 + x2 + x̄3 + x̄6 +
x7) · (x1 + x2 + x3 + x̄5 + x6 + x̄7) · (x̄3 + x̄5 + x6 + x̄7) · (x1 +
x2 + x̄3 + x̄7) · (x̄1 + x2 + x̄4 + x̄6) · (x3 + x5 + x6 + x̄7)

7 8 T 8,862

(x3+x4+x̄6+x̄8)·(x6+x̄7)·(x̄2+x3+x̄4+x5+x8)·x7·(x1+x̄2+x5+
x̄7+x̄8)·(x2+x7+x8)·(x̄6+x̄7)·(x1+x5+x̄8)·(x1+x̄4+x5+x̄6+x7)

8 9 F 16,364

(x1+x̄5+x̄6+x̄7+x̄8)·(x2+x3+x4+x̄6+x̄7+x8)·(x3+x4+x̄5+
x̄6+x̄7+x̄8)·(x̄1+x̄3+x̄4+x̄5+x6+x̄7+x8)·(x̄3+x̄7)·(x4+x5+x̄7)·
(x1+x3+x̄4)·(x1+x̄2+x̄3+x̄4+x̄5+x̄6+x̄7)·(x4+x̄5+x̄6+x7+x̄8)

8 9 T 18,856
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(x̄2 + x̄3 + x5 + x7) · (x2 + x5 + x6 + x7 + x9) · (x̄3 + x5 + x7 +
x8) · (x1 + x̄4 + x̄5 + x6 + x8) · (x̄2 + x3 + x5 + x7 + x8 + x̄9) ·
(x̄2 + x̄4 + x7 + x9) · (x̄2 + x4 + x6 + x9) · x1 · x5 · (x̄1 + x̄5)

9 10 F 34,669

(x3 +x8) · (x1 + x̄2 +x5 + x̄6 +x9) · (x3 +x6 +x9) · (x3 +x5 + x̄6 +
x̄8) · (x1 +x2 + x̄5 +x7 + x̄8 + x̄9) · (x̄1 +x2 + x̄4 +x5 + x̄6 + x̄7 +
x9) · (x1 +x2 +x4 + x̄6 +x8 + x̄9) · (x̄1 +x2 + x̄3 + x̄4 +x7 + x̄8) ·
(x̄1 +x2 +x3 +x5 + x̄6 +x8 + x̄9) · (x2 + x̄3 +x4 + x̄6 + x̄7 + x̄9)

9 10 T 36,450

Let us recall that in P systems of CSC(3), there is no replication of objects, but
a distribution of them. Consequently, in order to generate an exponential amount
of some objects, it is necessary to use the skin membrane, interacting with the
environment by using antiport rules with length 3 (in a computation step, an
object is released into the environment and, simultaneously, two objects enter the
system).

8 Conclusions

In this paper we have studied the computational efficiency of cell-like P systems
with symport/antiport rules and membrane separation. A uniform polynomial time
solution to SAT problem by a family of such P systems which uses communication
rules involving at most three objects is given, and the formal verification is shown.

Bearing in mind that PMCCSC(2) = P(that is, only tractable problems are
efficiently solved by families of P systems with symport/antiport rules and mem-
brane separation which uses communication rules with length at most two) an
optimal frontier of the efficiency has been obtained with respect to the length of
such rules. Specifically, we have shown that, in the framework of P systems with
symport/antiport rules and membrane separation, passing from 2 to 3 amounts to
passing from non–efficiency to efficiency, assuming that P 6= NP.

Acknowledgements

The work of L. Valencia-Cabrera, L.F. Maćıas-Ramos, A. Riscos-Núñez and M.J.
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