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Summary. Membrane systems with symport/antiport rules compute by just moving
objects among membranes, and not by changing the objects themselves. In these systems
the environment plays an active role because, not only it receives objects from the system,
but it also sends objects into the system. Actually, in this framework it is commonly
assumed that an arbitrarily large number of copies of some objects are initially available
in the environment. This special feature has been widely exploited for the design of
efficient solutions to computationally hard problems in the framework of tissue like P
systems able to create an exponential workspace in polynomial time (e.g. via cell division
or cell separation rules).

This paper deals with cell-like P systems which use symport/antiport rules as commu-
nication rules, and the role played by the minimal cooperation is studied from a computa-
tional complexity point of view. Specifically, the limitations on the efficiency of P systems
with membrane separation whose symport/antiport rules involve at most two objects are
established. In addition, a polynomial time solution to HAM-CYCLE problem, a well known
NP-complete problem, by using a family of such kind of P systems with membrane
division, is provided. Therefore, in the framework of cell-like P systems with minimal
cooperation in communication rules, passing from membrane separation to membrane
division amounts to passing from tractability to NP–hardness.

1 Introduction

The P versus NP problem is one of the most important open problems in theo-
retical computer science. Broadly speaking, we can say that this problem analyzes
whether or not finding solutions is harder than checking the correctness of possible
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solutions. It is widely believed that it is harder to solve a problem than to check
that a solution is valid/good; that is, it is widely believed that P 6= NP. The clas-
sical approach to solve this problem consists on considering a single NP–complete
problem and trying to prove whether that problem belongs to the class P or not.
In the first case, the answer of the conjecture is negative. If the NP–complete
problem considered does not belong to P, then the answer of the conjecture is
positive.

In this paper we follow the lines of previous works [3, 4, 5, 6, 8, 10, 13, 14], and
new tools to tackle the P versus NP problem are given in the framework of Mem-
brane Computing paradigm. Specifically, we deal with cell-like P systems whose
communication is implemented by means of symport/antiport rules abstracting
trans-membrane transport of couples of chemical substances, in the same or in
opposite directions. Besides, in order to achieve the efficiency of these models,
membrane division rules abstracting cell division process and membrane separa-
tion rules inspired by membrane fission process, are also included. It is worth
pointing out some relevant differences of cell-like approach with respect to tissue-
like approach. First, communication rules are not given in a single set within the
description of the model, but are organized into subsets, each one of them asso-
ciated with a membrane label. Second, the structure of the system is a rooted
tree given in an explicit way, instead of a directed graph given by means of the
set of rules of the system. Third, communication is only produced between inner
compartments if they have a parent-child relationship, and the communication
with the environment is restricted to the skin membrane. Finally, only elementary
membranes can be divided.

In the framework of cell-like P systems which use symport/antiport rules work-
ing with minimal cooperation (at most two objects are involved in these rules), we
analyze the role played by membrane division and membrane separation as a tool
to create an exponential workspace in linear time. On the one hand, we study the
limitations on the efficiency of this kind of P systems with membrane separation;
that is, we prove that the corresponding polynomial complexity class, denoted by
PMCCSC(2), is equal to class P. On the other hand, we analyze the efficiency
of the systems that use membrane division instead of membrane separation, by
giving a polynomial time solution to HAM-CYCLE problem (that is, showing that
HAM-CYCLE ∈ PMCCDC(2)). Therefore, in the framework of cell-like P systems
with minimal cooperation in communication rules, passing from membrane sepa-
ration to membrane division amounts to passing from tractability to NP–hardness.

The paper is structured as follows. We first recall some preliminaries concerning
definitions, concepts and results needed in order to make the paper self-contained.
The specific models of cell-like P systems with symport/antiport rules that we use
in this work and the corresponding complexity classes are introduced in Section 3.1.
Next section is devoted to analyze the limitations about the computational effi-
ciency of P systems with minimal cooperation which use membrane separation
rules. Section 5 presents a polynomial time solution of HAM-CYCLE problem by
means of a family of P systems with membrane division using symport/antiport
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rules with length at most 2. Conclusions and some open problems are formulated
at the last section.

2 Preliminaries

2.1 Languages and Multisets

An alphabet Γ is a non-empty set and their elements are called symbols. A string
u over Γ is a mapping from a natural number n ∈ IN onto Γ . Number n is called
length of the string u and it is denoted by |u|. The empty string (with length 0) is
denoted by λ. A language over Γ is a set of strings over Γ .

A multiset over an alphabet Γ is an ordered pair (Γ, f), where f is a mapping
from Γ onto the set of natural numbers IN. For each x ∈ Γ we say that f(x) is the
multiplicity of x in that multiset. The support of a multiset m = (Γ, f) is defined
as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite set.
The size of a finite multiset m, denoted by |m|, is the sum of the multiplicities of
each element of Γ (obviously that sum is a natural number). We denote by ∅ the
empty multiset. Let us note that a set is a particular case of a multiset where each
symbol of the support has multiplicity 1.

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ . Then, the union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for
each x ∈ Γ . We say that m1 is contained in m2, and we denote it by m1 ⊆ m2, if
f1(x) ≤ f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted by
m1 \m2, is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and
g(x) = 0 otherwise.

2.2 Graphs and Hamiltonian cycles

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the
tree) is distinguished from the others. In a rooted tree, the concepts of ascendants
and descendants are defined in a usual way. Given a node x (different from the
root), if the last edge on the (unique) path from the root of the tree to the node
x is {x, y} (in this case, x 6= y), then y is the parent of node x and x is a child
of node y. The root is the only node in the tree with no parent. A node with no
children is called a leaf (see [1] for details).

Let G = (V,E) be a directed graph, where V = {1, . . . , n} and the set of
arcs is E = {(u1, v1), . . . , (um, vm)} ⊂ V × V . We say that a finite sequence
γ = (uα1 , uα2 , . . . , uαr , uαr+1) of nodes of G is a simple path of G of length r ≥ 1
if the following holds:

• ∀i (1 ≤ i ≤ r → (uαi , uαi+1) ∈ E).
• |{uα1

, uα2
, . . . , uαr

}| = r.
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If uαr+1
/∈ {uα1

, uα2
, . . . , uαr

}, then we say that γ is a simple path of length r from
uα1

to uαr+1
. If uαr+1

= uα1
and r ≥ 2, then we say that γ is a simple cycle of

length r.
A Hamiltonian path of G from a ∈ V to b ∈ V (a 6= b) is a simple path

γ = (uα1
, uα2

, . . . , uαr
, uαr+1

) from a to b such that a = uα1
, b = uαr+1

, and
V = {uα1

, uα2
, . . . , uαr

, uαr+1
}. A Hamiltonian cycle of G is a simple cycle γ =

(uα1
, uα2

, . . . , uαr
, uαr+1

) of G such that V = {uα1
, uα2

, . . . , uαr
}.

If γ = (uα1 , uα2 , . . . , uαr , uαr+1) is a simple path of G then we also denote it
by the set {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαr , uαr+1)r}. That is, (uαk

, uαk+1
)k can

be interpreted as the k-th arc of the path γ, for each k (1 ≤ k ≤ r).
Let G = (V,E) be a directed graph with V = {1, . . . , n}. Throughout this

paper, AG = {(i, j)k | i, j, k ∈ {1, . . . , n}∧(i, j) ∈ E}, A′G = {(i, j)′k | (i, j)k ∈ AG}
and A′′G = {(i, j)′′k | (i, j)k ∈ AG}.

Proposition 2.1 Let G = (V,E) be a directed graph such that V = {1, . . . , n}. If
B ⊆ AG then the following assertions are equivalent:

1. B is a Hamiltonian cycle.
2. |B| = n and the following holds: for each i, i′, j, j′, k, k′ ∈ {1, . . . , n},

(a) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → k 6= k′]
(b) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → i 6= i′]
(c) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → j 6= j′]
(d) [(i, j)k ∈ B ∧ (i′, j′)k+1 ∈ B → j = i′]

Proof: Let B = {(uα1
, uα2

)1, (uα2
, uα3

)2 . . . , (uαm
, uαr+1

)n} be a Hamiltonian cy-
cle of G. Then, |B| = n and conditions (a), (b), (c) and (d) from (2) hold.

Let B ⊆ AG such that |B| = n and conditions (a), (b), (c) and (d) from (2)
hold. Then, from (a) the set B must to be of the form

B = {(uα1
, vα1

)1, (uα2
, vα2

)2 . . . , (uαn
, vαn

)n}

where:

• From (d) we deduce that ∀s (1 ≤ s ≤ n− 1→ vαs
= uαs+1

).
• From (b) we have V = {uα1

, uα2
, . . . , uαn

}.

Finally, on the one hand we have vαn
∈ {uα1

, uα2
. . . , uαn

}. On the other hand,
by condition (c) we deduce that vαn

/∈ {vα1
, . . . , vαn−1

} = {uα2
, . . . , uαn

}. Thus,
vαn

= uα1
.

�
Remark 1: Let B ⊆ AG be a Hamiltonian cycle of G. For each i, i′, j, j′, k, k′ ∈
{1, . . . , n} the following holds:

1. If (i, j)k ∈ B and j 6= j′ then (i, j′)k′ /∈ B.
2. If (i, j)k ∈ B and i 6= i′ then (i′, j)k′ /∈ B.
3. If (i, j)k ∈ B and (i, j) 6= (i′, j′) then (i′, j′)k /∈ B.
4. If (i, j)k ∈ B and (i′, j′)k+1 ∈ B then j = i′.
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Remark 2: Let us notice that if (uα1
, uα2

, . . . , uαn
, uα1

) is a Hamiltonian cycle of
G of length n, then we can describe it by the following subset of AG:

B1 = {(uα1
, uα2

)1, (uα2
, uα3

)2, . . . , (uαn
, uα1

)n}

But (uα2
, uα3

, . . . , uαm
, uα1

, uα2
) also represents the same Hamiltonian cycle. It

can be described as follows: B2 = {(uα2
, uα3

)1, (uα3
, uα4

)2, . . . , (uα1
, uα2

)n}. Thus,
given a Hamiltonian cycle γ of G, there are exactly n different subsets of AG
codifying that cycle.
Remark 3: Let us suppose that the total number of Hamiltonian cycles of G is q.
Then, the number of different subsets B of AG verifying conditions (a), (b), (c),
and (d) from Proposition 2.1 is exactly n · q.

2.3 Encoding ordered pairs of natural numbers

The pair function 〈n,m〉 = ((n + m)(n + m + 1)/2) + n is a polynomial–time
computable function from IN× IN onto IN which is also a primitive recursive and
bijective function.

3 P systems with symport/antiport rules

In this section we introduce a kind of cell-like P systems that use communication
rules capturing the biological phenomenon of trans-membrane transport of several
chemical substances. Specifically, two processes have been considered. The first
one allows a multiset of chemical substances to pass through a membrane in the
same direction. In the second one, two multisets of chemical substances, located
in different biological membranes, only pass with the help of each other (yielding
an exchange of objects between both membranes).

Next, we introduce an abstraction of these operations in the framework of P
systems with symport/antiport rules following [9]. In these models, the membranes
are not polarized.

Definition 1. A P system with symport/antiport rules (SA P system, for short) of
degree q ≥ 1 is a tuple Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout), where:

1. Γ is a finite alphabet;
2. E ( Γ ;
3. Σ is an (input) alphabet strictly contained in Γ such that E ⊆ Γ \Σ;
4. µ is a rooted tree whose nodes are injectively labelled by 1, . . . , q (the root of

the tree is labelled by 1);
5.M1, . . . ,Mq are finite multisets over Γ \Σ;
6. Ri, 1 ≤ i ≤ q, are finite sets of communication rules over Γ of the form:

(a) Symport rules: (u, out) or (u, in), where u is a finite multiset over Γ such
that |u| > 0;
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(b) Antiport rules: (u, out; v, in), where u, v are finite multisets over Γ such
that |u| > 0 and |v| > 0;

7. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A SA P system of degree q Π = (Γ, E , µ,M1, . . . ,Mq,R1, . . . ,Rq, iout) can be
viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a hierarchical
structure µ (given by a rooted tree whose root is called the skin membrane), such
that: (a)M1, . . . ,Mq represent the finite multisets of objects initially placed into
the q membranes of the system; (b) E is the set of objects initially located in the
environment of the system (labelled by 0), all of them available in an arbitrary
number of copies; (c) R1, . . . ,Rq are finite sets of communication rules over Γ (Ri
is associated with the membrane i of µ); and (d) iout represents a distinguished
region which will encode the output of the system. We use the term region i (0 ≤
i ≤ q) to refer to membrane i in the case 1 ≤ i ≤ q and to refer to the environment
in the case i = 0. The length of rule (u, out) or (u, in) (resp. (u, out; v, in)) is
defined as |u| (resp. |u|+ |v|).

For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we denote
by p(i) the parent of membrane i in the rooted tree µ. We define p(1) = 0, that
is, by convention the “parent” of the skin membrane is the environment.

An instantaneous description or a configuration at an instant t of a SA P system
is described by the membrane structure at instant t, all multisets of objects over
Γ associated with all the membranes present in the system, and the multiset of
objects over Γ \E associated with the environment at that moment. Recall that we
assume that there are infinitely many copies of objects from E in the environment,
and hence it does not make sense to keep record of their multiplicity along the
computation. The initial configuration of the system is (µ,M1, . . . ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant t if
membrane i is in Ct and multiset u is contained in that membrane. When applying
a rule (u, out) ∈ Ri, the objects specified by u are sent out of membrane i into the
region immediately outside (the parent p(i) of i), which can be the environment
in the case of the skin membrane. A symport rule (u, in) ∈ Ri is applicable to a
configuration Ct at an instant t if membrane i is in Ct and multiset u is contained
in the parent of i. When applying a rule (u, in) ∈ Ri, the multiset of objects
u is taken from the parent membrane of i and enters into the region defined by
membrane i.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at an
instant t if membrane i is in Ct and multiset u is contained in that membrane, and
multiset v is contained in the parent of i. When applying a rule (u, out; v, in) ∈ Ri,
the objects specified by u are sent out of membrane i into the parent of i and, at
the same time, the objects specified by v are brought into membrane i.

With respect to the semantics of SA P systems, the rules of such P systems
are applied in a non-deterministic maximally parallel manner.

Let Π be a P system with symport/antiport rules. We say that configuration
Ct yields configuration Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1, if
we can pass from Ct to Ct+1 by applying the rules from the system following the



Minimal Cooperation in P Systems with Symport/Antiport 307

semantics described above. A computation of Π is a (finite or infinite) sequence of
configurations such that: (a) the first term is the initial configuration of the system;
(b) for each n ≥ 2, the n-th configuration of the sequence is obtained from the
previous configuration in one transition step; and (c) if the sequence is finite (called
halting computation) then the last term is a halting configuration (a configuration
where no rule of the system is applicable to it). All the computations start from
an initial configuration and proceed as stated above; only a halting computation
gives a result, which is encoded by the objects present in the output region iout
associated with the halting configuration. If C = {Ct}t<r+1 of Π is a halting
computation, then the length of C, denoted by |C|, is r. For each i (1 ≤ i ≤ q), we
denote by Ct(i) the finite multiset of objects over Γ contained in all membranes
labelled by i (by applying division rules different membranes with the same label
can be created) at configuration Ct.

Definition 2. A P system with symport/antiport rules and membrane division
(SAD P system, for short) of degree q ≥ 1 is a tuple

Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout),

where:

1. Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) is a P system with sym-
port/antiport rules of degree q;

2. Ri, 1 ≤ i ≤ q, are finite sets of rules over Γ of the following types:
(a) Symport/antiport rules.
(b) Division rules: [ a ]i → [ b ]i [ c ]i, where a, b, c ∈ Γ , i ∈ {2, . . . , q}, i 6= iout,

and i is the label of a leaf of the tree µ;
3. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A SAD P system of degree q is a P system with symport/antiport rules of degree
q where membrane division rules (for only elementary membranes) are allowed.

A division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration Ct at an
instant t if the following holds: (a) membrane i is in Ct; (b) object a is contained
in that membrane; and (c) membrane i is elementary, and it is neither the skin
membrane nor the output membrane (if iout ∈ {1, . . . , q}). When applying a divi-
sion rule [a]i → [b]i[c]i, under the influence of object a, the membrane with label
i is divided into two membranes with the same label; in the first copy, object a is
replaced by object b, and in the second one, object a is replaced by object c; all
the other objects residing in the membrane are replicated, and a copy of each one
of them is placed in each of the two new membranes.

With respect to the semantics of SAD P systems, the rules of such P systems
are applied in a non-deterministic maximally parallel manner with the following
important remark: when a membrane i is divided by a division rule at a compu-
tation step, this is the only one from Ri which can be applied to that membrane
at that step. The new membranes resulting from division could participate in the
interaction with other membranes or the environment by means of communication
rules at the next step – providing that they are not divided once again.
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Definition 3. A P system with symport/antiport rules and membrane separation
(SAS P system, for short) of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout),

where

1. Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) is a P system with sym-
port/antiport rules of degree q;

2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;
3. Ri, 1 ≤ i ≤ q, are finite sets of rules over Γ of the following types:

(a) Symport/antiport rules.
(b) Separation rules: [ a ]i → [Γ0 ]i [Γ1 ]i, where a ∈ Γ , i ∈ {2, . . . , q}, i 6= iout,

and i is the label of a leaf of the tree;
4. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A SAS P system of degree q is a P system with symport/antiport rules of degree
q where membrane separation rules (for only elementary membranes) are allowed.

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct at
an instant t, if there exists an elementary membrane labelled by i in Ct, different
from the skin membrane and from the output membrane, such that it contains an
object a. When applying a separation rule [a]i → [Γ0]i [Γ1]i ∈ Ri to a membrane
labelled by i in a configuration Ct, that membrane is separated into two membranes
with the same label; at the same time, object a is consumed, and the rest of the
contents of the membrane are distributed as follows: the objects from Γ0 are placed
in the first membrane, while those from Γ1 are placed in the second membrane.
In this way, several membranes with the same label i 6= 1 can be present in the
new membrane structure µ′ of the system: a new node i and a new arc (p(i), i) are
added to µ′ each time a membrane separation rule [a]i → [Γ0]i[Γ1]i is applied.

With respect to the semantics of these variants, the rules of such P systems
are applied in a non-deterministic maximally parallel manner with the following
important remark: when a membrane i is separated, the membrane separation
rule is the only one from Ri which is applied for that membrane at that step.
The new membranes resulting from separation could participate in the interaction
with other membranes or the environment by means of communication rules at
the next step – providing that they are not separated once again.

3.1 Recognizer P systems with symport/antiport rules

Recognizer P systems were introduced in [12], and they provide a natural frame-
work to solve decision problems by means of computational devices in membrane
computing (i.e., P systems).

Definition 4. A recognizer P system with symport/antiport rules (and membrane
division or membrane separation) of degree q ≥ 1 is a P system with sym-
port/antiport rules (and membrane division or membrane separation) such that:
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1. Alphabet Γ has two distinguished symbols yes and no;
2. initial multisets are finite multisets over Γ \ Σ such that at least one copy of

yes or no is present in some of them;
3. the output region is the environment (iout = 0);
4. all computations halt;
5. if C is a computation of the system, then either symbol yes or symbol no (but

not both) must have been released to the environment, and only at the last step
of the computation.

Let us notice that, if a recognizer P system has a symport rule of the type (u, in) ∈
R1, then the multiset u must contain some object from Γ \E ; otherwise there might
exist non-halting computations of Π.

We say that a computation C of a recognizer P system is an accepting compu-
tation (respectively, rejecting computation) if object yes (respectively, object no)
appears in the environment associated with the corresponding halting configura-
tion of C, and neither object yes nor no appears in the environment associated
with any non–halting configuration of C.

We denote by CDC(k) (respectively, CSC(k)) the class of all recognizer P sys-
tems with symport/antiport rules and membrane division (respectively, membrane
separation) for elementary membranes such that the length of the communication
rules of the system is at most k.

3.2 Polynomial complexity classes of recognizer P systems with
symport/antiport rules

Next, according to [11], we define what solving a decision problem by a family
of recognizer P systems with symport/antiport rules and membrane division or
membrane separation means.

Definition 5. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ IN} of recognizer P systems with symport/antiport rules
and membrane division or membrane separation, if the following holds:

• the family Π is polynomially uniform by Turing machines; that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN;

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ IN, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s); that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) + cod(u), then θX(u) = 1;
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– the family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

According to Definition 5, we say that the family Π provides a uniform solution
to the decision problem X. We also say that ordered pair (cod, s) is a polynomial
encoding from X in Π and s is the size mapping associated with that solution. It is
worth pointing out that, for each instance u ∈ IX , the P system Π(s(u)) + cod(u)
is confluent, in the sense that all possible computations of the system must give
the same answer.

If R is a class of recognizer P systems, then we denote by PMCR the set of
all decision problems which can be solved in polynomial time (and in a uniform
way) by means of recognizer P systems from R. The class PMCR is closed under
complement and polynomial–time reductions (see [11] for details). Besides, we have
P ⊆ PMCR. Indeed, if X ∈ P, then we consider the family Π = {Π(n) | n ∈ IN}
where Π(n) = Π(0), for each n ∈ IN, and Π(0) is a P system from R of degree 1
containing only two rules (yes, out) and (no, out). Let us consider the polynomial
encoding from X in Π defined as follows: (a) s(u) = 0, for each u ∈ IX ; and (b)
cod(u) = yes if θX(u) = 1 and cod(u) = no if θX(u) = 0. Then, the family Π
solves X according to Definition 5.

4 Computational efficiency of systems in CSC(2)

In this section, we study the limitations on the computational efficiency (ability
to solve hard problems in polynomial time) of systems from CSC(2). Specifically,
we show that only problems in class P can be efficiently solved in polynomial
time by means of families of recognizer P systems with membrane separation
that use symport/antiport rules involving at most two objects (i.e., with minimal
cooperation). Hence, we prove that P = PMCCSC(2).

Let us first introduce a new representation for the membrane struc-
ture of recognizer P systems with membrane separation. Let Π =
(Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a recognizer P system of
degree q ≥ 1 from CSC(2). In order to identify the membranes created by the
application of a separation rule, we modify the labels of the new membranes in
the following recursive manner:

• The label of a membrane will be a pair (i, σ), where 1 ≤ i ≤ q and σ is a
string over {0, 1}. At the initial configuration, the labels of the membranes are
(1, λ), . . . , (q, λ).

• If a separation rule from Ri is applied to a membrane labelled by (i, σ), then
the new created membranes will be labelled by (i, σ0) and (i, σ1), respectively.
Membrane (i, σ0) will only contain the objects of membrane (i, σ) which belong
to Γ0, and membrane (i, σ1) will only contain the objects of membrane (i, σ)
which belong to Γ1. The skin membrane cannot be separated, so the label of
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the skin membrane, (1, λ), is not changed along any computation. Note that
we can consider a lexicographical order over the set of labels of cells in the
system along any computation.

If a membrane labelled by (i, σ) is engaged by a communication rule, then, after
the application of the rule, the membrane keeps its label.

A configuration at an instant t of a P system from CSC(2) is described by
the current membrane structure, the multisets of objects over Γ contained in each
membrane, and the multiset of objects over Γ \ E currently in the environment.
Hence, a configuration of Π can be described by a multiset of labelled objects

{(a, i, σ) | a ∈ Γ ∪ {λ}, 1 ≤ i ≤ q, σ ∈ {0, 1}∗} ∪ {(a, 0) | a ∈ Γ \ E}.

Let us notice that the number of labels we need to identify all membranes appear-
ing along any computation of a P system from CSC(2) is quadratic in the size of
the initial configuration of the system and the length of the computation.

Let r = (ab, out) ∈ Ri, 2 ≤ i ≤ q, be a symport rule of Π and n ∈ IN.
We denote by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, i, σ)n(b, i, σ)n,
and we denote by n · RHS(r, (i, σ), (p(i), τ)) the multiset (a, p(i), τ)n(b, p(i), τ)n.
In a similar way, n · LHS(r, (i, σ), (p(i), τ)) and n · RHS(r, (i, σ), (p(i), τ)) are
defined when r is of the form (a, out) ∈ Ri. Note that, at a given instant of the
computation, for each membrane (i, σ) there is a unique parent membrane (p(i), τ),
according to the current membrane structure.

Let r = (ab, out) ∈ R1 be a symport rule of Π and n ∈ IN. We denote by
n · LHS(r, (1, λ), 0) the multiset of objects (a, 1, λ)n(b, 1, λ)n. We denote by n ·
RHS(r, (1, λ), 0) the following multiset of objects:

(a, 0)n(b, 0)n , if a, b ∈ Γ \ E ;
(a, 0)n , if a ∈ Γ \ E and b ∈ E ;
(b, 0)n , if b ∈ Γ \ E and a ∈ E ;

∅ , if a, b ∈ E .

In a similar way, n · LHS(r, (1, λ), 0) and n · RHS(r, (1, λ), 0) are defined when r
is of the form (a, out) ∈ R1.

Let r = (ab, in) ∈ Ri, 2 ≤ i ≤ q, be a symport rule of Π and n ∈ IN. We denote
by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, p(i), τ)n(b, p(i), τ)n. We
denote by n ·RHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, i, σ)n(b, i, σ)n. In a
similar way, n · LHS(r, (i, σ), (p(i), τ)) and n ·RHS(r, (i, σ), (p(i), τ)) are defined
when r is of the form (a, in) ∈ Ri.

Let r = (ab, in) ∈ R1 be a symport rule of Π and n ∈ IN. We denote by
n · LHS(r, (1, λ), 0) the following multiset of objects:

(a, 0)n(b, 0)n , if a, b ∈ Γ \ E ;
(a, 0)n , if a ∈ Γ \ E and b ∈ E ;
(b, 0)n , if b ∈ Γ \ E and a ∈ E ;

∅ , if a, b ∈ E .
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We denote by n · RHS(r, (1, λ), 0) the multiset of objects (a, 1, λ)n(b, 1, λ)n. In a
similar way, n · LHS(r, (1, λ), 0) and n ·RHS(r, (1, λ), 0) are defined when r is of
the form (a, in) ∈ R1.

Let r = (a, out; b, in) ∈ Ri, 2 ≤ i ≤ q, be an antiport rule of Π
and n ∈ IN. We denote by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects
(a, i, σ)n(b, p(i), τ)n. Similarly, we denote by n·RHS(r, (i, σ), (p(i), τ)) the multiset
of objects (a, p(i), τ)n(b, i, σ)n.

Let r = (a, out; b, in) ∈ R1 be an antiport rule of Π. We denote by
n · LHS(r, (1, λ), 0) the following multiset of objects:{

(a, 1, λ)n(b, 0)n , if b ∈ Γ \ E ;
(a, 1, λ)n , if b ∈ E .

Similarly, we denote by n ·RHS(r, (1, λ), 0) the following multiset of objects:{
(a, 0)n(b, 1, λ)n , if a ∈ Γ \ E ;

(b, 1, λ)n , if a ∈ E .

If Ct is a configuration of Π, then we denote by Ct + {(x, i, σ)/σ′} the multiset
obtained by replacing in Ct every occurrence of (x, i, σ) by (x, i, σ′). Besides, Ct+m
(resp., Ct\m) is used to denote that a multiset m of labelled objects is added (resp.,
removed) to the configuration.

4.1 Characterizing class P by means of systems from CSC(2)

In order to show that only tractable problems can be solved efficiently by using
families of P systems from CSC(2), we first state a technical result concerning
recognizer P systems from CSC(2) (see [7] for more details).

Lemma 4.1 Let Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a
recognizer P system of degree q ≥ 1 from CSC(2). Let M = |M1 + . . .+Mq| and
let C = {C0, . . . , Cr} be a computation of Π. Then, we have

(1) |C∗0 | = M , and for each t, 0 ≤ t < r, C∗t+1 ∩ (Γ \ E) ⊆ C∗t ∩ (Γ \ E);
(2) for each t, 0 ≤ t ≤ r, C∗t ∩(Γ \E) ⊆ (M1+. . .+Mq)∩(Γ \E), and |C∗t ∩(Γ \E)| ≤

M ;
(3) for each t, 0 ≤ t < r, |C∗t+1| ≤ |C∗t |+M ;
(4) for each t, 0 ≤ t ≤ r, |C∗t | ≤M · (1 + t);
(5) the number of membranes created along computation C by the application of

separation rules is bounded by 2M · (1 + r).

Next, we present a deterministic algorithm A working in polynomial time that
receives as an input a P system Π from CSC(2) and an input multiset m of Π,
in such manner that algorithm A reproduces the behaviour of a computation of
Π + m. In particular, if Π is confluent, then algorithm A will provide the same
answer of the system Π.
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The pseudocode of the algorithm A is described as follows:

Input: A P system Π from CSC(2) and an input multiset m
Initialization phase: C0 is the initial configuration of Π +m
t← 0
while Ct is a non halting configuration do

Selection phase: Input Ct, Output (C′t, A)
Execution phase: Input (C′t, A), Output Ct+1

t← t+ 1
end while

Output: Yes if object yes appears in the environment associated

with the halting configuration Ct, No otherwise

The algorithm A receives a recognizer P system

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

from CSC(2) and an input multiset m. Let M = |M1 + . . . +Mq|, p ∈ IN be
a natural number such that any computation of Π + m performs, at most, p
transition steps. Hence, from Lemma 4.1, we know that the number of membranes
in the system along any computation is bounded by 2M(1 + p) + q.

A transition step of a recognizer P system Π+m is performed by the selection
and the execution phases. Specifically, the selection phase receives as an input
a configuration Ct of Π + m at an instant t. The output of this phase is a pair
(C′t, A), where A encodes a multiset of rules selected to be applied to Ct, and C′t
is the configuration obtained from Ct once the labelled objects corresponding to
the left-hand side of the rules from A have been consumed. The execution phase
receives as an input the pair (C′t, A), and the output of this phase is the next
configuration Ct+1 of Ct. More precisely, configuration Ct+1 is obtained from C′t by
adding the labelled objects produced by the application of rules from A; that is,
the labelled objects corresponding to the right-hand side of the rules from A.
Selection phase.
Input: A configuration Ct of Π +m at instant t
C′t ← Ct; A← ∅; B ← ∅
for r = (u, out; v, in) ∈ Ri, 2 ≤ i ≤ q according to the order

chosen do
for each membrane (i, σ) of C′t according to the lexicographical

order do
nr ← maximum number of times that r is applicable to (i, σ)
if nr > 0 then
C′t ← C′t \ nr · LHS(r, (i, σ), (p(i), τ))
A← A ∪ {(r, nr, (i, σ), (p(i), τ))}
B ← B ∪ {(i, σ), (p(i), τ)}

end if
end for

end for
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for r = (u, out; v, in) ∈ R1 according to the order chosen do
nr ← maximum number of times that r is applicable to (1, λ)
if nr > 0 then
C′t ← C′t \ nr · LHS(r, (1, λ), 0)
A← A ∪ {(r, nr, (1, λ), 0)}

end if
end for
for r = [ a ]i → [Γ0 ]i[Γ1 ]i ∈ Ri (i 6= 1) according to the

order chosen do
for each (a, i, σ) ∈ C′t according to the lexicographical

order, and such that (i, σ) 6∈ B do
C′t ← C′t \ {(a, i, σ)}
A← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end for
end for

This algorithm is deterministic and works in polynomial time. Indeed, the
running time of the previous algorithm is polynomial in the size of Π because: the
number of cycles of the first main loop for is of order O(|R| ·M ·p · q); the number
of cycles of the second main loop for is of order O(|R|); and the number of cycles
of the third main loop for is of order O(|R| ·M · p · q · |Γ |).
Execution phase.
Input: The output (C′t, A) of the selection phase

for each (r, nr, (i, σ), (p(i), τ)) ∈ A do
C′t ← C′t + nr ·RHS(r, (i, σ), (p(i), τ))

end for
for each (r, nr, (1, λ), 0) ∈ A do
C′t ← C′t + nr ·RHS(r, (1, λ), 0)

end for
for each (r, 1, (i, σ)) ∈ A do
C′t ← C′t + {(λ, i, σ)/σ0}
C′t ← C′t + {(λ, i, σ1)}
for each (x, i, σ) ∈ C ′t according to the lexicographical

order do
if x ∈ Γ0 then
C′t ← C′t + {(x, i, σ)/σ0}

else
C′t ← C′t + {(x, i, σ)/σ1}

end if
end for
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end for
Ct+1 ← C′t

This algorithm is deterministic and works in polynomial time. Indeed, the
running time of the previous algorithm is polynomial in the size of Π because: the
number of cycles of the first main loop for is of order O(|R| ·M ·p · q); the number
of cycles of the second main loop for is of order O(|R|); and the number of cycles
of the third main loop for is of order O(|R| ·M · p · q · |Γ |).

Theorem 4.2 P = PMCCSC(2).

Proof. It suffices to show that PMCCSC(2) ⊆ P. Let X ∈ PMCCSC(2) and let
Π = {Π(n) | n ∈ IN} be a family of recognizer P systems from CSC(2) solving X,
according to Definition 5. Let (cod, s) be a polynomial encoding associated with
that solution. If u ∈ IX is an instance of the problem X, then u will be processed
by the system Π(s(u)) + cod(u).
Let us consider the following deterministic algorithm A′:

Input: an instance u of the problem X
Construct the system Π(s(u)) + cod(u).
Run algorithm A with input Π(s(u)) + cod(u).

Output: Yes if algorithm A returns Yes,
No otherwise.

The algorithm A′ receives as an input an instance u of the decision problem
X = (IX , θX) and works in polynomial time with respect to the size of the input.
The following assertions are equivalent:

• θX(u) = 1; that is, the answer of problem X to instance u is affirmative.
• Every computation of Π(s(u)) + cod(u) is an accepting computation.
• The output of algorithm A′ with input u is Yes.

Hence, X ∈ P.
�

5 Computational efficiency of systems in CDC(2)

In this section we study the ability to solve NP–complete problems of families of
recognizer P systems with membrane division whose communication rules (of type
symport/antiport) use a minimal cooperation (i.e., communication rules involving
at most two objects). Specifically, we give a polynomial time solution to HAM-CYCLE

problem, a well known NP-complete problem [2], by means of a family of such
kind of recognizer P systems, according to Definition 5 (see [15] for more details).

Let us recall that HAM-CYCLE problem is the following: Given a directed graph,
determine whether or not there exists a Hamiltonian cycle in the graph.
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5.1 A polynomial time solution of HAM-CYCLE problem in CDC(2)

For each n,m ∈ IN, we consider the recognizer P system with symport/antiport
rules and membrane division of degree 11 + 2n+ n3

Π(〈n,m〉) = (Γ, E , Σ, µ,Mr (1 ≤ r ≤ 11) ,Ma1,j (1 ≤ j ≤ n), Ma2,j (1 ≤ j ≤ n) ,
Mei,j,k(1 ≤ i, j, k ≤ n) , Rr (1 ≤ r ≤ 11) , Ra1,j (1 ≤ j ≤ n) ,
Ra2,j (1 ≤ j ≤ n) Rei,j,k(1 ≤ i, j, k ≤ n))

defined as follows:

(1) Working alphabet:
Γ = Σ ∪ E ∪ {βr | 0 ≤ r ≤ n3 + 7} ∪ {b′r, b′′r , b′′′r , c′r, c′′r , c′′′r , c′′′′r | 1 ≤ r ≤ n3}∪

{(i, j)′k , (i, j)′′k | 1 ≤ i, j, k ≤ n} ∪ {(i, j)′′k,r | 1 ≤ i, j, k ≤ n ∧ 1 ≤ r ≤ n3}∪
{α0, a, a

′, a′′, b, b′, b′′, b′′′, c, c′, c′′, c′′′, c′′′′, yes, no},
where the input alphabet is Σ = {(i, j)k | 1 ≤ i, j, k ≤ n}, and the alphabet of
the environment is E = {αr | 1 ≤ r ≤ n3 + 6}

(2) Membrane structure µ: the root is labelled by 1, and the remaining nodes are
children of the root, being labelled by

2, 3, . . . , 11, a1,j (1 ≤ j ≤ n), a2,j (1 ≤ j ≤ n), ei,j,k (1 ≤ i, j, k ≤ n),

respectively.
(3) Initial multisets:
M1 = {α0} ∪ {βr | 1 ≤ r ≤ n3 + 7} ∪ {b′r, b′′r , b′′′r , c′r, c′′r , c′′′r , c′′′′r | 1 ≤ r ≤ n3 − 1};
M2 = {an, b, c};
M3 = {b′n3} ; M4 = {b′′n3} ; M5 = {b′′′n3};
M6 = {c′n3} ; M7 = {c′′n3} ; M8 = {c′′′n3} ; M9 = {c′′′′n3};
M10 = {yes} ; M11 = {no, β0};
Ma1,j = {a′n3} ,Ma2,j = {a′′n3}, 1 ≤ j ≤ n;
Mei,j,k = {(i, j)′′k,n3}, 1 ≤ i, j, k ≤ n.

(4) Rules of the system:
• Rules in R1:

1.1 Rules to control the output of the computations by counters of type αr.

(αr , out ; αr+1 , in) , 0 ≤ r ≤ n3 + 5.

Rules 1.2 and 1.3 produce the output of the computations:
1.2 (yes , out)
1.3 (noαn3+6 , out)

• Rules in R2:

2.1 Rules to produce all possible subsets of A′G in membranes labelled by 2 at
configuration Cn3+1:

[ (i, j)k ]2 → [ (i, j)′k ]2 [ # ]2, 1 ≤ i, j, k ≤ n.

Rules 2.2, 2.3, 2.4 and 2.5 allow to introduce objects a′, a′′, b′, b′′, c′′′, c′,
c′′, c′′′ and c′′′′ in membranes labelled by 2 at configurations Cn3+2, Cn3+3,
Cn3+4 and Cn3+5, respectively:
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2.2 (a , out ; a′ , in); (a′ , out ; a′′ , in);
2.3 (b , out ; b′ , in); (b′ , out ; b′′ , in); (b′′ , out ; b′′′ , in);
2.4 (c , out ; c′ , in); (c′ , out ; c′′ , in); (c′′ , out ; c′′′ , in) ; (c′′′ , out ; c′′′′ , in);
2.5 (a′′ b′′′ , out); (b′′′ c′′′′ , out).
2.6 Rules to produce in each membrane labelled by 2 at configuration Cn3+2 a

subset of A′′G from a subset of A′G at configuration Cn3+1:

((i, j)′k , out ; (i, j)′′k , in) , 1 ≤ i, j, k ≤ n.

2.7 Rules to generate in each membrane labelled by 2 at configura-
tion Cn3+1 a subset of A′′G encoding a possible Hamiltonian cycle.
((i, j)′′k (i, j′)′′k′ , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n;
((i, j)′′k (i′, j)′′k′ , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n;
((i, j)′′k (i′, j′)′′k+1 , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n, j 6= i′;
((i, j)′′k (i′, j′)′′k , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n.

2.8 Rules to check if the subset represented by each membrane with label 2 at
configuration Cn3+3 encodes a Hamiltonian cycle of the input graph:

(a′′ (i, j)′′k , out), 1 ≤ i, j, k ≤ n.

• Rules in R3:
Rules to produce 2n·p copies of objects b′ in the skin membrane of configuration
Cn3+1:

3.1 (b′r , out ; b′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
3.2 [ b′r ]3 → [ b′r−1 ]3 [ b′r−1 ]3, 2 ≤ r ≤ n ·m;
3.3 [ b′1 ]3 → [ b′ ]3 [ b′ ]3;
3.4 (b′ , out).

• Rules in R4:
Rules to produce 2n·p copies of objects b′′ in the skin membrane at configuration
Cn3+1:

4.1 (b′′r , out ; b′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
4.2 [ b′′r ]4 → [ b′′r−1 ]4 b′′r−1 ]4, 2 ≤ r ≤ n ·m;
4.3 [ b′′1 ]4 → [ b′′ ]4 [ b′′ ]4;
4.4 (b′′ , out).

• Rules in R5:
Rules to produce 2n·p copies of objects b′′′ in the skin membrane at configura-
tion Cn3+1:

5.1 (b′′′r , out ; b′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
5.2 [ b′′′r ]5 → [ b′′′r−1 ]5 [ b′′′r−1 ]5, 2 ≤ r ≤ n ·m;
5.3 [ b′′′1 ]5 → [ b′′′ ]5 [ b′′′ ]5;
5.4 (b′′′ , out).

• Rules in R6:
Rules to produce 2n·p copies of objects c′ in the skin membrane at configuration
Cn3+1:
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6.1 (c′r , out ; c′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
6.2 [ c′r ]6 → [ c′r−1 ]6 [ c′r−1 ]6, 2 ≤ r ≤ n ·m;
6.3 [ c′1 ]6 → [ c′ ]6 [ c′ ]6;
6.4 (c′ , out).

• Rules in R7:
Rules to produce 2n·p copies of objects c′′ in the skin membrane at configuration
Cn3+1:

7.1 (c′′r , out ; c′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
7.2 [ c′′r ]7 → [ c′′r−1 ]7 [ c′′r−1 ]7, 2 ≤ r ≤ n ·m;
7.3 [ c′′1 ]7 → [ c′′ ]7 [ c′′ ]7;
7.4 (c′′ , out).

• Rules in R8:
Rules to produce 2n·p copies of objects c′′′ in the skin membrane at configura-
tion Cn3+1:

8.1 (c′′′r , out ; c′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
8.2 [ c′′′r ]8 → [ c′′′r−1 ]8 [ c′′′r−1 ]8, 2 ≤ r ≤ n ·m;
8.3 [ c′′′1 ]8 → [ c′′′ ]8 [ c′′′ ]8;
8.4 (c′′′ , out).

• Rules in R9:
Rules to produce 2n·p copies of objects c′′′′ in the skin membrane at configu-
ration Cn3+1:

9.1 (c′′′′r , out ; c′′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
9.2 [ c′′′′r ]9 → [ c′′′′r−1 ]9 [ c′′′′r−1 ]9, 2 ≤ r ≤ n ·m;
9.3 [ c′′′′1 ]9 → [ c′′′′ ]9 [ c′′′′ ]9;
9.4 (c′′′′ , out).

• Rules in R10:
Rules to produce an affirmative answer:

10.1 (αn3+6 c
′′′′ , in) ; (c′′′′ yes , out)

• Rules in R11:
Rules to control the negative answer of the computations by counters βr:

11.1 (βr out ; βr+1 , in), 0 ≤ r ≤ n3 + 6;
11.2 (βn3+7 no , out).

• Rules in Ra1,j , 1 ≤ j ≤ n:

Rules to produce 2n
3

copies of objects a′ in the skin membrane at configuration
Cn3+1:

a1,j.1 [ a′r ]a1,j → [ a′r−1 ]a1,j [ a′r−1 ]a1,j , 2 ≤ r ≤ n3;
a1,j.2 [ a′1 ]a1,j → [ a′ ]a1,j [ a′ ]a1,j ;
a1,j.3 (a′ , out).

• Rules in Ra2,j , 1 ≤ j ≤ n:

Rules to produce 2n
3

copies of objects a′′ in the skin membrane at configuration
Cn3+1:

a2,j.1 [ a′′r ]a2,j → [ a′′r−1 ]a2,j [ a′′r−1 ]a2,j , 2 ≤ r ≤ n3;
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a2,j.2 [ a′′1 ]a2,j → [ a′′ ]a2,j [ a′′ ]a2,j ;
a2,j.3 (a′′ , out).

• Rules in Rei,j,k , 1 ≤ i, j, k ≤ n:

Rules to produce 2n
3

copies of objects (i, j)′′k in the skin membrane at config-
uration Cn3+1:

ei,j,k.1 [ (i, j)′′k,r ]ei,j,k → [ (i, j)′′k,r−1 ]ei,j,k [ (i, j)′′k,r−1 ]ei,j,k , 2 ≤ r ≤ n3;
ei,j,k.2 [ (i, j)′′k,1 ]ei,j,k → [ (i, j)′′k ]ei,j,k [ (i, j)′′k ]ei,j,k ;
ei,j,k.3 ((i, j)′′k , out).

(5) The input membrane is the membrane labelled by 2 and the output region is
the environment of the system (labelled by 0).

5.2 An overview of the computations

Now we briefly show how each system Π(〈n,m〉) works in order to process any
directed graph with n nodes and m arcs.

We consider the ensuing polynomial encoding (cod, s) from HAM-CYCLE in Π:
for each instance G = (V,E) of HAM-CYCLE problem, with V = {1, . . . , n} and
E = {(i1, j1), . . . , (im, jm)}, we define s(G) = 〈n,m〉 and cod(G) = {(i, j)k |
(i, j) ∈ E, 1 ≤ k ≤ n}. The expression (i, j)k in cod(G) can be interpreted as
follows: arc (i, j) is “placed” in “position k” in a potential path. According to this
polynomial encoding, graph G will be processed by system Π(s(G)) with input
multiset cod(G). In what follows, we informally describe how system Π(s(G)) +
cod(G) works. The solution is structured in the following stages:

• Generation Stage: All possible combinations of arcs from the input graph, in-
cluding a code of their position in potential paths, are generated by using cell
division in an adequate way.

• Checking Stage: It is checked whether or not the different combinations of arcs
generated in the previous stage encode Hamiltonian cycles of the input graph.

• Output Stage: The system sends the right answer to the environment according
to the results obtained in the previous stage.

Generation stage

At this stage, the system generates all the possible subsets of arcs of the graph (in
fact, subsets of A′G) which contain their potential positions in a path according
to the notations introduced in Subsection 2.2. In this way, by applying rules of
type 2.1 at configuration C2n·m , there will be 2n·m membranes labelled by 2 such
that each of them encodes a different combination of arcs from the input graph.
Simultaneously, by applying rules of types 1, 2 and 3 from R3, R4, R5, R6, R7,
R8 and R9, 2n·m copies of objects b′, b′′, b′′′, c′, c′′, c′′′ and c′′′′ are produced in
membranes labelled by 3, 4, 5, 6, 7, 8, 9, respectively, and 2n

3

copies of objects a′, a′′

and (i, j)′′k are produced in membranes labelled by a1,j , a2,j , and ei,j,k, respectively.
The generation stage takes n3 steps.
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Checking stage

At this stage, the system checks whether or not there exists a membrane labelled
by 2 at configuration Cn3+5 containing a subset of A′′G that encodes a Hamiltonian
cycle of G. This is done in 4 steps.

At step n3 +1, the contents of membranes labelled by 3, 4, 5, 6, 7, 8, 9, a1,j (1 ≤
j ≤ n), a2,j (1 ≤ j ≤ n) and ei,j,k (1 ≤ i, j, k ≤ n) are sent to the skin membrane
by applying rules 3.4, 4.4, 5.4, 6.4, 7.4, 8.4, 9.4, a1,j .2, a2,j .2, ei,j,k.3. From this
moment on, none of these membranes will participate in the evolution of the
configurations.

At step n3 + 2, objects a, b, c in membrane labelled by 2 at configuration Cn3+1

are replaced by objects a′, b′, c′ from the skin membrane by applying rules 2.2,
2.3, and 2.4. Simultaneously, by applying rules 2.6, each subset of A′G contained
in a membrane labelled by 2 at configuration Cn3+1 produces the “corresponding”
subset of A′′G. Besides, Cn3+2(10) = {yes} and Cn3+2(11) = {βn3+2 , no}.

At step n3 + 3, by applying rules 2.3 and 2.4, objects a′, b′, c′ in membranes
labelled by 2 at configuration Cn3+2 are replaced by objects a′′, b′′, c′′ from the skin
membrane. Simultaneously, by applying rules of type 2.7, each subset contained
in a membrane labelled by 2 at configuration Cn3+2 is transformed into a subset
encoding each possible path in the input graph. This way, according to Proposition
2.1, we have that the input graph (with n nodes and m arcs) has a Hamiltonian
cycle if and only if at configuration Cn3+3 there exists some membrane labelled by
2 at configuration Cn3+3 such that the subset of A′′G contained in it has size equal
to n. Besides, Cn3+3(10) = {yes} and Cn3+3(11) = {βn3+3 , no}.

At step n3 + 4, by applying rules 2.3 and 2.4, objects b′′, c′′ in membranes
labelled by 2 are substituted by objects b′′′, c′′′ from the skin membrane. Simul-
taneously, by applying rules 2.8, each object contained in the subset associated
with each membrane labelled by 2 at configuration Cn3+3 is sent to the skin mem-
brane cooperating with an object a′′. Therefore, the number of copies of object a′′

appearing in a membrane labelled by 2 at configuration Cn3+4 is equal to n − γ,
where γ is the size of the path in the input graph encoded by that membrane.
Then, the input graph (with n nodes and m arcs) has a Hamiltonian cycle if and
only if there exists a membrane labelled by 2 at configuration Cn3+4 such that it
does not contain any object a′′.

At step n3 + 5, by applying rules of type 2.5, objects a′′ and b′′′ in membrane
labelled by 2 at configuration Cn3+5 are sent to the skin membrane. Simultaneously,
rule (c′′′ , out ; c′′′′ , in) produces an object c′′′′ in each membrane labelled by 2
at configuration Cn3+5.

Output stage

Finally, the output stage takes 4 steps. Only membranes labelled by 2 at configu-
ration Cn3+5 containing some object b′′′ (i.e., membrane encoding a Hamiltonian
cycle) can evolve, and only rule (c′′′ , out ; c′′′′ , in) ∈ R2 is applicable to that
membrane. In this case, an object c′′′′ will appear in each membrane labelled by 2
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at that configuration. Besides, if a membrane with label 2 at the mentioned config-
uration does not encode a Hamiltonian cycle of the input graph, then it contains
objects b′′, so rule (a′′ b′′′ , out) ∈ R2 will be applied. That is, the input graph has
a Hamiltonian cycle if and only if some object c′′′′ appears in the skin membrane
at configuration Cn3+6. Besides, Cn3+6(10) = {yes} and Cn3+6(11) = {βn3+6 , no}.

If the input graph has a Hamiltonian cycle, then only rules (αn3+6 c
′′′′ , in) ∈

R10 and (βn3+6 , out ; βn3+7 , in) ∈ R11 are applicable to configuration Cn3+6.
Otherwise, only rule (βn3+6 out ; βn3+7 , in) is applicable to that configuration.
Therefore, the answer of the problem is affirmative if and only if Cn3+7(10) =
{αn3+6 c

′′′′ , yes}. Besides, in any case, Cn3+7(11) = {βn3+7 , no}. Then, if there
exists a Hamiltonian path, then rules (c′′′′ yes , out) ∈ R10 and (βn3+7 no , out) ∈
R11 are applicable to configuration Cn3+7. Otherwise, only rule (βn3+7 no , out) ∈
R11 is applicable to that configuration. Hence, the answer of the problem is af-
firmative if and only if the skin membrane at configuration Cn3+8 contains object
yes (together with objects c′′′′, βn3+7, no), but no object αn3+6. Otherwise, the
skin membrane at configuration Cn3+8 contains objects βn3+7, no, αn3+6, but no
object yes.

At the last step, in cases when an affirmative answer results, rule (yes , out)
is applied to configuration Cn3+8, producing an object yes in the environment,
and the computation halts. Otherwise, rule (noαn3+6 , out) is applied to that
configuration, thus producing a negative answer.

5.3 Main result

Theorem 5.1 HAM-CYCLE ∈ PMCCDC(2).

Proof. The family of P systems with symport/antiport rules and membrane divi-
sion constructed in Section 3.2 verifies the following:

(a) Every system of the family Π is a recognizer P system with membrane division
and symport/antiport rules of length at most 2.

(b) The family Π is polynomially uniform by Turing machines because, for each
n,m ∈ IN, the rules of Π(〈n,m〉) of the family are recursively defined from
n,m ∈ IN, and the amount of resources needed to build an element of the
family is of a polynomial order in n, as shown below:
• Size of the alphabet: n6 + 12n3 + 29 ∈ Θ(n6);
• Initial number of membranes: n3 + 2n+ 11 ∈ Θ(n3);
• Initial number of objects: 9n3 + 3n+ 13 ∈ Θ(n3);
• Number of rules: n6 + 4n5 + n4 + 13n3 + 2n+ 30 ∈ Θ(n6);
• Maximal length of a rule: 2 ∈ Θ(1).

(c) The pair (cod, s) of polynomial–time computable functions defined in Subsec-
tion 5.2 is a polynomial encoding from HAM− CYCLE to Π.

(d) The family Π is polynomially bounded, sound and complete with regard to
(HAM-CYCLE, cod, s) (see Subsection 5.2).
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Therefore, according to Definition 5, the family Π from CDC(2) solves HAM-CYCLE
problem in polynomial time with respect to the number of nodes.

�

Corollary 5.2 NP ∪ co-NP ⊆ PMCCDC(2).

Proof. It suffices to notice that HAM-CYCLE problem is an NP-complete problem,
HAM-CYCLE∈ PMCCDC(2), and the complexity class PMCCDC(2) is closed under
polynomial-time reduction and under complement.

�

6 Conclusions and open problems

The ability of cell-like P systems with symport/antiport rules involving at most
two objects to efficiently solve computationally hard problems, has been stud-
ied. Specifically, if further membrane separation rules are allowed (while keeping
the minimal cooperation restriction), then only problems in P can be solved in
polynomial time. Nevertheless, if membrane division rules are allowed (instead of
membrane separation rules), then NP–complete problems can be solved in polyno-
mial time. In summary, we have two important results concerning the polynomial
complexity classes associated with these kind of systems: (a) P = PMCCSC(2);
and (b) NP ∪ co-NP ⊆ PMCCDC(2).

Therefore, assuming that P is different from NP, a new frontier of the efficiency
has been obtained in Membrane Computing in terms of the kind of rules (sepa-
ration versus division) able to produce an exponential workspace in linear time.
That is, passing from allowing membrane separation rules to allowing membrane
division rules in the framework of P systems with symport/antiport rules which
use minimal cooperation, amounts to passing from non–efficiency to efficiency.
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Jiménez. The Role of Cooperation in the Efficiency of Bioinspired Computing De-
vices, submitted 2015.




