
How to Go Beyond Turing with P Automata:
Time Travels, Regular Observer ω-Languages,
and Partial Adult Halting

Rudolf Freund1, Sergiu Ivanov2, and Ludwig Staiger3

1 Technische Universität Wien, Austria
Email: rudi@emcc.at

2 Université Paris Est, France
Email: sergiu.ivanov@u-pec.fr

3 Martin-Luther-Universität Halle-Wittenberg, Germany
Email: staiger@informatik.uni-halle.de

Summary. In this paper we investigate several variants of P automata having infinite
runs on finite inputs. By imposing specific conditions on the infinite evolution of the
systems, it is easy to find ways for going beyond Turing if we are watching the behavior
of the systems on infinite runs. As specific variants we introduce a new halting variant for
P automata which we call partial adult halting with the meaning that a specific predefined
part of the P automaton does not change any more from some moment on during the
infinite run. In a more general way, we can assign ω-languages as observer languages
to the infinite runs of a P automaton. Specific variants of regular ω-languages then, for
example, characterize the red-green P automata.

1 Introduction

Various possibilities how one can “go beyond Turing” are discussed in [11], for
example, the definitions and results for red-green Turing machines can be found
there. In [2] the notion of red-green automata for register machines with input
strings given on an input tape (often also called counter automata) was introduced
and the concept of red-green P automata for several specific models of membrane
systems was explained. Via red-green counter automata, the results for acceptance
and recognizability of finite strings by red-green Turing machines were carried over
to red-green P automata. The basic idea of red-green automata is to distinguish
between two different sets of states (red and green states) and to consider infinite
runs of the automaton on finite input objects (strings, multisets); allowed to change
between red and green states more than once, red-green automata can recognize
more than the recursively enumerable sets (of strings, multisets), i.e., in that way
we can “go beyond Turing”. In the area of P systems, first attempts to do that can

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51395934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

144 R. Freund, S. Ivanov, L. Staiger

be found in [4] and [18]. Computations with infinite words by P automata were
investigated in [9].

In this paper, we also consider infinite runs of P automata, but in a more
general way take into account the existence/non-existence of a recursive feature of
the current sequence of configurations. In that way, we obtain infinite sequences
over {0, 1} which we call “observer languages” where 1 indicates that the specific
feature is fulfilled by the current configuration and 0 indicates that this specific
feature is not fulfilled. The recognizing runs of red-green automata then correspond
with ω-regular languages over {0, 1} of a specific form ending with 1ω as observer
languages. A very special observer language is {0, 1}∗ {1}ω which corresponds with
a very special acceptance condition for P automata which we call “partial adult
halting”. This special acceptance variant for P automata with infinite runs on
finite multisets is motivated by an observation we make for the evolution of time
lines described by P systems – at some moment, a specific part of the evolving
time lines, for example, the part describing time 0, shall not change any more.

2 Definitions

We assume the reader to be familiar with the underlying notions and concepts
from formal language theory, e.g., see [17], as well as from the area of P systems,
e.g., see [13, 14, 15]; we also refer the reader to [25] for actual news.

2.1 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N. Given
an alphabet V , a finite non-empty set of abstract symbols, the free monoid gener-
ated by V under the operation of concatenation is denoted by V ∗. The elements of
V ∗ are called strings, the empty string is denoted by λ, and V ∗ \{λ} is denoted by
V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occurrences of a
symbol ai in a string x is denoted by |x|ai , while the length of a string x is denoted
by |x| =

∑
ai∈V |x|ai . A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}

is a mapping f : V → N and can be represented by
〈
a
f(a1)
1 , . . . , a

f(an)
n

〉
or by

any string x for which (|x|a1
, . . . , |x|an

) = (f(a1), . . . , f(an)). The families of reg-
ular and recursively enumerable string languages are denoted by REG and RE,
respectively.

2.2 Register Machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

How to Go Beyond Turing with P Automata 145

• l1 : (ADD (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register r is zero then jump to instruction l3; otherwise, the
value of register r is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents (i.e., by the
number stored in the register) of each register and by the current label, which
indicates the next instruction to be executed. Computations start by executing
the instruction l0 of P , and terminate with reaching the HALT-instruction lh.

In order to deal with strings, this basic model of register machines can be
extended by instructions for reading from an input tape and writing to an output
tape containing strings over an input alphabet Tin and an output alphabet Tout,
respectively:

• l1 : (read (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tin.
Reads the symbol a from the input tape and jumps to instruction l2.

• l1 : (write (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tout.
Writes the symbol a on the output tape and jumps to instruction l2.

Such a register machine working on strings often is also called a counter au-
tomaton, and we write M = (m,B, l0, lh, P, Tin, Tout). If no output is written, we
omit Tout.

As is well known (e.g., see [12]), for any recursively enumerable set of natural
numbers there exists a register machine with (at most) three registers accepting
the numbers in this set. Counter automata, i.e., register machines with an input
tape, with two registers can simulate the computations of Turing machines and
thus characterize RE. All these results are obtained with deterministic register
machines, where the ADD-instructions are of the form l1 : (ADD (r) , l2), with
l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ j ≤ m.

2.3 The Arithmetical Hierarchy

The Arithmetical Hierarchy (e.g., see [3]) is usually developed with the universal
(∀) and existential (∃) quantifiers restricted to the integers. Levels in the Arith-
metical Hierarchy are labeled as Σn if they can be defined by expressions beginning
with a sequence of n alternating quantifiers starting with ∃; levels are labeled as
Πn if they can be defined by such expressions of n alternating quantifiers that
start with ∀. Σ0 and Π0 are defined as having no quantifiers and are equivalent.
Σ1 and Π1 only have the single quantifier ∃ and ∀, respectively. We only need to
consider alternating pairs of the quantifiers ∀ and ∃ because two quantifiers of the
same type occurring together are equivalent to a single quantifier.

146 R. Freund, S. Ivanov, L. Staiger

3 Time Travel P Systems

In the most general case, we can think of P systems as devices manipulating mul-
tisets in a hierarchical membrane structure. The membranes can have labels and
polarizations both eventually changing with the application of rules. Membranes
may be divided, generated or deleted. Together with the division or the generation
of a new membrane the whole contents of another membrane may be copied. For
a general framework of P systems we refer to [7].

Usually, configurations in P systems (and other systems like Turing machines)
evolve step by step through time, see Figure 1.

0 1 2 30 1 2 3

Time configurations

Time axis

Fig. 1. Standard time line evolution.

Without time travel option, we need only consider the evolution of the system
on one time axis from time n to time n+ 1. The situation becomes more difficult
if we follow the idea of parallel worlds (time axes), which means that we have
another time dimension, described by the vertical evolution in Figure 2, i.e., the
time configurations at time n may be altered depending on future evolutions.

−1 0 1 2

⇓

−1 0 1 2

⇓

Time configurations

Time axis

Evolution
of time axes

Fig. 2. Time lines evolution.

How to Go Beyond Turing with P Automata 147

an Y es
-1

an−1 Y es
-1

· · ·

a Y es
-1

⇓

⇓

⇓

Y es
0

⇓

Fig. 3. Sending back an answer from time n to time 0.

For example, we can consider membrane systems with polarizations assigned
to the membranes. The usual polarization of the whole time configuration in the
normal case is +1, indicating that the evolution of the membrane(s) goes from time
configuration n to time configuration n+ 1. Now assume we allow polarization −1
indicating that the corresponding membrane evolves from time configuration n to
time configuration n − 1. Having kept trace of the number of computation steps,
e.g., by the multiplicity of a specific object a, we are able to send back information
– like the answer yes to a question we have posed at time 0 which then is sent back
to time configuration 0, i.e., to the time we have posed the question. In that way,
on a specific time line we can have answers to questions in zero time, see Figure 3.

During its travel through the time back, the time capsule with polarization −1
can be assumed not to be affected by the other membranes in the intermediate
time configurations. Obviously, this restriction can be alleviated for even more
complex systems.

Putting a new skin membrane around all the current time configurations of one
time axis, we again obtain a conventional evolution model, yet now with a vertical
time evolution as depicted in Figure 4. The only assumption we have to do for
making this variant possible is that at the beginning only a finite number of time
configurations exists (in fact, we usually will start with the time configuration at
time 0).

3.1 Partial Adult Halting

Going back to the time travel model of Figure 2 the question that arises is what
kind of results we may obtain and how. For example, given a specific input in time
configuration 0, we may request that from some moment on this time configuration
becomes stable, i.e., it is not changed any more (by time capsules arriving there).

148 R. Freund, S. Ivanov, L. Staiger

0 :

⇓
1 :

⇓
2 :

⇓

Time levels

Fig. 4. Conventional Evolution Model.

So the specific feature an external observer would see is that the time configu-
ration at time 0 is not changing any more starting from some specific time line at
level tl0 on, i.e., for all time levels tl ≥ tl0 the time configuration at time 0 stays
stable.

With respect to the situation described in Figure 4 this means that one specific
part (one membrane and all its contents) does not change any more.

In that way we obtain a new variant of a halting condition in P systems which
we call partial adult halting :

adult halting :

means that the configuration does not change any more

partial :

we only look at some part of the configuration

3.2 Partial Adult Halting for Turing Machines

The idea of partial adult halting can also be applied to Turing machines:

z0 z1 z2 z3 · · ·Tape :

∃t ∀n ≥ t tape(1) does not change

On tape cell 1 we want to obtain an “answer” whether the given input word
is accepted – 1 – or not – 0. We first put 0 there, and if the computation ends
saying “accept” we go back to tape cell 1 and write 1 there. Hence, with looking
to infinity in that way we obtain a “decider” for recursively enumerable languages.

How to Go Beyond Turing with P Automata 149

Generation of Complements of Recursively Enumerable Languages

Another example based on a similar idea as described above shows how to
generate the complement of an arbitrary recursively enumerable language L.

In this case, we use the model of a generating Turing machine with output
tape, and a string is said to be generated by the Turing machine M if from some
moment of the computation the output tape is not changed anymore.

generate an arbitrary string w
on the output tape
and a copy of the string w
on the work tape of M ;

on the work tape
start simulating
Deterministic Acceptor
(DTM) M ′ for L;

only if M ′ accepts w,
go back and forever
change output tape

DTM M ′

Y es

No =̂
never change
output again

Fig. 5. Generation of the complements of a recursively enumerable language L.

4 Variants of P Automata

In this section, we shortly describe some variants of P automata.

150 R. Freund, S. Ivanov, L. Staiger

4.1 The Basic Model of P Automata with Antiport Rules

The basic model of P automata as introduced in [6] and in a similar way in [8]
is based on antiport rules, i.e., on rules of the form u/v, which means that the
multiset u goes out through the membrane and v comes in instead.

A P automaton (with antiport rules) is a construct

Π = (O, T, µ, w1, . . . , wm, R1, . . . , Rm) where

• O is the alphabet of objects;
• T ⊂ O is the alphabet of terminal objects;
• µ is the hierarchical membrane structure, with the membranes uniquely labeled

by the numbers from 1 to m;
• wi ∈ (O \ T)

∗
, 1 ≤ i ≤ m, is the initial multiset in membrane i;

• Ri, 1 ≤ i ≤ m, is a finite set of antiport rules assigned to membrane i.

Given a multiset of terminal symbols in the skin membrane 1, it is usually
accepted by Π via a halting computation.

Now consider the situation of partial adult halting for a P automaton

Π = (O, T, [1[2]2]1, q0, n,R1, R2)

which – with the input multiset in addition given in the skin membrane – simulates,
in a deterministic way, a register machine defining a recursively enumerable set L
of multisets (see [12]), by the rules in R1. If the computation stops in the final state
qh, i.e., the multiset is accepted, we add the rules qh/y and n/n in R1. R2 only
contains the rule n/y. In case the multiset is accepted, n in the second membrane
is replaced by y, while the rule n/n in R1 guarantees an infinite computation. In
case the input multiset is not accepted, the register machine already guarantees
an infinite computation by the simulating P automaton, too. Hence, as in the case
of the Turing machine with partial adult halting we get a “decider” for L, with
the result from some moment on to be found in membrane 2.

4.2 P Automata with Anti-Matter

In P automata with anti-matter, for each object a we may have its anti-matter
object a−. If an object a meets its anti-matter object a−, then these two objects
annihilate each other, which corresponds to the application of the cooperative
erasing rule aa− → λ. In the following, we shall only consider the variant where
these annihilation rules have weak priority over all other rules, which allows for a
deterministic simulation of deterministic register machines, see [1].

A P automaton with anti-matter is a construct

Π = (O, T, µ, w1, . . . , wm, R1, . . . , Rm) where

• O is the alphabet of objects;

How to Go Beyond Turing with P Automata 151

• T ⊂ O is the alphabet of terminal objects;
• µ is the hierarchical membrane structure, with the membranes uniquely labeled

by the numbers from 1 to m;
• wi ∈ (O \ T)

∗
, 1 ≤ i ≤ m, is the initial multiset in membrane i;

• Ri, 1 ≤ i ≤ m, is a finite set of

non-cooperative rules: are rules of the form u → v where u ∈ O and v ∈
(O × {here, in, out})∗;

matter/anti-matter annihilation rules: are cooperative rules of the form
aa− → λ, i.e., the matter object a and its anti-matter object a− anni-
hilate each other, and these annihilation rules have weak priority over all
other rules.

With the target indications {here, in, out} we can leave an object in the current
membrane (here), whereas with {in} we send it into an inner membrane and with
{out} we send it into the surrounding membrane region.

In a similar way as in the preceding subsection we may consider the situation
of partial adult halting for a P automaton

Π = (O, T, [1[2]2]1, q0, n,R1, R2)

where following the proof from [1] the register machine actions are simulated in
the skin membrane; if the input multiset is accepted, by using the rules qh →
(f, here)(n−, in), f → f , we obtain an infinite computation with the contents of
membrane 2 being empty indicating the acceptance, as by the annihilation rule
nn− → λ the original object n is annihilated.

5 Red-Green Automata

In general, a red-green automatonM is an automaton whose set of internal statesQ
is partitioned into two subsets, Qred and Qgreen, and M operates without halting.
Qred is called the set of “red states”, Qgreen the set of “green states”. Moreover,
we shall assume M to be deterministic, i.e., for each configuration there exists
exactly one transition to the next one.

5.1 Red-Green Turing Machines

Red-green Turing machines, see [11], can be seen as a type of ω-Turing machines
on finite inputs with a recognition criterion based on some property of the set(s)
of states visited (in)finitely often, in the tradition of ω-automata (see [9]), i.e., we
call an infinite run of the Turing machine M on input w recognizing if and only if

• no red state is visited infinitely often and
• some green states (one or more) are visited infinitely often.

152 R. Freund, S. Ivanov, L. Staiger

A set of strings L ⊂ Σ∗ is said to be accepted by M if and only if the following
two conditions are satisfied:

(a) L = {w | w is recognized by M}.
(b) For every string w /∈ L, the computation of M on input w eventually stabilizes

in red; in this case w is said to be rejected.

The phrase “mind change” is used in the sense of changing the color, i.e.,
changing from red to green or vice versa.

The following results were established in [11]:

Theorem 1. A set of strings L is recognized by a red-green Turing machine with
one mind change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Theorem 2. (Computational power of red-green Turing machines)

(a) Red-green Turing machines recognize exactly the Σ2-sets of the Arithmetical
Hierarchy.

(b) Red-green Turing machines accept exactly those sets which simultaneously are
Σ2- and Π2-sets of the Arithmetical Hierarchy.

5.2 Red–Green Register Machines

In [2], similar results as for red-green Turing machines were shown for red-green
counter automata and register machines, respectively.

As it is well-known folklore, e.g., see [12], the computations of a Turing machine
can be simulated by a counter automaton with (only two) counters; in this paper,
we will rather speak of a register machine with (two) registers and with string
input. As for red-green Turing machines, we can also color the “states”, i.e., the
labels, of a register machine M = (m,B, l0, lh, P, Tin) by the two colors red and
green, i.e., partition its set of labels B into two disjoint sets Bred (red “states”) and
Bgreen (green “states”), and we then write RM = (m,B,Bred, Bgreen, l0, P, Tin),
as we can omit the halting label lh.

The following two lemmas were proved in [2]; the step from red-green Turing
machines to red-green register machines is important for the succeeding sections,
as usually register machines are simulated when proving a model of P systems to
be computationally complete. Therefore, in the following we always have in mind
this specific relation between red-green Turing machines and red-green register
machines when investigating the infinite behavior of specific models of P automata,
as we will only have to argue how red-green register machines can be simulated.

Lemma 1. The computations of a red-green Turing machine TM can be simulated
by a red-green register machine RM with two registers and with string input in such
a way that during the simulation of a transition of TM leading from a state p with
color c to a state p′ with color c′ the simulating register machine uses instructions
with labels (“states”) of color c and only in the last step of the simulation changes
to a label (“state”) of color c′.

How to Go Beyond Turing with P Automata 153

Lemma 2. The computations of a red-green register machine RM with an ar-
bitrary number of registers and with string input can be simulated by a red-green
Turing machine TM in such a way that during the simulation of a computation
step of RM leading from an instruction with label (“state”) p with color c to an in-
struction with label (“state”) p′ with color c′ the simulating Turing machine stays
in states of color c and only in the last step of the simulation changes to a state
of color c′.

As an immediate consequence, the preceding two lemmas yield the charac-
terization of Σ2 and Π2 by red-green register machines as Theorem 2 does for
red-green Turing machines, see [2]:

Theorem 3. (Computational power of red-green register machines)

(i) A set of strings L is recognized by a red-green register machine with one mind
change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

(ii) Red-green register machines recognize exactly the Σ2-sets of the Arithmetical
Hierarchy.

(iii) Red-green register machines accept exactly those sets which simultaneously
are Σ2- and Π2-sets of the Arithmetical Hierarchy.

5.3 Red-Green P Automata

As it was shown in [2], P automata with antiport rules and with anti-matter can
simulate the infinite computations of any red-green register machine, even with a
clearly specified finite set of “states” having the same color as the corresponding
labels (“states”) of the instructions of the red-green register machine.

Hence, as a consequence, similar results as for red-green Turing machines also
hold for red-green P automata with antiport rules and with anti-matter. From the
results shown in [2] we therefore infer:

Theorem 4. (Computational power of red-green P automata)

(i) A set of multisets L is recognized by a red-green P automaton (with antiport
rules, with anti-matter) with one mind change if and only if L is recursively
enumerable.

(ii) Red-green P automata (with antiport rules, with anti-matter) recognize exactly
the Σ2-sets.

(iii) Red-green P automata (with antiport rules, with anti-matter) accept exactly
those sets which simultaneously are Σ2- and Π2-sets of the Arithmetical Hier-
archy.

154 R. Freund, S. Ivanov, L. Staiger

6 Observer Languages

An observer language for infinite computations is an ω-language over {0, 1} where
1 indicates that a specific feature of the current configuration in the infinite com-
putation sequence is fulfilled and 0 indicates that this specific feature of the current
configuration is not fulfilled.

6.1 Expressing Partial Adult Halting as Observer Language

If we define the specific feature to be that no rule is applicable in the specified
“observed” membrane, then acceptance by partial adult halting can be described
by the (regular) ω-language {0, 1}∗{1}ω.

6.2 Expressing Recognition by Red-Green P Automata Using
Observer Languages

As observer languages for infinite computations in red-green P automata we again
use ω-languages over {0, 1} where now 1 indicates that we will have to apply a
green multiset of rules to the current configuration in the infinite computation
sequence and 0 indicates that we will have to apply a red multiset of rules to the
current configuration.

So for recognizing a language from RE we use the the ω-language {0}+{1}ω,
for a language from co-RE we use the the ω-language {0}{1}ω.

The corresponding regular ω-languages for the recognition by red-green au-
tomata (Turing machines, P automata) with multiple mind-changes are described
as follows:

exactly 2k + 1 mind-changes, k ≥ 0: {0}+
(
{1}+{0}+

)k{1}ω
at most 2k + 1 mind-changes, k ≥ 0:

⋃k
i=0{0}+

(
{1}+{0}+

)i{1}ω
The upper bound for languages recognized by red-green P automata (with

antiport rules, with anti-matter) with k mind-changes for some k ≥ 0 is Σ2, see
[2].

These results will be refined in the next section.

7 Recognition Using Regular Observer Languages

In this section we investigate which languages are recognized by red-green P
automata using observer languages defined by finite automata. This class of ω-
languages defined by finite automata is well-understood and has widely been in-
vestigated (see [16, 21, 23, 24]). We follow the line of [20] where for Turing machines
infinite computations accepting finite words were investigated in detail (see also
[5]). In this paper a word w was accepted by a Turing machine when the sequence

How to Go Beyond Turing with P Automata 155

(si)i∈N of states the machine runs through during its accepting process fulfills
certain simple conditions known from the acceptance of ω-languages. This can
be seen as w to be accepted if the observed state sequence (si)i∈N belongs to a
certain (regular) observer language. We have to point out that usually the notion
acceptance is used here instead of the notion recognition as used by van Leeuwen
and Wiedermann for the red-green Turing machines.

7.1 Observer Languages of the form W · {1}ω with W ∈ REG

The observer languages in Section 6 all were of the formW ·{1}ω whereW ⊆ {0, 1}∗
is a regular language. In this section we investigate which languages can be ac-
cepted by red-green P automata using observer languages of this form. Here we
follow the line of the papers [20] and [11] where the influence of regular observer
languages on the acceptance and recognition, respectively, behavior of Turing ma-
chines was investigated.

To this end we use the following theorem which follows from a general classifi-
cation of regular ω-languages (see [19, 22] and also the survey [21]).

Theorem 5. If F ⊆ {0, 1}ω is a regular ω-language, then

1. F is in the Boolean closure of Σ2, and
2. if F ∈ Σ2 ∩Π2, then F is in the Boolean closure of Σ1.

Since every regular F ⊆ {0, 1}∗·{1}ω as a countable set is inΣ2, we immediately
obtain the following.

Corollary 1. If W ⊆ {0, 1}∗ is a regular language then W · {1}ω satisfies one of
the following conditions:

1. W · {1}ω ∈ Σ2 \Π2, or
2. W · {1}ω is a Boolean combination of ω-languages in Σ1.

Remark 1. In the second case we can obtain an even sharper result:

W · {1}ω =
⋃k

i=0
(Wi · {0, 1}ω \ Vi · {0, 1}ω)

for suitable k ∈ N and regular languages Wi, Vi ⊆ {0, 1}∗, 0 ≤ i ≤ k. In particular,
this is true for the ω-languages representing a bounded number of mind-changes
from Subsection 6.2:⋃k

i=0{0}+
(
{1}+{0}+

)i{1}ω =⋃k
i=0

(
{0}+

(
{1}+{0}+

)i{1} · {0, 1}ω \ {0}+({1}+{0}+)i{1}+{0} · {0, 1}ω)
From Corollary 1 we immediately infer:

156 R. Freund, S. Ivanov, L. Staiger

Theorem 6. Let L be recognized by a red-green P automaton (with antiport rules,
with anti-matter) using an observer language W · {1}ω where W ⊆ {0, 1}∗ is
regular.

1. Then L ∈ Σ2.

2. If W · {1}ω =
⋃k

i=0(Fi \Ei) is a Boolean combination of ω-languages Fi, Ei ∈
Σ1, 0 ≤ i ≤ k, then L =

⋃k
i=0(Ki \ Li) where Ki, Li ∈ RE, 0 ≤ i ≤ k.

The converse of Theorem 6 is also true. In particular, it shows that we can
restrict ourselves to the observer languages of Subsections 6.1 and 6.2.

Theorem 7. Let L ∈ Σ2.

1. Then L is recognized by a red-green P automaton Π using the observer language
{0, 1}∗ · {1}ω, i.e., L is accepted by Π by partial adult halting.

2. Let L =
⋃k

i=0(Ki \ Li) where Ki, Li ∈ RE, 0 ≤ i ≤ k. Then there exists a
red-green P automaton which recognizes L using an observer language with a
bounded number of mind-changes.

7.2 Regular Observer Languages

Admitting all regular ω-languages as observer languages extends the range of rec-
ognizable languages. In view of Theorem 5 we obtain a result extending what was
shown in Theorem 6.

Theorem 8. Let L be recognized by a red-green P automaton using an observer
language F ⊆ {0, 1}ω. Then

1. if F is a Boolean combination of ω-languages Fi, Ei ∈ Σ2, 0 ≤ i ≤ k, then
L =

⋃k
i=0(Ki \ Li) where Ki, Li ∈ Σ2, 0 ≤ i ≤ k,

2. if F ∈ Σ2, then L ∈ Σ2,

3. if F ∈ Π2, then L ∈ Π2, and

4. if F is regular and F ∈ Σ2 ∩Π2, then L =
⋃k

i=0(Ki \ Li) where Ki, Li ∈ RE,
0 ≤ i ≤ k.

The converse of Theorem 8 is also true:

Theorem 9. Let L be a Boolean combination of languages in Σ2. Then L is recog-
nized by a red-green P automaton using a regular observer language F ⊆ {0, 1}ω.

How to Go Beyond Turing with P Automata 157

8 Conclusion

In this paper we have investigated the computational power of P automata work-
ing with infinite runs on finite input multisets. With regular observer languages
W · {1}ω, W ∈ REG, we obtain the Σ2-sets, the same as with red-green P au-
tomata. Moreover, the Σ2-sets are already obtained by the special observer lan-
guage {0, 1}∗ · {1}ω, which corresponds to the special acceptance condition of
partial adult halting.

References

1. A. Alhazov, B. Aman, R. Freund: P Systems with Anti-Matter. In: [10], 66–85.
2. B. Aman, E. Csuhaj-Varjú, R. Freund: Red-Green P Automata. In: [10], 139–157.
3. P. Budnik: What Is and What Will Be. Mountain Math Software, 2006.
4. C.S. Calude, Gh. Păun: Bio-steps Beyond Turing. Biosystems 77 (2004), 175–194.
5. C.S. Calude, L. Staiger: A note on accelerated Turing machines. Math. Structures

Comput. Sci. 20 (6) (2010), 1011–1017.
6. E. Csuhaj-Varjú, Gy. Vaszil: P Automata or Purely Communicating Accepting P

Systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing, International Workshop, WMC-CdeA 2002, Curtea de Argeş, Roma-
nia, August 19–23, 2002, Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, 219–233.

7. R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez , S. Verlan: A formalization of mem-
brane systems with dynamically evolving structures. International Journal of Com-
puter Mathematics 90 (4) (2013), 801-815.

8. R. Freund, M. Oswald: A Short Note on Analysing P Systems. Bulletin of the EATCS
78, 2002, 231–236.

9. R. Freund, M. Oswald, L. Staiger: ω-P Automata with Communication Rules. Work-
shop on Membrane Computing, 2003, Lecture Notes in Computer Science 2933,
Springer, 2004, 203–217.

10. M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron: 15th International
Conference, CMC 2014, Prague, Czech Republic, August 20-22, 2014, Revised Se-
lected Papers. Lecture Notes in Computer Science 8961, Springer, 2014.

11. J. van Leeuwen, J. Wiedermann: Computation as an Unbounded Process. Theoretical
Computer Science 429 (2012), 202–212.

12. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

13. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

14. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
15. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
16. D. Perrin and J.-É. Pin. Infinite Words, vol. 141 of Pure and Applied Mathematics.

Elsevier, Amsterdam, 2004.
17. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.

158 R. Freund, S. Ivanov, L. Staiger

18. P. Sośık, O. Vaĺık: On Evolutionary Lineages of Membrane Systems. In: R. Freund,
Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): 6th International Workshop, WMC
2005, Vienna, Austria, July 18-21, 2005, Revised Selected and Invited Papers. Lec-
ture Notes in Computer Science 3850, Springer, 2006, 67–78.

19. L. Staiger: Finite-state ω-languages. J. Comput. System Sci. 27 (3) (1983), 434–448.
20. L. Staiger: ω-computations on Turing machines and the accepted languages. In: L.

Lovász, E. Szemerédi (Eds.): Theory of Algorithms, Coll. Math. Soc. Janos Bolyai
No.44, North Holland, Amsterdam, 1986, 393–403.

21. L. Staiger: ω-languages. In: [17], vol. 3, 339–387.
22. L. Staiger, K. Wagner: Automatentheoretische und automatenfreie Charakterisierun-

gen topologischer Klassen regulärer Folgenmengen. Elektron. Informationsverarb.
Kybernetik 10 (7) (1974), 379–392.

23. W. Thomas: Automata on infinite objects. In: J. van Leeuwen (Ed.): Handbook of
Theoretical Computer Science, vol. B, pages 133–192. North Holland, Amsterdam,
1990.

24. K. Wagner: On ω-regular sets. Inform. and Control, 43 (2) (1979), 123–177.
25. The P Systems Website: http://ppage.psystems.eu.

