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Summary. Spiking neural P (in short, SNP) systems are computing devices inspired
by biological spiking neurons. In this work we consider SNP systems with structural
plasticity (in short, SNPSP systems) working in the asynchronous (in short, asyn mode).
SNPSP systems represent a class of SNP systems that have dynamic synapses, i.e. neurons
can use plasticity rules to create or remove synapses. We prove that for asyn mode,
bounded SNPSP systems (where any neuron produces at most one spike each step)
are not universal, while unbounded SNPSP systems with weighted synapses (a weight
associated with each synapse allows a neuron to produce more than one spike each step)
are universal. The latter systems are similar to SNP systems with extended rules in
asyn mode (known to be universal) while the former are similar to SNP systems with
standard rules only in asyn mode (conjectured not to be universal). Our results thus
provide support to the conjecture of the still open problem.
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ity, Asynchronous systems, Turing universality

1 Introduction

Spiking neural P systems (in short, SNP systems) are parallel, distributed, and
nondeterministic devices introduced into the are of membrane computing in [7].
Neurons are often drawn as ovals, and they process only one type of object, the
spike signal represented by a. Synapses between neurons are the arcs between ovals:
neurons are then placed on the vertices of a directed graph. Since their introduc-
tion, several lines of investigations have been produced, e.g. (non)deterministic
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computing power in [7][14]; language generation in [4]; function computing de-
vices in [11]; solving computationally hard problems in [9]. Many neuroscience
inspirations have also been included for computing use, producing several variants
(to which the previous investigation lines are also applied), e.g. use of weighted
synapses [16], neuron division and budding [9], the use of astrocytes [10]. Further-
more, many restrictions have been applied to SNP systems (and variants), e.g.
asynchronous SNP systems as in [6], [3], and [15], and sequential SNP systems as
in [6].

In this work the variant we consider are SNP systems with structural plasticity,
in short, SNPSP systems. SNPSP systems were first introduced in [1], then ex-
tended and improved in [2]. The biological motivation for SNPSP systems is struc-
tural plasticity, one form of neural plasticity, and distinct from the more common
functional (Hebbian) plasticity. SNPSP systems represent a class of SNP systems
using plasticity rules: synapses can be created or deleted so the synapse graph is
dynamic. The restriction we apply to SNPSP systems is asynchronous operation:
imposing synchronization on biological functions is sometimes “too much”, i.e. not
alway realistic. Hence, the asynchronous mode of operation is interesting to con-
sider. Such restriction is also interesting mathematically, and we refer the readers
again to [6], [3], and [15] for further details.

In this work we prove that (i) asynchronous bounded (i.e. there exists a bound
on the number of stored spikes in any neuron) SNPSP systems are not universal,
(ii) asynchronous weighted (i.e. a positive integer weight is associated with each
synapse) SNPSP systems, even under a normal form (provided below), are univer-
sal. The open problem in [3] whether asynchronous bounded SNP systems with
standard rules are universal is conjectured to be false. Also, asynchronous SNP
systems with extended rules are known to be universal [5]. Our results provide
some support to the conjecture, since neurons in SNPSP systems produce at most
one spike each step (similar to standard rules) while synapses with weights function
similar to extended rules (more than one spike can be produced each step). This
work is organized as follows: Section 2 provides preliminaries for our results; syntax
and semantics of SNPSP systems are given in Section 3; our (non)universality re-
sults are given in Section 4. Lastly, we provide final remarks and further directions
in Section 5.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane computing
(a good introduction is [13] with recent results and information in the P systems
webpage (http://ppage.psystems.eu/) and a recent handbook [14] ) and formal
language theory (available in many monographs). We only briefly mention notions
and notations which will be useful throughout the paper.

We denote the set of positive integers as N = {1, 2, . . .}. Let V be an alphabet,
V ∗ is the set of all finite strings over V with respect to concatenation and the
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identity element λ (the empty string). The set of all non-empty strings over V is
denoted as V + so V + = V ∗−{λ}. If V = {a}, we simply write a∗ and a+ instead
of {a}∗ and {a}+. If a is a symbol in V , we write a0 = λ and we write the language
generated by a regular expression E over V as L(E).

In proving computational universality, we use the notion of register machines.
A register machine is a construct M = (m, I, l0, lh, R), where m is the number
of registers, I is the set of instruction labels, l0 is the start label, lh is the halt
label, and R is the set of instructions. Every label li ∈ I uniquely labels only one
instruction in R. Register machine instructions have the following forms:

• li : (ADD(r), lj , lk), increase n by 1, then nondeterministically go to lj or lk;
• li : (SUB(r), lj , lk), if n ≥ 1, then subtract 1 from n and go to lj , otherwise

perform no operation on r and go to lk;
• lh : HALT, the halt instruction.

Given a register machine M , we say M computes or generates a number n as
follows: M starts with all its registers empty. The register machine then applies its
instructions starting with the instruction labeled l0. Without loss of generality, we
assume that l0 labels an ADD instruction, and that the content of the output register
is never decremented, only added to during computation, i.e. no SUB instruction
is applied to it. If M reaches the halt instruction lh, then the number n stored
during this time in the first (also the output) register is said to be computed by M .
We denote the set of all numbers computed by M as N(M). It was proven that
register machines compute all sets of numbers computed by a Turing machine,
therefore characterizing NRE [8]. A strongly monotonic register machine is one
restricted variant: it has only one register which is also the output register. The
register initially stores zero, and can only be incremented by 1 at each step. Once
the machine halts, the value stored in the register is said to be computed. It is
known that strongly monotonic register machines characterize SLIN , the family
of length sets of regular languages.

3 Spiking neural P systems with structural plasticity

In this section we define SNP systems with structural plasticity. Initial motivations
and results for SNP systems are included in the seminal paper in [7]. A spiking
neural P system with structural plasticity (SNPSP system) of degree m ≥ 1 is a
construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

• O = {a} is the singleton alphabet (a is called spike);
• σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 indicates the

initial number of spikes in σi; Ri is a finite rule set of σi with two forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, c ≥ 1;
2. Plasticity rule: E/ac → αk(i,N), where E is a regular expression over O,
c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1, and N ⊆ {1, . . . ,m} − {i};
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• syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

• out ∈ {1, . . . ,m} indicate the output neuron.

Given neuron σi (we also say neuron i or simply σi) we denote the set of
neuron labels with σi as their presynaptic (postsynaptic, resp.) neuron as pres(i),
i.e. pres(i) = {j|(i, j) ∈ syn} (as pos(i) = {j|(j, i) ∈ syn}, resp.). Spiking rule
semantics in SNPSP systems are similar with SNP systems in [7]. In this work we
do not use forgetting rules (rules of the form as → λ) or rules with delays of the
form E/ac → a; d for some d ≥ 1. Spiking rules are applied as follows: If neuron
σi contains b spikes and ab ∈ L(E), with b ≥ c, then a rule E/ac → a ∈ Ri can be
applied. Applying such a rule means consuming c spikes from σi, thus only b − c
spikes remain in σi. Neuron i sends one spike to every neuron with label in pres(i)
at the same step as rule application. A nonzero delay d means that if σi spikes at
step t, then neurons receive the spike at t+ d. Spikes sent to σi from t to t+ d− 1
are lost (i.e. σi is closed), and σi can receive spikes (i.e. σi is open) and apply a
rule again at t+d and t+d+ 1, respectively. If a rule E/ac → a has L(E) = {ac},
we simply write this as ac → a.

Plasticity rules are applied as follows. If at step t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set N is
a collection of neurons to which σi can connect to or disconnect from using the
applied plasticity rule. The rule application consumes c spikes and performs one
of the following, depending on α:

• If α := + and N − pres(i) = ∅, or if α := − and pres(i) = ∅, then there is
nothing more to do, i.e. c spikes are consumed but no synapses are created or
removed. Notice that with these semantics, a plasticity rule functions similar
to a forgetting rule, i.e. the former can be used to consume spikes without
producing any spike.

• for α := +, if |N − pres(i)| ≤ k, deterministically create a synapse to every σl,
l ∈ Nj − pres(i). If however |N − pres(i)| > k, nondeterministically select k
neurons in N − pres(i), and create one synapse to each selected neuron.

• for α := −, if |pres(i)| ≤ k, deterministically delete all synapses in pres(i).
If however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.

If α ∈ {±,∓} : create (respectively, delete) synapses at step t and then delete
(respectively, create) synapses at step t + 1. Only the priority of application of
synapse creation or deletion is changed, but the application is similar to α ∈
{+,−}. Neuron i is always open from t until t+ 1, but σi can only apply another
rule at time t+ 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves an embedded sending of one spike when σi connects to
a neuron. This single spike is sent at the time the synapse creation is applied, i.e.
whenever σi attaches to σj using a synapse during synapse creation, we have σi
immediately transferring one spike to σj .
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Let t be a step during a computation: we say a σi is activated at step t if
there is at least one r ∈ Ri that can be applied; σi is simple if |Ri| = 1, with
a nice biological and computing interpretation, i.e. some neurons do not need to
be complex, but merely act as spike repositories or relays. We have the following
nondeterminism levels: rule-level, if at least one neuron has at least two rules with
regular expressions E1 and E2 such that E1 6= E2 and L(E1)∩L(E2) 6= ∅; synapse-
level, if initially Π has at least one σi with a plasticity rule where k < |N−pres(i)|;
neuron-level, if at least one activated neuron with rule r can choose to apply its
rule r or not (i.e. asynchronous).

By default SNP and SNPSP systems are locally sequential (at most one rule is
applied per neuron) but globally parallel (all activated neurons must apply a rule).
The application of rules in neurons are usually synchronized, i.e. a global clock
is assumed. However, in the asynchronous (asyn, in short) mode we release this
synchronization so that neuron-level nondeterminism is implied. A configuration of
an SNPSP system is based on (a) distribution of spikes in neurons, and (b) neuron
connections based on syn. For some step t, we can represent: (a) as 〈s1, . . . , sm〉
where si, 1 ≤ i ≤ m, is the number of spikes contained in σi; for (b) we can derive
pres(i) and pos(i) from syn, for a given σi. The initial configuration therefore
is represented as 〈n1, . . . , nm〉, with the possibility of a disconnected graph, or
syn = ∅. A computation is defined as a sequence of configuration transitions, from
an initial configuration, and following rule application semantics. A computation
halts if the system reaches a halting configuration, i.e. no rules can be applied and
all neurons are open.

A result of a computation can be defined in several ways in SNP systems
literature. For SNP systems in asyn mode however, and as in [3] [5] [15], the output
is obtained by counting the total spikes sent out by σout to the environment (in
short, Env) upon reaching a halting configuration. We refer to Π as generator, if
Π computes in this asynchronous manner. Π can also work as an acceptor but
this is not given in this work.

For our universality results, the following simplifying features are used in our
systems as the normal form: (i) plasticity rules can only be found in purely plas-
tic neurons (i.e. neurons with plasticity rules only), (ii) neurons with standard
rules are simple, and (iii) we do not use forgetting rules or rules with delays. We
denote the family of sets computed by asynchronous SNPSP systems (under the
mentioned normal form) as generators as NtotSNPSP

asyn: subscript tot indicates
the total number of spikes sent to Env as the result; Other parameters are as fol-
lows: +synk (−synj , respectively) where at most k (j, resp.) synapses are created
(deleted, resp.) each step; ndβ , β ∈ {syn, rule, neur} indicate additional levels of
nondeterminism source; rulem indicates at most m rules (either standard or plas-
ticity) per neuron; Since our results for k and j for +synk and −synj are equal,
we write them instead in the compressed form ±synk, where ± in this sense is
not the same as when α := ±. A bound p on the number of spikes stored in any
neuron of the system is denoted as boundp. We omit ndneur from writing since it
is implied in asyn mode.
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Fig. 1. An SNPSP system Πej .

To illustrate the notions and semantics in SNPSP systems, we take as an ex-
ample the SNPSP system Πej of degree 4 in Fig. 1, and describe its computations.
The initial configuration is as follows: spike distribution is 〈1, 0, 0, 1〉 for the neu-
ron order σi, σj , σk, σl, respectively; syn = {(j, k), (k, l)}; output neuron is σl,
indicated by the outgoing synapse to Env.

Given the initial configuration, σi and σl can become activated. Due to asyn
mode however, they can decide to apply their rules at a later step. If σl applies
its rule before it receives a spike from σi, then it will spike to Env twice so that
Ntot(Πej) = {2}. Since k = 1 < |{j, k}| and pres(i) = ∅, σi nondeterministically
selects whether to create synapse (i, j) or (i, k); if (i, j) ((i, k), resp.) is created; a
spike is sent from σi to σj (σk, resp.) due to the embedded sending of a spike during
synapse creation. Let this be step t. If (i, j) is created then syn′ := syn ∪ {(i, j)},
otherwise syn′′ := syn ∪ {(i, k)}. At t + 1, σi deletes the created synapse at t
(since α := ±), and we have syn again. Note that if σl does not apply its rule and
collects two spikes (one spike from σi), the computation is aborted or blocked, i.e.
no output is produced since a2 /∈ L(a).

4 Main results

In this section we use at most two nondeterminism sources: ndneur (in asyn mode),
and ndsyn. Recall that in asyn mode, if σi is activated at step t so that an r ∈ Ri
can be applied, σi can choose to apply r or not. If σi did not choose to apply r,
σi can continue to receive spikes so that for some t′ > t, it is possible that: r can
never be applied again, or some r′ ∈ Ri, r′ 6= r, is applied.

For the next result, each neuron can store only a bounded number of spikes
(see for example [3][6][7] and references therein). In [6], it is known that bounded
SNP systems with extended rules in asyn mode characterize SLIN , but it is
open whether such result holds for systems with standard rules only. In [3], a
negative answer was conjectured for the following open problem: are asynchronous
SNP systems with standard rules universal? First, we prove that bounded SNPSP
systems in asyn mode characterize SLIN , hence they are not universal.

Lemma 1 NtotSNPSP
asyn(boundp, ndsyn) ⊆ SLIN, p ≥ 1.

Proof. Taking any asynchronous SNPSP system Π with a given bound p on the
number of spikes stored in any neuron, we observe that the number of possible
configurations is finite: Π has a constant number of neurons, and that the number
of spikes stored in each neuron are bounded. We then construct a right-linear
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grammar G, such that Π generates the length set of the regular language L(G).
Let us denote by C the set of all possible configurations of Π, with C0 being
the initial configuration. The right-linear grammar G = (C, {a}, C0, P ), where the
production rules in P are as follows:

(1) C → C ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron does not spike;

(2) C → aC ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron spikes;

(3) C → λ, for any C ∈ C in which Π halts.

Due to the construction of G, Π generates the length set of L(G), hence the
set is semilinear. ut

Lemma 2 SLIN ⊆ NtotSNPSP asyn(boundp, ndsyn), p ≥ 1.

The proof is based on the following observation: A set Q is semilinear if and only if
Q is generated by a strongly monotonic register machine M . It suffices to construct
an SNPSP system Π with restrictions given in the theorem statement, such that
Π simulates M . Recall that M has precisely register 1 only (it is also the output
register) and addition instructions of the form li : (ADD(1), lj , lk). The ADD module
for Π is given in Fig. 2. Next, we describe the computations in Π.
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?
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li a→ a 1
aq/a→ a

for 1 ≤ q ≤ p
l1i

a→ ±1(l1i , {lj , lk})lj lk

Fig. 2. Module ADD simulating li : (ADD(1) : lj , lk) in the proof of Lemma 2.

Once ADD instruction li of M is applied, σli is activated and it sends one spike
each to σ1 and σl1i . At this point we have two possible cases due to asyn mode, i.e.
either σ1 spikes to Env before σl1i spikes, or after. If σ1 spikes before σl1i , then the
number of spikes in Env is immediately incremented by 1. After some time, the
computation will proceed if σl1i applies its only (plasticity) rule. Once σl1i applies
its rule, either σlj or σlk becomes nondeterministically activated.

However, if σ1 spikes after σl1i spikes, then the number of spikes in Env is not
immediately incremented by 1 since σ1 does not consume a spike and fire to Env.
The next instruction, either lj or lk, is then simulated by Π. Furthermore, due
to asyn mode, the following “worst case” computation is possible: σlh becomes
activated (corresponding to lh in M being applied, thus halting M) before σ1
spikes. In this computation, M has halted and has applied an m number of ADD
instructions since the application of li. Without loss of generality we can have the
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arbitrary bound p > m, for some positive integer p. We then have the output
neuron σ1 storing m spikes. Since the rules in σ1 are of the form aq/a → a,
1 ≤ q ≤ p, σ1 consumes one spike at each step it decides to apply a rule, starting
with rule am/a→ a, until rule a→ a. Thus, Π will only halt once σ1 has emptied
all spikes it stores, sending m spikes to Env in the process.

The FIN module is not necessary, and we add σlh without any rule (or maintain
pres(lh) = ∅). Once M halts by reaching instruction lh, a spike in Π is sent to
neuron lh. Π is clearly bounded: every neuron in Π can only store at most p spikes,
at any step. We then have Π correctly simulating the strongly monotonic register
machine M . This completes the proof. ut

From Lemma 1 and 2, we can have the next result.

Theorem 1 SLIN = NtotSNPSP
asyn(boundp, ndsyn), p ≥ 1.

Next, in order to achieve universality, we add an additional ingredient to asyn-
chronous SNPSP systems: weighted synapses. The ingredient of weighted synapses
has already been introduced in SNP systems literature, and we refer the reader to
[16] (and references therein) for computing and biological motivations. In partic-
ular, if σi applies a rule E/ac → ap, and the weighted synapse (i, j, r) exists (i.e.
the weight of synapse (i, j) is r) then σj receives p× r spikes.

It seems natural to consider weighted synapses for asynchronous SNPSP sys-
tems: since asynchronous SNPSP systems are not universal, we look for other ways
to improve their power. SNPSP systems with weighted synapses (in short, WS-
NPSP systems) are defined in a similar way as SNPSP systems, except for the
plasticity rules and the synapse set. Plasticity rules in σi are now of the form

E/ac → αk(i,N, r),

where r ≥ 1, and E, c, α, k,N are as previously defined. Every synapse created by
σi using a plasticity rule with weight r receives the weight r. Instead of one spike
sent from σi to a σj during synapse creation, j ∈ N , r spikes are sent to σj . The
synapse set is now of the form

syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × N.

We note that SNPSP systems are special cases of SNPSP systems with weighted
synapses where r = 1, and when r = 1 we omit it from writing. In weighted
SNP systems with standard rules, the weights can allow neurons to produce more
than one spike each step, similar to having extended rules. In this way, our next
result parallels the result that asynchronous SNP systems with extended rules are
universal in [5]. However, our next result uses ndsyn with asyn mode, while in [5]
their systems use ndrule with asyn mode. We also add the additional parameter
l in our universality result, where the synapse weight in the system is at most l.
Our universality result also makes use of the normal form given in Section 3.

Theorem 2 NtotWSNPSP asyn(rulem,±synk, weightl, ndsyn) = NRE,m ≥ 9, k ≥
1, l ≥ 3.
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Proof. We construct an asynchronous SNPSP system with weighted synapses Π,
with restrictions given in the theorem statement, to simulate a register machine
M . The general description of the simulation is as follows: each register r of M cor-
responds to σr in Π. If register r stores the value n, σr stores 2n spikes. Simulating
instruction li : (OP(r) : lj , lk) of M in Π corresponds to σli becoming activated.
After σli is activated, the operation OP is performed on σr, and σlj or σlk becomes
activated. We make use of modules in Π to perform addition, subtraction, and
halting of the computation.

Module ADD: The module is shown in Fig. 3. At some step t, σli sends a
spike to σl1i . At some t′ > t, σl1i sends a spike: the spike sent to σr is multiplied by
two, while 1 spike is received by σl2i . For now we omit further details for σr, since
it is never activated with an even number of spikes.

At some t′′ > t′, σl2i nondeterministically creates (then deletes) either (l2i , lj) or

(l2i , lk). The chosen synapse then allows either σlj or σlk to become activated. The
ADD module thus increments the contents of σr by 2, simulating the increment
by 1 of register r. Next, only one among σlj or σlk becomes nondeterministically
activated. The addition operation is correctly simulated.

�
�
�
�

�
�
�
�

�
�
�
��
�

�
��

�
�
�

�
�
�
�

- -

?

l1i
a→ a

r
2

li
a→ a

l2i
a→ ±1(l2i , {lj , lk}, 1)

lj lk

Fig. 3. Module ADD simulating li : (ADD(r) : lj , lk) in the proof of Theorem 2.

Module SUB: The module is shown in Fig. 4. Let |Sr| be the number of
instructions with form li : (SUB(r), lj , lk), and 1 ≤ s ≤ |Sr|. |Sr| is the number of
SUB instructions operating on register r, and we explain in a moment why we use
a size of a set for this number. Clearly, when no SUB operation is performed on
r, then |Sr| = 0, as in the case of register 1. At some step t, σli spikes, sending 1
spike to σr, and 4|Sr| − s spikes to σl1i (the weight of synapse (li, l

1
i )).

σl1i has rules of the form ap → −1(l1i , {r}, 1), for 3|Sr| ≤ p < 8|Sr|. When
one of these rules is applied, it performs similar to a forgetting rule: p spikes are
consumed and deletes a nonexisting synapse (l1i , r). Since σl1i received 4|Sr| − s
spikes from σli , and 3|Sr| ≤ 4|Sr| − s < 8|Sr|, then one of these rules can be
applied. If σl1i applies one of these rules at t′ > t, no spike remains. Otherwise, the
4|Sr| − s spikes can combine with the spikes from σr at a later step.

In the case where register r stores n = 0 (respectively, n ≥ 1), then instruction
lk (respectively, lj) is applied next. This case corresponds to σr applying the
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a(a2)+/a3 → ±|Sr|(r, Sr, 4|Sr|+ s)

a→ ±|Sr|(r, Sr, 5|Sr|+ s)
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for 3|Sr| ≤ p < 8|Sr|

a8|Sr| → ±1(l1i , {lj}, 1)

a9|Sr| → ±1(l1i , {lk}, 1)
lj lk

Fig. 4. Module SUB simulating li : (SUB(r) : lj , lk) in the proof of Theorem 2.

rule with E = a (respectively, E = a(a2)+), which at some later step allows σlk
(respectively, σlj ) to be activated.

For the moment let us simply define Sr = {l1i }. For case n = 0 (respectively,
n ≥ 1), σr stores 0 spikes (respectively, at least 2 spikes), so that at some t′′ > t the
synapse (r, l1i , 5|Sr|+s) (respectively, (r, l1i , 4|Sr|+s)) is created and then deleted.
σl1i then receives 5|Sr|+ s spikes (respectively, 4|Sr|+ s spikes) from σr. Note that
we can have t′′ ≥ t′ or t′′ ≤ t′, due to asyn mode, where t′ is again the step that
σl1i applies a rule. If σl1i previously removed all of its spikes using its rules with
E = ap, then it again removes all spikes from σr because 3|Sr| ≤ x < 8|Sr|, where
x ∈ {4|Sr| + s, 5|Sr| + s}. At this point, no further rules can be applied, and the
computation aborts, i.e. no output is produced. If however σl1i did not remove its
spikes previously, then it collects a total of either 8|Sr| or 9|Sr| spikes. Either σlj
or σlk is then activated by σl1i at a step after t′′.

To remove the possibility of “wrong” simulations when at least two SUB in-
structions operate on register r, we give the general definition of Sr: Sr =
{l1v|lv is a SUB instruction on register r}. In the SUB module, a rule application
in σr creates (and then deletes) an |Sr| number of synapses: one synapse from σr
to all neurons with label l1v ∈ Sr. Again, each neuron with label l1v can receive
either 4|Sr|+ s, or 5|Sr|+ s spikes from σr, and 4|Sr| − s spikes from σlv .

Let li be the SUB instruction that is currently being simulated in Π. In order for
the correct computation to continue, only σl1i must not apply a rule with E = ap,
i.e. it must not remove any spikes from σr or σli . The remaining |Sr| − 1 neurons
of the form l1v must apply their rules with E = ap and remove the spikes from
σr. Due to asyn mode, the |Sr| − 1 neurons can choose not to remove the spikes
from σr: these neurons can then receive further spikes from σr in future steps, in
particular they receive either 4|Sr|+ s′ or 5|Sr|+ s′ spikes, for 1 ≤ s′ ≤ Sr; these
neurons then accumulate a number of spikes greater than 8|Sr| (hence, no rule
with E = ap can be applied), but not equal to 8|Sr| or 9|Sr| (hence, no plasticity
rule can be applied). Similarly, if these spikes are not removed, and spikes from
σlv′ are received, v 6= v′ and lv′ ∈ Sr, no rule can again be applied: if lv′ is the s′th
SUB instruction operating on register r, then s 6= s′ and σlv′ accumulates a number
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of spikes greater than 8|Sr| (the synapse weight of (lv′ , l
1
v′) is 4|Sr| − s′), but not

equal to 8|Sr| or 9|Sr|. No computation can continue if the |Sr|−1 neurons do not
remove their spikes from σr, so computation aborts and no output is produced.
This means that only the computations in Π that are allowed to continue are the
computations that correctly simulate a SUB instruction in M .

The SUB module correctly simulates a SUB instruction: instruction lj is sim-
ulated only if r stores a positive value (after decrementing by 1 the value of r),
otherwise instruction lk is simulated (the value of r is not decremented).

Module FIN: The module FIN for halting the computation of Π is shown in
Fig. 5. The operation of the module is clear: once M reaches instruction lh and
halts, σlh becomes activated. Neuron lh sends a spike to σ1, the neuron corre-
sponding to register 1 of M . Once the number of spikes in σ1 become odd (of the
form 2n+ 1, where n is the value stored in register 1), σ1 keeps applying its only
rule: at every step, 2 spikes are consumed, and 1 spike is sent to Env. In this way,
the number n is computed since σ1 will send precisely n spikes to Env.

The ADD module has ndsyn: initially it has pres(l2i ) = ∅, and its k = 1 < |N |.
We also observe the parameter values: m is at least 9 by setting |Sr| = 1, then
adding the two additional rules in σl1i ; k is clearly at least 1; lastly, the synapse
weight l is at least 3 by again setting |Sr| = 1. This completes the proof. ut
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lh

a→ a

1

a(a2)+/a2 → a

Fig. 5. Module FIN in the proof of Theorem 2.

5 Conclusions and final remarks

In [5] it is known that asynchronous SNP systems with extended rules are universal,
while the conjecture is that asynchronous SNP systems with standard rules are not
[3]. In Theorem 1, we showed that asynchronous bounded SNPSP systems are not
universal where, similar to standard rules, each neuron can only produce at most
one spike each step. In Theorem 2, asynchronous WSNPSP systems are shown to
be universal. In WSNPSP systems, the synapse weights perform a function similar
to extended rules in the sense that a neuron can produce more than one spike each
step. Our results thus provide support to the conjecture about the nonuniversality
of asynchronous SNP systems with standard rules. It is also interesting to realize
the computing power of asynchronous unbounded (in spikes) SNPSP systems.

It can be argued that when α ∈ {±,∓}, the synapse creation (resp., deletion)
immediately followed by a synapse deletion (resp., creation) is another form of
synchronization. Can asynchronous WSNPSP systems maintain their computing
power, if we further restrict them by removing such semantic? Another interesting
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question is as follows: in the ADD module in Theorem 2, we have ndsyn. Can we
still maintain universality if we remove this level, so that ndneur in asyn mode
is the only source of nondeterminism? In [5] for example, the modules used asyn
mode and ndrule, while in [15], only asyn mode was used (but with the use of a
new ingredient called local synchronization).

In Theorem 2, the construction is based on the value |Sr|. Can we have a
uniform construction while maintaining universality? i.e. can we construct a Π
such that N(Π) = NRE, but is independent on the number of SUB instructions
of M? Then perhaps parameters m and l in Theorem 2 can be reduced.
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11. Păun, A., Păun, G.: Small universal spiking neural P systems. Biosystems, vol. 90,
pp. 48 - 60 (2007)
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15. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local

synchronization. Information Sciences, vol. 219(10), pp. 197 - 207 (2013)
16. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking Neural
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