
Polarizationless P Systems with One Active
Membrane

Artiom Alhazov1, Rudolf Freund2

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Summary. The aim of this paper is to study the computational power of P systems with
one active membrane without polarizations. For P systems with active membranes, it is
known that computational completeness can be obtained with either of the following com-
binations of features: 1)two polarizations, 2)membrane creation and dissolution, 3)four
membranes with three labels, membrane division and dissolution, 4)seven membranes
with two labels, membrane division and dissolution.

Clearly, with one membrane only object evolution rules and send-out rules are per-
mitted. Two variants are considered: external output and internal output.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed multiset process-
ing. It has been introduced by Gheorghe Păun in 1998, and has been an active research
area since then, see [10] for the comprehensive bibliography and [6],[8] for a systematic
survey. Membrane systems are also called P systems.

It has been shown in [4] (some results being improvements of the results from [1] and
[3]) that the following P systems with active membranes are computationally complete:
1) with one membrane and two polarizations, as acceptors, 2) polarizationless ones with
membrane creation and dissolution, 3) polarizationless ones starting with four membranes
and three labels, 4) polarizationless ones starting with seven membranes and two labels.

The object of study of this paper is the family of P systems with one active mem-
brane without polarizations. Similar questions for non-cooperative transitional P systems
without any additional features have been addressed in [2].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51395809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10 A. Alhazov, R. Freund

2 Definitions

2.1 Formal Language Preliminaries

Consider a finite set V . The set of all words over V is denoted by V ∗, the concatenation
operation is denoted by • (which is written only when necessary) and the empty word
is denoted by λ. Any set L ⊆ V ∗ is called a language. For a word w ∈ V ∗ and a sym-
bol a ∈ V , the number of occurrences of a in w is written as |w|a. The permutations
of a word w ∈ V ∗ are Perm(w) = {x ∈ V ∗ | |x|a = |w|a for all a ∈ V}. We denote
the set of all permutations of the words in L by Perm(L), and we extend this notation
to families of languages. We use FIN , REG, LIN , CF , MAT , CS, RE to denote fi-
nite, regular, linear, context-free, matrix without appearance checking and with erasing
rules, context-sensitive, and recursively enumerable families of languages, respectively.
The family of languages generated by extended (tabled) interactionless L systems is de-
noted by E(T)0L. The family of sets of numbers generated by forbidden random context
multiset grammars is denoted by NfRC. For more formal language preliminaries, we
refer the reader to [9].

Throughout this paper we use string notation to denote the multisets. When speak-
ing about membrane systems, keep in mind that the order in which symbols are written
is irrelevant, unless we speak about the symbols sent to the environment. In particu-
lar, speaking about the contents of some membrane, when we write an1

1 · · · anm
m (or any

permutation of it), we mean a multiset consisting of ni instances of symbol ai, 1 ≤ i ≤ m.

2.2 P systems with One (Active) Membrane

We present the definition of a P system with active membranes, simplified for studying
the generative power in case of one membrane.

Π = (O,µ = []
1
, w1, R1, i0), where

O is a finite set of objects,

w1 is the initial multiset in region 1,

R1 is the set of rules associated to membrane 1,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

The rules of a membrane system have the forms (a0) [a → u]
1

(evolution of an
object), and (c0) [a]

1
→ []

1
b (sending an object out, possibly renaming it), where

a, b ∈ O and u ∈ O∗.
The rules are applied in maximally parallel way: no further rule should be applicable

to the idle objects, except rules of type (c0) may be applied to at most one object at any
step.

A catalytic P system (with one membrane) is a construct

Π = (O,C, µ = []
1
, w1, R1, i0), where

O is a finite set of objects,

C is a special subset of Owhose elements are called catalysts,

w1 is the initial multiset in region 1,

R1 is the set of rules associated to membrane 1,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

Polarizationless P Systems with One Active Membrane 11

The rules in R are either non-cooperative rules of the form a → (b1, tar1) · · · (bk, tark)
with a and the bi, 1 ≤ i ≤ k, being from O \ C and the tari ∈ {here, out} be-
ing the targets for the corresponding symbols bi, or catalytic rules of the form ca →
c(b1, tar1) · · · (bk, tark) with c ∈ C.

A configuration of a P system is a construct which contains the information about
the contents of the skin membrane as well as the sequence of objects sent out. A sequence
of transitions between the configurations is called a computation. The computation halts
when such a configuration is reached that no rules are applicable. In case of external
output (i0 = 0), as the result of a (halting) computation we may consider the sequence of
objects sent to the environment; we denote it by L(Π). Both in case of internal output
(i0 = 1) and in case of external output, we may consider as the result the vector of
multiplicities of objects in region i0, we denote it by Ps(Π), or the total number of
objects in region i0, which we denote by N(Π).

The family of P systems with one polarizationless active membrane may be denoted
by OP1(a0, c0). The class of sets of numbers/vectors/words generated by a family F of
P system is denoted by NF, PsF and LF, respectively. We use a superscript int or
ext when speaking about internal and external output, respectively, and we may omit
subscript ext in the case of generating languages, i.e., external output is assumed for LF.

Moreover, we may use a subscript T to denote terminal filtering of the result; in this
case, a subset T ⊂ O is additionally specified forΠ, and the objects not belonging to T are
not considered in the result. For example, the family of sets of vectors of non-negative
integers generated internally by P systems with one polarizationless active membrane
with terminal filtering are denoted by PsintT OP1(a0, c0).

Example 1. To illustrate generation, consider the following P system:

Π = (O = {S, a, b, c, d, f}, µ = []
1
, w1 = a,R1, i0),

R1 = {[S → Sabcd]
1
, [S → f]

1
,

[a]
1
→ []

1
a, [b]

1
→ []

1
b, [c]

1
→ []

1
c}.

Object S produces objects a, b, c, d in arbitrary but equal amounts. Objects a, b, c are
sent out in arbitrary order. Hence, if i0 = 1 then N(Π) = N1 (i.e., the set of all positive
integers), and if i0 = 0 then L(Π) =

⋃
n≥0 Perm(anbncn) = {w ∈ {a, b, c}∗ | |w|a =

|w|b = |w|c}.

P systems can be also viewed as acceptors. In that case, an input subalphabet Σ is
additionally specified in the tuple defining P system before µ, and i0 = 1 is the input
region. An input multiset over Σ is additionally placed inside the membrane before the
computation starts, and it is accepted if and only if the computation halts. The result
Psacc(Π) is the set of all accepted inputs, and the family of vector sets accepted by P
systems with one active membrane is PsaccOP1(a0, c0).

3 Comparison with a Transitional Model:
Catalytic P Systems with One Catalyst

The model of P systems with active membranes, for the case of one membrane, can
be compared to the following case of transitional P systems: non-distributed P systems

12 A. Alhazov, R. Freund

with one catalyst. Indeed, for each P system with one active membrane, there exists a
1-catalytic non-distributed P system with the same behavior, as non-cooperative rules
work equivalently in both models: [A → u]

h
is equivalent to A → u, and sending out

corresponds to particular rules with one catalyst, i.e., [A]
h
→ []

h
a corresponds with

cA → c(a, out), or, if without restricting generality we assume the set of symbols that
may appear inside the system to be disjoint from the set of symbols that may be sent to
the environment, simply with cA→ c(a, here).

Notice that for P system with external output, we may ignore the objects remaining
inside the system when it halts (as explained in the next section), while for P systems
with internal output, we should ignore the objects sent out. In this way, for the case
of internal output, sending out corresponds to a catalytic erasing, while for the case
of external output sending out corresponds to a catalytic renaming of a non-terminal
symbol into a terminal symbol.

Hence, we can immediately conclude that

Xα
βOP1(a0, c0) ⊆ XβOP1(ncoo, cat1) for X ∈ {N,Ps, L}, α ∈ {int, ext}, β ∈ {−, T},

where β = − stands for not specifying a subscript.
One-catalytic P systems were investigated in [5], where some subclasses of P sys-

tems with one catalyst are defined and certain results on their generative power are
presented. In particular, it was shown in [5] that N−cOP1(wsepcat1) = NREG and
N−cOP1(complcat1) ⊆ NfRC. Clearly, the corresponding restrictions might also be
considered for polarizationless P systems with one active membrane, and such results
can be claimed as upper bounds for the corresponding restrictions, e.g.,

NOP1(wsep(a0, c0)) = NREG,

where the restriction of the weak separation can be reformulated for the model with active
membranes as follows: the set O of objects is divided into three disjoint subsets O′, O′′

and O′′′, such that

• objects a ∈ O′ have no associated rules (they cannot evolve or be sent out, so if they
are produced, they remain idle inside the system),

• objects a ∈ O′′ have associated send-out rules, but no evolution rules,
• objects a ∈ O′′′ have associated evolution rules, but no send-out rules.

It is worth mentioning that the additional requirement from [5] that the objects produced
by a catalytic rule cannot undergo a non-cooperative rule is automatically satisfied after
translation into the active membrane case, so the only restriction remaining in the case
of weak separation is that a rule of type (a0) and a rule of type (c0) are not allowed to
compete for the same object. This restriction means, for instance, that all objects that
have associated send-out rules cannot evolve inside the system, they simply wait there
until they are chosen to be sent out.

A different restriction considered in [5] is complete P systems (mentioned above as
complcat1). It can be reformulated in the model of polarizationless P systems with active
membranes as follows: there is no object having associated rules of type (c0) and no rules
of type (a0). This restriction means that no object is allowed to be temporarily idle;
if it is not sent out, then it either evolves immediately, or remains idle throughout the
computation. It follows that

NREG ⊆ NOP1(compl(a0, c0)) ⊆ NfRC.

Polarizationless P Systems with One Active Membrane 13

It is interesting to note that weak separation and completeness are, in some sense, two
opposite requirements. While the latter one requires that all objects which can be sent
out must evolve if they are not chosen to be sent out, the first special case requires that
no objects which can be sent out are allowed to evolve. Of course, in the most general
case there can be both kinds of objects which can be sent out.

4 External output

The first goal of this section is to present a reduction of any P system with one active
membrane without polarizations and external output to an equivalent normal form. Then
we will use this normal form to prove an upper bound result. We require the normal form
mentioned above to satisfy the following conditions:

• Every object appears on the left side of some rule.
• The only erasing rule allowed is for the initial object; if so, the initial object does not

appear on the right side of any rule. (If we have an initial multiset w, then we add
the rule S → w where S is a new symbol now being the initial object.)

We approach this goal in a few stages. First, we remark that, without restricting gen-
erality, we may assume that no objects may remain inside the system when it halts.
Indeed, let Oλ be the set of all objects that do not have associated rules. By adding rules
Rλ = {[a → λ]

1
| a ∈ Oλ}, we make sure that there are no objects that do not have

associated rules. On the other side, adding rules Rλ does not affect the result of a P sys-
tem with external output, since preserving/erasing objects from Oλ has no alternatives,
and it does not affect the environment.

Second, we remark that, without restricting generality, we may assume that the initial
multiset consists of only one object, say S, which does not appear in the right side of
any rule. Indeed, for a P system starting with a multiset (represented by) w, consider an
equivalent P system starting with a multiset consisting of a new object S, and adding
RS = {[S → w]

1
} to R1.

Third, we claim that for any P system satisfying the assumptions mentioned above,
there exists a P system without erasing rules (except, possibly, for S).

Proof. Indeed, let us first add rules Rt = {[a→ #]
1
| ([a→ λ]

1
) ∈ R1 or a = #},

where # is a new symbol, shared for all such reductions, so if it appears in a configuration,
the system will never halt, and will therefore not produce any result. This transformation
will certainly not affect the result of the system, since every new computation branch will
not be productive, while the existing branches will not be affected (since by construction,
one can always apply some other rule to a instead of trapping).

Second, compute the set Oλ of erasable objects as follows:

• Set Oλ to {a ∈ O | [a→ λ]
1
∈ R1,

• If [a→ u]
1

is in R1 and u ∈ O∗λ, then add a to Oλ,
• Iterate the previous procedure until no more elements can be added to Oλ.

Third, replace each rule [a → u]
1

by rules [a → u′]
1
, where the u′ are obtained

from u by removing (in all possible combinations) some objects from Oλ. This will again
yield an equivalent system, because every symbol that could eventually be deleted does
not have to be produced in the first place.

14 A. Alhazov, R. Freund

Fourth, remove all erasing rules. We claim that the resulting P system is still equiv-
alent to the original P system. Indeed, any object (other than S) that should be erased,
could be “pre-erased” by not producing it in the first place. However, any object that
should evolve can evolve by other rules, and any object that should be sent out can be
sent out (unless some competing object is sent out, in which case the simulation would
not be correct, so the computation is discarded by producing symbol #). �

Corollary 1. LOP1(a0, c0) ⊆ CS.

Proof. Indeed, the total number of objects (inside and outside the membrane) never
decreases throughout the computation (except, possibly, for the empty word, generated
in one step), and the length of the result matches the total number of objects when the
system halts. �

We now proceed with the lower bound result.

Theorem 1. LOP1(a0, c0) ⊇ REG • Perm(REG).

Proof. Consider an alphabet T and two arbitrary regular languages over T . Then there
exist reduced regular grammars G1 = (N1, T, P1, S1) and G2 = (N2, T, P2, S2) generating
them, such as N1 ∩N2 = ∅. We construct the following P system:

Π = (O = N1 ∪N2 ∪ T ∪ T ′, µ = []
1
, w1 = S1, R1),

T ′ = {a′ | a ∈ T},
R1 = {[A→ aB]

1
| (A→ aB) ∈ P1} ∪ {[A→ S2]

1
| (A→ λ) ∈ P1}

∪ {[A→ a′B]
1
| (A→ aB) ∈ P2} ∪ {[A→ λ]

1
| (A→ λ) ∈ P2}

∪ {[a′ → a′]
1
| a ∈ T} ∪ {[a]

1
→ []

1
a, [a′]

1
→ []

1
a | a ∈ T}.

The P system constructed above generates L(G1) •L(G2), except the symbols generated
by the second grammars are produced in a primed form, and may undergo trivial rewriting
for an arbitrarily long time before they are sent out, which ensures that after generating
a word from L(G1), any permutation of a word from L(G2) may be generated. �

We now present a few closure properties.

Lemma 1. The family LOP1(a0, c0) is closed under renaming morphisms.

Proof. The statement follows from applying the renaming morphism to the send-out
rules. �

Theorem 2. LOP1(a0, c0) is closed under union.

Proof. The closure under union follows from adding a new axiom and productions of
non-deterministic choice between multiple axioms. �

Polarizationless P Systems with One Active Membrane 15

5 Internal output

In this case the environment is no longer relevant: it does not matter which symbol is
written in the right side of a send-out rule. The object sent out no longer affects the
result, so sending out is equivalent to a sequential version of erasing.

Of course, we can generate PsREG with rules of type (a0) corresponding to the rules
of a reduced regular grammar. Hence,

PsintOP1(a0, c0) ⊇ PsREG.

Is it an open question whether non-semilinear number sets can be generated, see also
the partial results transferred from the one-catalytic model, recalled in Section 3.

6 P systems with input

In this section we show that, not very surprisingly, for P systems with one polarizationless
active membrane, their accepting power is even smaller than their generative power. More
exactly, unless such a P system accepts all allowed inputs, it only accepts specific finite
sets. We start by establishing some useful facts (we remind that we use ⊆ to denote the
submultiset relation, ∪ to denote the union of multisets, and \ to denote the difference
of multisets).

Lemma 2. Let Π ∈ OP1(a0, c0) be a P system with alphabet O, let [u]
1
⇒ [v]

1
α

in Π (α ∈ O ∪ {λ}) Then for every multiset u′ ⊆ u, either [u′]
1

is already a halting
configuration, or there exists a multiset v′ ⊆ v and β ∈ O∪{λ} such that [u′]

1
⇒ [v′]

1
β

in Π.

Proof. In a transition [u]
1
⇒ [v]

1
α, one of three possible cases happen for every (copy

of) object a in u:

• a is rewritten by some rule of Π into a (possibly empty) multiset, contributing to v;
• a is sent out by some rule of Π as α;
• a remains idle, contributing to v.

Note that v consists exactly of the resulting objects from the first case and the objects
of the third case. More precisely, let the union of multisets of the right side rules for
all copies of rewritten objects be vr, and let the multiset of idle objects be vi; then,
v = vr ∪ vi. By definition of the model, the second case was applied to at most one (copy
of) an object in u. Also by definition of the model, for each object in the third case, there
exist no rules to evolve it, except, possibly, send-out rules, in which case α 6= λ.

We recall that u′ may be obtained from u by erasing some (copies) of objects. Fix
some correspondence of (copies of) objects in u′ to objects in u, and consider a transition
from u′ by the same behavior of objects in u′ as of objects in u:

• rewritten objects will yield some submultiset v′r of vr;
• β′ will be produced in the environment, β′ = α or β′ = λ;
• idle objects will yield some submultiset v′i of vi.

16 A. Alhazov, R. Freund

It is obvious that these rules are applicable, and that v′r ∪ v′i ⊆ v. Maximality also holds,
except in one special situation: when α 6= λ, but it was produced from a (copy of) an
object not in u′, while there exists at least one object b that was idle in a transition
[u]

1
⇒ [v]

1
α.

In this situation, one object b, instead of being idle, should be sent out as β, and the
resulting multiset in the skin is v′ = v′r ∪ v′i \ b (if this situation does not happen, we take
β = β′ and v′ = v′r ∪ v′i).

Therefore, [u′]
1
⇒ [v′]

1
β in Π if at least one (copy) of object from u′ fell into the

first or the second case, and otherwise [u′]
1

is already a halting configuration. �

Lemma 3. If n ∈ N(Π), then also n′ ∈ N(Π) for any non-negative integer n′ ≤ n.

Proof. Let the alphabet of Π be O, let the initial contents of the skin membrane of Π be
w1, and let the input subalphabet of Π be Σ. By definition of acceptance, a number n
is accepted if there exists a halting computation in Π starting from configuration [u]

1
,

for some u ∈ w1Σ
n.

Consider the “sub-input” of only n′ objects, i.e., u′ ∈ w1Σ
n such that u′ ⊆ u. If

[u]
1

is already halting, then so is [u′]
1
, so the statement of the lemma holds; now we

assume the contrary: [u]
1
⇒ [v]

1
α. By the previous lemma, in one step, either the

computation with u′ in the skin will immediately halt (and the statement of the lemma
again holds), or there is a one-step transition [u′]

1
⇒ [v′]

1
β with v′ ⊆ v.

Iterating the application of the previous lemma, by induction, we conclude that there
exists a computation starting from [u′]

1
that will halt in at most as many step as the

halting computation starting from [u]
1

that we considered. Hence n′ ∈ N(Π). �

It follows that the accepted set of numbers is either N, or empty, or it contains all
integers less than or equal to the maximal accepted number, so accepting P systems
with one polarizationless active membrane cannot be computationally complete, and P
systems with one polarizationless active membrane are obviously weaker as acceptors
than as generators:

NaccOP1(a0, c0) ⊆ {∅,N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N}.

In the rest of the section we show, by all necessary examples, that this inclusion is
an equality:

Π∅ = (O = {a}, Σ = {a}, µ = []
1
, w1 = a,R1 = {[a→ a]

1
}, i0 = 1).

ΠN = (O = {a}, Σ = {a}, µ = []
1
, w1 = λ,R1 = {[a→ λ]

1
}, i0 = 1).

Πn = (O = {ai | 0 ≤ i ≤ n}, Σ = {a0}, µ = []
1
, w1 = λ,R1, i0 = 1), where

R1 = {[ai → ai+1]
1
, [ai]

1
→ []

1
a0 | 0 ≤ i < n} ∪ {[an → an]

1
}.

Clearly, Π∅ accepts nothing, since with any input it starts with at least one object, and
carries out an infinite computation. On the other end of the spectrum, system ΠN accepts
any input, by erasing it in one step and halting. Finally, we claim that system Πn accepts
exactly set {k | 0 ≤ k ≤ n}. Indeed, any object increments its index every step, unless
the object is sent out, or the index reaches n (forcing an infinite computation). It is easy
to see that at most n input objects may be sent out in this way; the system with input
(a0)k has a halting computation if and only if k ≤ n.

Polarizationless P Systems with One Active Membrane 17

Overall, we have established the following results:

REG • Perm(REG) ⊆ LOP1(a0, c0) ⊆ CS,

PsintOP1(a0, c0) ⊆ PsREG,

NαOP1(wsep(a0, c0)) = NREG, α ∈ {int, ext},
NREG ⊆ NαOP1(compl(a0, c0)) ⊆ NfRC, α ∈ {int, ext},

NaccOP1(a0, c0) = {{k | 0 ≤ k ≤ n} | n ∈ N} ∪ {∅,N}.

7 Conclusions

In this paper we have considered the family of languages generated by polarizationless P
systems with one active membrane. A normal form was given for external output case. It
was than shown that the family of generated languages lies between REG • Perm(REG)
and CS, and is closed under union and renaming morphisms. The exact characterization
is an open question, but polarizationless P systems with one active membrane can be
simulated by (and are, therefore, at most as powerful as) P systems with one catalyst,
transferring two results on the generative power of two restricted classes, independently
from the output region.

Then we also considered sets of vectors or numbers generated internally, as well as sets
of vectors or numbers accepted by polarizationless P systems with one active membrane.
Several questions about the families of these sets are still open, too.

Another possible generalization that can be considered is to also allow rules of type
(b0) to bring objects from the environment back to the skin. Note that such systems
would still correspond to a subclass of 1-catalytic P systems, but some definitions would
have to be revised, as well as all related results.

We have proved that accepting P systems with one polarizationless active membrane
are not computationally complete, unlike those with two polarizations or like those with
membrane creation and dissolution, or with multiple membranes and membrane dissolu-
tion.

The questions about the computational power of polarizationless P systems with
active membranes with 2 and 3 membranes in the initial configuration are still open, as
well as of polarizationless systems with less than 7 membranes and two labels, or of all
polarizationless systems with only one label.

References

1. A. Alhazov: P Systems without Multiplicities of Symbol-Objects. Information Pro-
cessing Letters 100, 3, 2006, 124–129.

2. A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The Family of Languages Gener-
ated by Non-Cooperative Membrane Systems. In: Gh. Păun, M.J. Pérez-Jiménez, A.
Riscos-Núñez, G. Rozenberg, A. Salomaa: Membrane Computing, 11th International
Conference, CMC11, Jena, Revised Selected Papers, Lecture Notes in Computer Sci-
ence 6501, 2011, 65–79.

18 A. Alhazov, R. Freund

3. A. Alhazov, R. Freund, Gh. Păun: Computational Completeness of P Systems with
Active Membranes and Two Polarizations. In: M. Margenstern: Machines, Computa-
tions, and Universality, 4th International Conference, MCU 2004, Saint Petersburg,
Revised Selected Papers, Lecture Notes in Computer Science 3354, Springer, 2005,
82–92.

4. A. Alhazov, R. Freund, A. Riscos-Núñez: Membrane Division, Restricted Membrane
Creation and Object Complexity in P Systems. International Journal of Computer
Mathematics 83, 7, 2006, 529–548.

5. R. Freund:
Special Variants of P Systems with One Catalyst in One Membrane. In: H. Leung,
G. Pighizzini: 8th International Workshop on Descriptional Complexity of Formal
Systems - DCFS 2006, Las Cruces, New Mexico, 2006. Proceedings, 2006, 250–258.

6. Gh. Păun: Membrane Computing. An Introduction, Springer, 2002.
7. Gh. Păun, G. Rozenberg, A. Salomaa: Membrane Computing with an External Out-

put. Fundamenta Informaticae 41, 3, 2000, 313–340.
8. Gh. Păun, G., Rozenberg, A. Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.
9. G. Rozenberg, A. Salomaa (eds.): Handbook of Formal Languages, 1-3 vol., Springer,

1997.
10. P systems webpage. http://ppage.psystems.eu/

