
Deterministic Non-cooperative P Systems with
Strong Context Conditions

Artiom Alhazov1, Rudolf Freund2

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Summary. We continue the line of research of deterministic parallel non-cooperative
multiset rewriting with control. We here generalize control, i.e., rule applicability context
conditions, from promoters and inhibitors checking presence or absence of certain object
up to some bound, to regular and even stronger predicates, focusing at predicates over
multiplicity of one symbol at a time.

1 Introduction

It is known, see [7], that non-cooperative P systems with atomic promoters or
atomic inhibitors characterize ET0L, while using either one catalyst, see [6], [3],
or promoters or inhibitors of weight 2, see [4], leads to the computational complete-
ness of non-cooperative P systems. A question about the power of deterministic
systems was posed in [5], inspired by the fact that all identical objects have the
same behavior in the same context. This question was answered in [1]: determinis-
tic non-cooperative P systems have weak behaviour, namely, only accepting finite
number sets and their complements, even using generalized context conditions
(except the sequential case, when they keep the computational completeness).

Generalized context conditions of rule applicability are defined as a list of
pairs (pi, Fi), 1 ≤ i ≤ k, applicable to a rule if at least one condition applies,
in the following way: pi, called promoter, must be a submultiset of the current
configuration (or the contents of the current region), and none of the elements of
Fi, called inhibitors, are allowed to be submultisets of the current configuration (or
the contents of the current region). A subsequent paper, [2], precisely characterized
the power of priorities alone, as well as established how much power of promoters
and inhibitors is actually needed to reach NFIN ∪ coNFIN . Already in [1] it
has been shown that generalized context conditions are equivalent to arbitrary
predicates on boundings, i.e., all boolean combinations over conditions < m (and,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51395784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A. Alhazov, R. Freund

hence, also ≥ m, > m, ≤ m, = m and 6= m) for multiplicities of symbols. In other
words, generalized context conditions are able to check exactly the multiplicities
of symbols up to an arbitrary fixed bound m. In this paper we consider stronger
context conditions.

2 Definitions

Let O be a finite alphabet. In this paper we will not distinguish between a mul-
tiset, its string representation (having as many occurrences of every symbol as its
multiplicity in the multiset, the order in the string being irrelevant), and a vector
of multiplicities (assuming that the order of enumeration of symbols from O is
fixed). By O◦ we denote the set of all multisets over O. By a strong context in this
paper we mean a language of multisets, i.e., a subset of O◦.

Let a ∈ O and u ∈ O◦, then a → u is a non-cooperative rule. The rules are
applied in the maximally parallel way, which in the case of our interest, i.e., for
deterministic non-cooperative P systems, correspond to replacing every occurrence
of each symbol a by the corresponding multiset u from the right side of the appli-
cable rule (if there is any; no competition between different rules can happen due
to the determinism). Let region j of a membrane system contain multiset w.

Then rule a → u with a strong context condition C ⊂ O◦ (written a → u|C)
is applicable if and only if |w|a > 0 and w ∈ C. Consider the following examples:

• a singleton atomic promoter s ∈ O corresponds to the context +(s) = {w ∈
O◦ | |w|s > 0}; we denote this feature by pro1,1;

• a singleton atomic inhibitor s ∈ O corresponds to the complementary context
condition: −(s) = {w ∈ O◦ | |w|s = 0};

• a singleton promoter s ∈ O◦ of a higher weight corresponds to the context
+(s) = {w ∈ O◦ | s ⊆ w};

• a singleton inhibitor s ∈ O◦ of a higher weight corresponds to the complemen-
tary context condition: −(s) = {w ∈ O◦ | s 6⊆ w};

• a (finite) promoter-set S ⊂ O◦ corresponds to the context +(S) =
⋃

s∈S +(s),
i.e., at least one promoter must be satisfied;

• a (finite) inhibitor-set S ⊂ O◦ corresponds to the complementary −(S) =⋂
s∈S −(s), i.e., any inhibitor can forbid the rule;

• a promoter-set P and an inhibitor-set Q together are called a simple context
condition, written (P,Q); it corresponds to the strong context condition +(P)∩
−(Q);

• context conditions as considered in [1] and [2] constitute a finite collection
of simple context conditions (P1, Q1), · · · , (Pm, Qm), they correspond to the
strong context condition

⋃
1≤i≤m (+(Pi) ∩ −(Qi)), and were shown to be equiv-

alent to predicates on boundings3;

3 the meaning of a promoter-set in [3] is different, but the computational power re-
sults are equivalent up to the descriptional complexity parameters such as number of
promoters/inhibitors and their weights

Deterministic Non-cooperative P Systems with Strong Context Conditions 3

• a bounding bk is an operation on a multiset, for any symbol preserving its
multiplicity up to k, or “cropping” it down to k otherwise; a predicate on
bounding can be specified by a finite set M of multisets with multiplicities not
exceeding k; it corresponds to a strong context condition {w ∈ O◦ | bk(w) ∈
M}, and can express precisely all boolean combinations of conditions |w|a < j,
a ∈ O, 1 ≤ j ≤ k;

• a regular strong context condition can be specified by a regular multiset lan-
guage, or as a Parikh image of a regular string language; e.g., Eq(a, b) = {w ∈
O◦ | |w|a = |w|b} is an example; we denote the family of such conditions by
ctxt(REG);

• if a strong context condition only depends on the multiplicities of k symbols
from O (and all other symbols do not affect the applicability), we represent
this property by a superscript k of ctxt; for instance, if we denote the symbols
mentioned above by S = {s1, · · · , sk}, then ctxtk(REG) = {{u∪v | u ∈ L, v ∈
(O \ S)◦} | L ⊆ S◦, L ∈ PsREG}; hence Eq(a, b) ∈ ctxt2(REG); by ctxt(Eq)
we denote being able to compare the multiplicities of two symbols (for different
pairs of symbols separately) for being equal, together with the complementary
condition;

• to stay within Turing computability of the resulting P systems, in this paper
we only consider recursive context conditions, i.e., multiset languages with
decidable membership, denoted by ctxt(REC);

• if a one-symbol strong context condition only depends on the multiplicity of
one symbol, it can be specified by a predicate over N; e.g., Sq(a) = {w ∈ O◦ |
|w|a = k2, k ≥ 0} and Sq′(a) = {w ∈ O◦ | |w|a = k2, k ≥ 1} are examples;
hence, Sq, Sq′ ∈ ctxt1(REC); by ctxt(Sq) or ctxt(Sq′) we denote being able to
test the multiplicities (of different symbols separately) for squares (including
zero or not, respectively), together with the complementary condition.

3 Regular conditions

Theorem 1. PsaDOP1(ncoo, ctxt2(REG)) =
PsaDOP1(ncoo, ctxt(Eq)) = PsRE.

Proof. Consider an arbitrary register machine M with m registers. For each work-
ing register i, 1 ≤ i ≤ m, we represent its value by the difference of the multi-
plicities of associated objects ai and bi. Hence, increment can be performed by
producing one copy of ai, decrement can be performed by producing one copy of
bi, and zero can be distinguished from non-zero by the following regular conditions:

Zi = {w ∈ O◦ | |w|ai
= |w|bi} = Eq(ai, bi), 1 ≤ i ≤ m,

Pi = {w ∈ O◦ | |w|ai
6= |w|bi} = O◦ \ Eq(ai, bi), 1 ≤ i ≤ m,

We construct the following P system:

Π = (O,Σ, µ = []
1
, w1 = q0, R1), where

4 A. Alhazov, R. Freund

O = Q ∪ T ∪ {ai, bi | 1 ≤ i ≤ m},
Σ ⊆ {ai | 1 ≤ i ≤ m},
R1 = {q → aiq

′ | q : (ADD(i), q′) ∈ P}
∪ {q → biq

′|Pi, q → q′′|Zi | q : (SUB(i), q′, q′′) ∈ P}.

�

If only regular conditions over one symbol are allowed, then we expect the
power of such P systems to be much more limited.

4 Stronger Conditions

Consider one-symbol context conditions that are even stronger than regular.
It is expected that, with recursively enumerable conditions over one number

we get something like NRE ∪ coNRE, so we look at intermediate cases. We look
at ways of obtaining RE by encoding a number by a multiplicity of one object,
say, ai, in such a way that increment and decrement are reasonably simple to
perform by non-removable objects. We propose the following encoding: “ignoring
the greatest square”, i.e., number n = k2 + t encodes t if 0 ≤ t < 2k + 1. In this
way, zero-test becomes a test whether the encoding number is a perfect square.
Increment is performed as increment of the encoding number, followed by addition
of 2k + 1 if the next perfect square, i.e., (k + 1)2, is reached. Decrement can thus
be done by adding 2k to the encoding number. The value k can be stored as the
multiplicity of another non-removable object, say, bi, whose multiplicity should
be incremented each time the encoding number is increased by 2k or by 2k + 1.
Putting it all together, the following construction is obtained:

Zi = {w ∈ O◦ | |w|ai = k2, k ≥ 0} = Sq(ai), Pi = O◦ \ Zi, 1 ≤ i ≤ m,
We construct the following P system:

Π = (O,Σ, µ = []
1
, w1 = q0, R1), where

O = Q ∪ T ∪ {ai, bi | 1 ≤ i ≤ m},
Σ ⊆ {ai | 1 ≤ i ≤ m},
R1 = {q → aiq̃, q̃ → q′|Pi, q̃ → q̂|Zi, q̂ → aibiq

′, bi → aiaibi|q̂
| q : (ADD(i), q′) ∈ P}

∪ {q → q′′|Zi, q → q̂|Pi, q̂ → biq
′, bi → aiaibi|q̂

| q : (SUB(i), q′, q′′) ∈ P}.

Yet there is a major drawback of this result established above in comparison
with the result from Theorem 1, as the input has to be encoded: given a number
ni for input register i, we have to compute numbers ni +k2i and ki, such that k2i ≤
ni ≤ k2i + 2ki. But this is an algorithm which is not difficult to be implemented;

Deterministic Non-cooperative P Systems with Strong Context Conditions 5

also our context condition for testing a number to be a perfect square does not
require a difficult algorithm.

Hence, we have just shown the following result, where the index wa instead of a
in PswaDOP1(ncoo, pro1,1, ctxt(Sq)) indicates weak computational completeness
as for having to encode the input:

Theorem 2. PswaDOP1(ncoo, ctxt1(REC)) =
PsPswaDOP1(ncoo, pro1,1, ctxt(Sq)) = PsRE.

Adding rules ai → λ|qf , bi → λ|qf and qf → λ for 1 ≤ i ≤ m, where qf is the
final state of the simulated register machines, we even obtain the clean result, i.e.,
halting without additional objects, still preserving determinism.

We can strengthen the claim of Theorem 2 by showing strong computational
completeness (in the sense of deterministic acceptance and even deterministic way
of computing functions). Without restricting the power of register machines, we
assume that in the simulated register machine, the output registers are never
decremented. Then, for the output registers, we replace the simulation of each
increment instructions with a single rule q → aiq

′, where q : (ADD(i), q′) ∈ P and
i is an output register. In this way, the output will be produced without encoding.

It remains to show that P systems with strong context conditions over one
symbol can simulate register machines where also the input is not encoded. We
use the following idea. To represent the input N of a register in the way the P
system constructed in the proof of Theorem 2 needs it, we first describe how to get
two numbers xN and yN such that N is a function of xN and yN , and, moreover,
by computing these two numbers from N , we get their representation in the form
we need them as for the P system constructed in Theorem 2.

First we explain the algorithm how to obtain xN and yN : Starting with N
represented by N copies of an object cN , the multiplicity of these input objects
is incremented until it becomes a perfect square (counting the increments, thus
finally obtaining xN), and then incrementing it (again counting the increments,
thus finally obtaining yN) until it again becomes a perfect square. From these two
numbers xN and yNwe can regain N by the formula computed in the following:

Given input N , the next perfect squares are k2N = N + xN (xN ≥ 0) and
(kN + 1)2 = N + xN + yN , then yN = 2kN + 1, so kN = (yN − 1)/2, and N =
k2N−xN = (yN−1)2/4−xN . Of course, the function f(xN , yN) = (yN−1)2/4−xN
decoding N from xN and yN can be implemented by a register machine and
simulated by a P system as described in Theorem 2.

In the following example we specify more formally the precomputing block
mentioned above.

Example 1. Encoding the input number N .
Let the input N be given as a multiplicity of symbol ci, and we want to obtain

values xN and yN described above in auxiliary registers j and l, respectively, but
represented already in the way we need their contents xN and yN implemented

6 A. Alhazov, R. Freund

with the corresponding number of symbols aj and bj as well as al and bl. We also
use an additional starting object si and in sum the following rules:

si → ciaj s̃i|P ′i , s̃i → s′|Pj , s̃i → ŝi|Zj , ŝi → ajbjs
′, bj → ajajbj |ŝi ,

si → citi|Z ′i,
ti → cialt̃i|P ′i , t̃i → t′i|Pl, t̃i → t̂i|Zl, t̂i → albkt

′, bk → alalbl|t̂i ,

ti → q
(i)
0 |Z ′i, where

Z ′i = {w ∈ O◦ | |w|ci = k2, k ≥ 0} = Sq(ci), P
′
i = O◦ \ Z ′i.

Essentially, the rules above are exactly like increment instructions from Theo-
rem 2, tracking how many times the multiplicity of the input object ci has to be
incremented to reach a perfect square and the next perfect square.

In the next phase of the encoding procedure, the P system should simulate a

register machine which starts in state q
(i)
0 and computes the function f(xN , yN) =

(yN − 1)2/4−xN , given xN in register j and yN in register l, producing the result
(i.e., the value N of the input register i to be represented) in register i, represented
by symbols ai and bi and thus in a suitable way to be the input for the P system
constructed in Theorem 2.

Theorem 3. PsaDOP1(ncoo, ctxt1(REC)) =
PsaDOP1(ncoo, pro1,1, ctxt(Sq)) = PsRE.

Proof. Clearly, any input vector can be processed accordingly in the way described
in Example 1, and then a simulation of the register machine on these inputs as
outlined in Theorem 2 completes the explanation of the following result. �

The construction in Theorem 3 may be adjusted so that we never rely on mul-
tiplicities of symbols ai being zero, i.e., when starting with a value 0 in a register,
we start with encoding it by 1. Moreover, testing for the appearance of a symbol
which never appears more than once (which we needed for the symbols correspond-
ing to the states of the simulated register machine) corresponds with testing for
a perfect square of positive integers. Hence, for each checking set from Sq′ (or its
complement) or each singleton promoter used in the previous construction we can
use a set from Sq′ (or its complement) only. In sum we get:

Corollary 1. PsaDOP1(ncoo, ctxt(Sq′)) = PsRE.

5 Conclusions

It was known that generalized context conditions are equivalent to predicates
on boundings, and that using them in deterministic maximally parallel non-
cooperative P systems still leaves their accepting power as low as NFIN ∪
coNFIN . We have shown that regular context conditions yield computational

Deterministic Non-cooperative P Systems with Strong Context Conditions 7

completeness of deterministic maximally parallel non-cooperative P systems, ex-
pecting that the power of P systems with regular context conditions over one
symbol is still quite limited. However, we have shown computational completeness
using a simple stronger one-symbol context condition, namely, {w ∈ O◦ | |w|ai =
k2, k ≥ 0}.

References

1. A. Alhazov, R. Freund: Asynchronous and Maximally Parallel Deterministic Con-
trolled Non-Cooperative P Systems Characterize NFIN and coNFIN . In: E.
Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, Gy. Vaszil: Membrane Com-
puting – 13th International Conference, CMC13, Budapest, Revised Selected Papers,
Lecture Notes in Computer Science 7762, Springer, 2013, 101–111.

2. A. Alhazov, R. Freund: Priorities, Promoters and Inhibitors in Deterministic Non-
Cooperative P Systems. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C.
Zandron: Membrane Computing - 15th International Conference, CMC 2014, Prague,
Revised Selected Papers, Lecture Notes in Computer Science 8961, Springer, 2014,
86–98.

3. A. Alhazov, R. Freund, S. Verlan: Promoters and Inhibitors in Purely Catalytic P
Systems. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron: Mem-
brane Computing - 15th International Conference, CMC 2014, Prague, Revised Se-
lected Papers, Lecture Notes in Computer Science 8961, Springer, 2014, 126–138.

4. A. Alhazov, D. Sburlan: Ultimately Confluent Rewriting Systems. Parallel Multiset-
Rewriting with Permitting or Forbidding Contexts. In: G. Mauri, Gh. Păun, M.J.
Pérez-Jiménez, G. Rozenberg, A. Salomaa: Membrane Computing, 5th International
Workshop, WMC 2004, Milan, Revised Selected and Invited Papers, Lecture Notes
in Computer Science 3365, Springer, 2005, 178–189.

5. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Research Frontiers of
Membrane Computing: Open Problems and Research Topics. International Journal
of Foundations of Computer Science 24 (5), 2013, 547–624.

6. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors. Journal of Uni-
versal Computer Science 10 (5), 2004, 581–599.

7. D. Sburlan: Further Results on P Systems with Promoters/Inhibitors. International
Journal of Foundations of Computer Science 17 (1), 2006, 205–221.

