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Abstract

The numerical solution of two-layer shallow water systems is required to simu-

late accurately stratified fluids, which are ubiquitous in nature: they appear

in atmospheric flows, ocean currents, oil spills, . . .Moreover, the implemen-

tation of the numerical schemes to solve these models in realistic scenarios

imposes huge demands of computing power. In this paper, we tackle the acce-

leration of these simulations in triangular meshes by exploiting the combined

power of several CUDA-enabled GPUs in a GPU cluster. For that purpose,

an improvement of a path conservative Roe type finite volume scheme which

is specially suitable for GPU implementation is presented, and a distributed

implementation of this scheme which uses CUDA and MPI to exploit the

potential of a GPU cluster is developed. This implementation overlaps MPI

communication with CPU-GPU memory transfers and GPU computation to

increase efficiency. Several numerical experiments performed on a cluster of

modern CUDA-enabled GPUs show the efficiency of the distributed solver.
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1. Introduction

The two-layer shallow water system has been used as the numerical model

to simulate several phenomena related to stratified geophysical flows such

as atmospheric flows, ocean currents, oil spills or tsunamis generated by

underwater landslides. The simulation of these phenomena gives to place

to very long lasting simulations in big computational domains. Moreover,

some of these phenomena (tsunami propagation or oil spills) could require

real time calculation. Therefore, extremely efficient numerical schemes and

implementations are needed to be able to analyze those problems in practical

execution times. Since the numerical schemes to solve shallow water systems

usually exhibit a high degree of potential parallelism, the development of

parallel versions of these schemes for high performance platforms seems to be

a suitable way of achieving the required performance in realistic applications.

A cost effective way of obtaining a substantially higher performance in

these applications consists in using Graphics Processor Units (GPUs). These

architectures make it possible to obtain performances that are orders of mag-

nitude faster than a standard CPU and are growing in popularity among the

scientific and engineering community [1, 2]. Moreover, several GPU pro-

gramming toolkits such as CUDA [3] have been developed to facilitate the

programming of GPUs for general purpose applications.

There are previous proposals to port finite volume one-layer shallow water

solvers to a GPU by using a graphics-specific programming language [4, 5, 6],

but currently most of the proposals to simulate shallow flows on a single

GPU are based on the CUDA programming model. A CUDA solver for one-
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layer system based on the first order finite volume scheme presented in [7]

is described in [8] to deal with structured regular meshes. The extension

of this CUDA solver for two-layer shallow water system is presented in [9].

There also exist proposals to implement, using CUDA-enabled GPUs, high

order schemes to simulate one-layer systems [10, 11, 12] and to implement

first-order schemes for one and two-layer systems on triangular meshes [13].

Although the use of single GPU systems makes it possible to satisfy the

performance requirements of several applications which are not computatio-

nally expensive, this situation is not frequent in most realistic applications.

Many applications require to handle huge meshes and large number of time

steps. Moreover, in some applications real time accurate predictions (for

instance, to approximate the effect of an unexpected oil spill) could be re-

quired. The characteristics of these applications suggest to combine the

power of multiple GPUs to satisfy the performance requirements.

One approach to use several GPUs in these problems is based on pro-

gramming shared memory multi-GPU desktop systems. These platforms

have been used to accelerate considerably fluid dynamic [14] and shallow wa-

ter [15] simulations by combining shared memory programming primitives to

manage threads in CPU and CUDA to program the GPU. Although this is a

cost-effective approach, these platforms only offer a reduced number of GPUs

and more flexible systems are desirable to answer to the growing performance

requirements of many realistic applications.

A more flexible approach to obtain the required performance involves to

use clusters of GPU-enhanced computers where each node is equipped with a

single GPU or with a multi-GPU system. The computation on GPU clusters
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could make it possible to scale the reduction in execution time according

to the number of GPUs (which can be easily increased). Therefore, this

approach is more flexible than using a multi-GPU desktop system and the

memory limitations of a GPU-enhanced node can be overcome by suitably

distributing the data among the nodes, enabling us to simulate significantly

larger realistic models and with greater precision.

The use of GPU clusters to accelerate data intensive computations is gai-

ning in popularity [16, 17, 18, 19]. In [20], a scheme to solve one-layer shallow

water systems is implemented on a GPU cluster for real-time tsunami simu-

lation. Most of the proposals to exploit GPU clusters in scientific computing

use MPI [21] to implement the communication among the processes of the

distributed system and CUDA [3] to program the GPU (or GPUs) associated

to each node. A common way to reduce the remote communication overhead

in these distributed implementations consists in using non-blocking commu-

nication MPI functions to overlap the data transfers between nodes of the

cluster with the GPU computation and the CPU-GPU data transfers.

This work deals with the acceleration of the numerical solution of two-

layer shallow water systems by exploiting the parallelization of an improved

finite volume scheme for unstructured meshes on GPU clusters. For that

purpose, a distributed implementation of this scheme for a GPU cluster is

developed by using MPI and CUDA. This implementation incorporates an

efficient management of the distributed unstructured mesh and mechanisms

to overlap computation with communication.

The outline of the article is as follows: the next section describes the

underlying mathematical model and presents an improvement of a first order
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Roe type finite volume scheme, called IR-Roe scheme. Section 3 describes

a data parallel version of the IR-Roe scheme. The efficiency of several im-

plementations of the IR-Roe scheme and the classical Roe scheme [7, 22] is

compared in Section 4. In the two next sections we describe a single and a

multi-GPU distributed implementation, respectively, of the method for trian-

gular meshes using the CUDA framework. Section 7 shows the experimental

results obtained when the implementations are applied to solve an internal

dam break problem on a cluster of 4 NVIDIA Fermi GPUs. Finally, Section

8 summarizes the main conclusions and presents the future work.

2. An efficient numerical scheme

2.1. The two-layer shallow water system

Let us consider the system of equations governing the 2d flow of two

superposed immiscible layers of shallow fluids in a subdomain Ω ⊂ R2:

∂W

∂t
+
∂F1

∂x
(W )+

∂F2

∂y
(W ) = B1(W )

∂W

∂x
+B2(W )

∂W

∂y
+S1(W )

∂H

∂x
+S2(W )

∂H

∂y
,

(1)

where W =
(

h1 q1,x q1,y h2 q2,x q2,y

)T

,
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(

q1,x
q21,x
h1

+
1

2
gh2
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q1,xq1,y
h1

q2,x
q22,x
h2

+
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q1,xq1,y
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g h2

1 q2,y
q2,xq2,y
h2

q22,y
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+
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gh2

2

)T

,

Sk(W ) =
(

0 gh1(2− k) gh1(k − 1) 0 gh2(2− k) gh2(k − 1)
)T

, k = 1, 2,

Bk(W ) =





0 P1,k(W )

rP2,k(W ) 0



 Pl,k(W ) =











0 0 0

−ghl(2− k) 0 0

−ghl(k − 1) 0 0











l = 1, 2.
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Index 1 in the unknowns makes reference to the upper layer and index 2 to

the lower one; g is the gravity and H(x), the depth function measured from

a fixed level of reference; r = ρ1/ρ2 is the ratio of the constant densities of

the layers (ρ1 < ρ2) which, in realistic oceanographical applications, is close

to 1. Finally, hi(x, t) and qi(x, t) are, respectively, the thickness and the

mass-flow of the i-th layer at the point x at time t, and they are related

to the velocities ui(x, t) = (ui,x(x, t), ui,y(x, t)), i = 1, 2 by the equalities:

qi(x, t) = ui(x, t)hi(x, t), i = 1, 2.

Let us define the matrices Ak(W ) = Jk(W ) − Bk(W ), k = 1, 2 where

Jk(W ) = ∂Fk

∂W
(W ) are the Jacobians of the fluxes Fk, and we assume that

(1) is strictly hyperbolic. Let us also remark that the system (1) verifies the

property of invariance by rotations. Effectively, let us define

Tη =





Rη 0

0 Rη



 , Rη =











1 0 0

0 ηx ηy

0 −ηy ηx











,

and let us denote Fη(W ) = F1(W )ηx +F2(W )ηy, B(W ) = (B1(W ), B2(W )),

and S(W ) = (S1(W ), S2(W )). Then

Fη(W ) = T−1
η F1(TηW ), TηB(W ) · η = B1(TηW ), TηS(W ) · η = S1(TηW )

(2)

Moreover, it is easy to check that TηW verifies the system

∂t(TηW ) + ∂ηF1(TηW ) = B1(TηW )∂ηW + S1(TηW )∂ηH +Qη⊥ , (3)

where Qη⊥ = Tη

(

− ∂η⊥Fη⊥(W ) +B(W ) · η⊥∂η⊥W + S(W ) · η⊥∂η⊥H
)

.
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2.2. The IR-Roe Numerical Scheme

To discretize (1) the computational domain Ω is decomposed into cells or

finite volumes: Vi ⊂ R2. Here, it is assumed that the cells are triangles. Let

us denote by L the number of triangles of the mesh.

Given a finite volume Vi, |Vi| will represent its area; Ni ∈ R2 its center;

Ni the set of indexes j such that Vj is a neighbor of Vi; Γij the common edge

of two neighboring triangles Vi and Vj, and |Γij| its length; ηij = (ηij,x, ηij,y)

the normal unit vector at the edge Γij pointing towards the triangle Vj; and

W n
i the constant approximation to the average of the solution in the triangle

Vi at time tn provided by the numerical scheme.

Let us now briefly describe the Roe type scheme for system (1) that can

be defined taking into account the property of invariance by rotations [23]:

W n+1
i = W n

i − ∆t

|Vi|
∑

j∈Ni

|Γij|F IR−ROE
ij

−
(4)

where F IR−ROE
ij

−
is defined as follows:

1. Let us define Wη = [h1 q1,η h2 q2,η]T = Tη(W )[1,2,4,5], and Wη⊥ =

[q1,η⊥ q2,η⊥ ]
T = Tη(W )[3,6], where W[i1,··· ,is] is the vector defined from

vector W , using its i1-th, . . . , is-th components.

2. Let Φ−
ηij

be the 1D numerical Roe flux associated to the 1D two-layer

shallow-water system defined by the 1-st, 2-nd, 4-th and 5-th equations

of system (3) where the term Qη⊥ij
has been neglected:

Φ−
ηij

= P−
ij (F1(Wηij ,j)−F1(Wηij ,i)−Bij(Wηij ,j −Wηij ,i)−Sij(Hj −Hi))

+F1(Wηij ,i).
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where F1(Wηij) = F1(TηijW )[1,2,4,5], Bij(Wηij,j−Wηij,i) =
(

B1,ij(Tηij(Wj−

Wi))
)

[1,2,4,5]
, Sij(Hj −Hi) =

(

S1,ij(Hj −Hi)
)

[1,2,4,5]
.

Finally, P−
ij = 1

2Kij(I − sgn(Dij))K−1
ij , where I is the identity matrix,

Kij is the matrix whose columns are the eigenvectors of the matrix Aij,

and sgn(Dij) is the diagonal matrix whose coefficients are the signs of

the eigenvalues of Aij, being

Aij =

















0 1 0 0

gh1,ij − u2
1,ηij 2u1,ηij gh1,ij 0

0 0 0 1

rgh2,ij 0 gh2,ij − u2
2,ηij 2u2,ηij

















with uk,ηij = uk,ij · ηij, k = 1, 2 and hk,ij = hk,i+hk,j

2 , where uk,l,ij =√
hk,iuk,l,i+

√
hk,juk,l,j√

hk,i+
√

hk,j

, k = 1, 2, l = x, y.

3. Let us define Φ−

η⊥ij
=

[

(Φ−
ηij
)[1]u∗

1,η⊥ij
(Φ−

ηij
)[3]u∗

2,η⊥ij

]T

, where u∗
k,η⊥ij

is

defined as follows

u∗
k,η⊥ij

=











q
k,η⊥

ij
,i

hk,i
if (Φηij)[2k−1] > 0

q
k,η⊥

ij
,j

hk,j
otherwise

k = 1, 2.

Let us remark that Φ−

η⊥ij
is the numerical flux associated to the 3-rd

and 6-th equations of system (3) where, again, the term Qη⊥ij
has been

neglected. Its derivation has been done following the main ideas of the

HLLC method for the shallow water system introduced in [24] as qk,η⊥ij ,

k = 1, 2 can be seen as a passive scalar that is convected by the flow.

4. Finally, the global numerical flux is defined by F IR−ROE
ij

−
= T−1

ηij
F−
ij ,

where F−
ij =

[

(Φ−
ηij
)[1] (Φ−

ηij
)[2] (Φ−

η⊥ij
)[1] (Φ−

ηij
)[3] (Φ−

ηij
)[4] (Φ−

η⊥ij
)[2]

]

.
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A CFL condition must be imposed to ensure stability of both schemes:

1

2

∆t

Vi

∑

j∈Ni

|Γij‖Dij‖∞ ≤ γ, 1 ≤ i ≤ L, with 0 < γ ≤ 1. (5)

As in the case of systems of conservation laws, when sonic rarefaction

waves appear it is necessary to modify the numerical scheme to get entropy-

satisfying solutions. For instance, the Harten-Hyman entropy fix technique

[25] can be easily adapted here. Let us also remark that the scheme is

path-conservative in the sense introduced by Pares in [26] and [22]. It is

well-balanced for stationary solutions corresponding to water at rest. More

general results concerning the consistency and well-balanced properties of

Roe schemes have been studied in [22] and [27].

3. Parallelization of the scheme

Figure 1a shows a graphical description of the parallel algorithm, obtained

from the description of the IR-Roe numerical scheme given in Section 2. The

main calculation phases are identified with circled numbers, and the main

sources of data parallelism are represented with overlapping rectangles.

Initially, the finite volume mesh is constructed from the input data. Then the

time stepping process is repeated until the final simulation time is reached.

At the (n + 1)-th time step, Equation (4) must be evaluated to update the

state of each cell.

Each of the main calculation phases present a high degree of parallelism

because the computation at each edge or volume is independent with respect

to that performed at other edges or volumes:
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(a) Parallelism sources (b) CUDA implementation

Figure 1: Main calculation phases

1. Edge-based calculations: This is the most costly phase of the al-

gorithm. It involves two calculations for each edge Γij communicating

two cells Vi and Vj (i, j ∈ {1, . . . , L}):

a) The computation of the contribution Mij =| Γij | F IR−ROE
ij

−
(a 6×1

vector) to the sums Mi and Mj associated to Vi and Vj (see Eq. (4)).

b) The computation of the contribution Zij =| Γij |‖ Dn
ij ‖∞ (a scalar)

to the sums Zi and Zj associated to Vi and Vj (see Equation (5)).

2. Computation of the local ∆t for each volume: For each volume

Vi, the local ∆ti is obtained as follows (see Eq. (5)): ∆ti = 2γ |Vi|Z−1
i .

3. Computation of ∆tn: The minimum of all the local ∆t values previ-

ously obtained for each volume must be computed.

4. Computation of W n+1
i : The (n+ 1)-th state of each volume (W n+1

i )

must be approximated from the n-th state using the data computed.
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Since the numerical scheme exhibits a high degree of potential data pa-

rallelism, it is good candidate to be implemented on CUDA architectures.

4. Roe Schemes Comparison

In this section we will compare the efficiency of several implementations

of the IR-Roe method and the classical Roe scheme introduced in [7]. We

consider an internal circular dambreak problem in the [−5, 5]× [−5, 5] rect-

angular domain. The depth function is H(x, y) = 5, and the initial condition

is: W 0
i (x, y) = (h1(x, y), 0, 0, h2(x, y), 0, 0)T, where:

h1(x, y) =







4 if
√

x2 + y2 > 1.5

0.5 otherwise
, h2(x, y) = 5− h1(x, y).

The numerical scheme is run for several triangular meshes (see Table 1).

Simulation time interval is [0, 0.1], CFL parameter is γ = 0.9, r = 0.998 and

wall boundary conditions (q1 · η = 0, q2 · η = 0) are considered.

We have implemented two programs for each Roe method: a serial and

a quadcore CPU version. The latter is a parallelization of the serial CPU

version using OpenMP [28]. Both programs have been implemented in C++

using double precision and the Eigen library [29] for operating with matrices.

All the programs were executed on a Core i7 920 with 4 GB RAM. Ta-

ble 1 shows the execution times in seconds. We also show in parenthesis the

speedup obtained with the IR-Roe method with respect to the equivalent

implementation of the classical Roe method.

As it can be seen, the IR-Roe method clearly outperforms the classical

Roe method in all cases, obtaining a speedup of 10 for big meshes. Moreover,

this scheme is more suitable to be ported to CUDA-enabled GPUs because
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Classical Roe IR-Roe
Volumes 1 core 4 cores 1 core 4 cores

4016 0.61 0.16 0.11 (5.5) 0.031 (5.2)
16040 4.84 1.27 0.88 (5.5) 0.27 (4.7)
64052 41.38 11.18 7.76 (5.3) 2.50 (4.5)
256576 382.5 103.6 63.87 (6.0) 20.30 (5.1)
1001898 4402.0 1282.8 494.7 (8.9) 154.9 (8.3)
2000608 14207.9 4878.3 1469.4 (9.7) 452.9 (10.8)
3000948 25716.9 8782.7 2697.8 (9.5) 830.5 (10.6)

Table 1: CPU execution times in seconds for both Roe methods.

it does not need to use double precision floating point arithmetic and the

computational demand of each GPU thread is lower.

5. CUDA Implementation of the IR-Roe method

We describe the CUDA implementation of the algorithm exposed in Sec-

tion 3. It is a variant of the implementation described in [13], Section 7.3.

The general steps of the parallel implementation are depicted in Figure

1b. Each processing step executed on the GPU is assigned to a CUDA kernel

and corresponds to a calculation phase described in Section 3.

Next, we briefly describe each step (see [13] for more details):

• Build data structure: Volume data is stored in two arrays of L

float4 elements as 1D textures, where each element contains the data

(state, depth and area) of a volume. Edge data is stored in two arrays

in global memory with a size equal to the number of edges: an array

of float2 elements for storing the normals, and another array of int4
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elements for storing, for each edge, the positions of the neighboring

volumes in the volume textures and the two accumulators where the

edge must write its contributions to the neighboring volumes.

• Process edges: In this step each thread represents an edge, and com-

putes the contribution of the edge to their adjacent volumes.

The threads contributes to a particular volume by means of six accu-

mulators, each one being an array of L float4 elements. Let us call

the accumulators 1-1, 1-2, 2-1, 2-2, 3-1 and 3-2. Each element of 1-1,

2-1 and 3-1 stores the contributions of the edges to the layer 1 and to

the local ∆t of Wi, while each element of 1-2, 2-2 and 3-2 stores the

contributions of the edges to the layer 2 of Wi. This kernel is computa-

tionally more efficient than the proposed in [13] (which implements the

edge processing for the classical Roe scheme) and results more suitable

for GPU implementation because it does not need to perform any dou-

ble precision calculation and its matrix and vector operations mainly

use arguments with dimensions 4× 4 and 4× 1.

• Compute ∆ti for each volume: In this step, each thread represents

a volume and computes the local ∆ti of the volume Vi

• Get minimum ∆t: This step finds the minimum of the local ∆ti of

the volumes by applying the most optimized kernel of the reduction

sample included in the CUDA Software Development Kit [30].

• Compute Wi for each volume: In this step, each thread represents a

volume and updates the state Wi of the volume Vi. The first 3 elements
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of Mi are obtained by summing the three 3 × 1 vectors stored in the

positions corresponding to the volume Vi in accumulators 1-1, 2-1 and

3-1, while the last 3 elements are obtained by summing the three 3× 1

vectors stored in the equivalent positions in accumulators 1-2, 2-2 and

3-2. Since the 1D textures containing the volume data are stored in

linear memory, we update the textures by writing directly into them.

6. Implementation on a GPU cluster

In this section a multi-GPU extension of the CUDA implementation de-

tailed in section 5 is proposed. Basically, the triangular mesh is divided into

several submeshes and each submesh is assigned to a CPU process, which, in

turn, uses a GPU to perform the computations related to its submesh. We

use MPI [21] for the communication between processes. Next we describe

how the data of a particular submesh is created and stored in GPU memory.

6.1. Creation of the Submesh Data

We consider two types of submeshes: those that have volumes that must

be sent to two different MPI processes (i.e. submeshes) in each iteration

(type 1), and those that do not have volumes that fulfill the former condition

(type 2). For example, in Figure 2a the two left submeshes are of type 1,

and the two right submeshes belong to type 2. The volumes that must be

sent to two MPI processes are noted with an asterisk. Both types of submesh

use the same data structure for its edges and volumes, explained in Section

5, but now the arrays of volumes are divided into three blocks:
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(a) Types of submeshes (b) Volume indexation (c) Sequence of pairs

Figure 2: Submeshes.

1. Firstly, the volumes of the submesh that are not communication vo-

lumes are stored (a communication volume is a volume that has an

adjacent edge to another submesh).

2. Secondly, the communication volumes of the submesh are stored in the

array. In turn, these volumes are divided into groups of volumes that

are adjacent to a particular submesh.

3. Finally, the communication volumes of another submeshes that are

adjacent to our submesh are stored. In turn, these volumes are divided

into groups of volumes that belong to a particular submesh.

Figure 2b shows a possible volume indexation of the volume data used

by the gray submesh. Block 1 is formed by volumes 0-9, block 2 consists of

volumes 10-13, and volumes 14-18 belong to block 3.

6.2. Creation of Data in Submeshes of Type 1

The creation of the data in submeshes of type 1 is more complicated.

For this kind of submeshes, we must arrange the communication volumes of
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the submesh so that all the communication volumes that are adjacent to a

particular submesh appear consecutively in the array. For example, in Figure

2b, note that volumes 10-12 are sent to the lower submesh, while volumes 12

and 13 are sent to the right submesh, thus overlapping the sendings.

In order to perform this arrangement, firstly we build a list of commu-

nication volumes for each adjacent submesh. For example, in Figure 2b we

would have two lists: [10, 11, 12] and [12, 13].

Now, for each communication volume of the submesh that must be sent to

two MPI processes, we build a pair (p1, p2), meaning that the volume must be

sent to processes p1 and p2. Figure 2c shows an example centered on submesh

4, where all the pairs are specified. Once all the pairs have been built, we

perform a reordering of them (and their elements if necessary) so that we

get a list of consecutive processes. In Figure 2c, the pairs are reordered

obtaining: (0, 1), (1, 2), (2, 3) and (5, 6). This gives the consecutive list of

processes 0, 1, 2, 3, 5 and 6. Now we carry out the adequate swaps:

1. In the list storing the volumes that are adjacent to submesh 0, we put

the volume shared with submesh 1 at the end.

2. In the list storing the volumes that are adjacent to submesh 1, we put

the volume shared with submesh 0 at the start, and the volume shared

with submesh 2 at the end.

3. We continue processing the list in the same way until it finishes.

Finally we join all the lists of communication volumes adequately to get

the definitive block of communication volumes.

Note that a submesh must know the ordering of the communication vo-

lumes that receives from another submesh. Therefore, at this point all sub-
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meshes must send this information to their adjacent submeshes.

Note also that this algorithm does not work when a submesh has two

volumes that must be sent to the same submeshes. This is reflected by a

duplicated pair in the sequence of pairs, but we can always perform a domain

decomposition where this does not occur. It neither works when a submesh

is formed by a single volume, but this will never happen in a real problem.

6.3. Multi-GPU Code

We have implemented two versions of the multi-GPU algorithm: one

with blocking MPI sends and receives, and another one which overlaps MPI

communication with CPU-GPU memory transfers and kernel computation.

Algorithm 1 shows the general steps of the non-overlapping implemen-

tation. In lines 3-5 we send to each adjacent submesh the communication

volumes that are adjacent to it. Then, in lines 6-8 we receive from the same

submeshes their communication volumes that are adjacent to our submesh.

We have used bufferized MPI send operations with a given buffer to avoid

deadlocks with big meshes. Lines 9-10 copy the received communication vo-

lumes to GPU memory. In line 14 a MPI reduction is performed to obtain

the global minimum ∆t in all the MPI processes. Lines 16-17 copy the new

states of the communication volumes of our submesh from device to host.

Algorithm 2 shows the general steps of the overlapping implementation.

Lines 3-5 (the reception of the communication volumes from the adjacent

submeshes) overlap with lines 6-7 (the copy of the new states of our commu-

nication volumes from device to host). Then, lines 8-10 (the sending to each

adjacent submesh of the communication volumes that are adjacent to it)
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Algorithm 1 Non-overlapping multi-GPU algorithm

1: n ← number of adjacent submeshes
2: while (t < tend) do
3: for i = 1 to n do

4: Send communication volumes to adjacent submesh i
5: end for

6: for i = 1 to n do

7: Receive communication volumes from adjacent submesh i
8: end for

9: CudaMemcpy(Layer 1 of comm. volumes from host to device)
10: CudaMemcpy(Layer 2 of comm. volumes from host to device)
11: processEdges<<<grid, block>>>(. . .)
12: computeDeltaTVolumes<<<grid, block>>>(. . .)
13: ∆t ← getMinimumDeltaT(. . .)
14: MPI Allreduce(∆t, min∆t, . . .)
15: computeVolumeStates<<<grid, block>>>(. . .)
16: CudaMemcpy(Layer 1 of comm. volumes from device to host)
17: CudaMemcpy(Layer 2 of comm. volumes from device to host)
18: t ← t+min∆t
19: end while

overlap with line 11 (the processing of the non-communication edges, since

these edges do not need external data to be processed). In line 12 we wait

for the communication volumes of the adjacent submeshes to arrive. Once

they have arrived, in lines 13-14 we copy them to GPU memory. In line 15

only the communication edges are processed.

7. Experimental Results

In this section we will test the single and multi-GPU implementations

described in Sections 5 and 6, respectively. The test problem and the pa-

rameters are the same that were used in Section 4.
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Algorithm 2 Overlapping multi-GPU algorithm

1: n ← number of adjacent submeshes
2: while (t < tend) do
3: for i = 1 to n do

4: Receive comm. volumes from adjacent submesh i (Non-blocking)
5: end for

6: CudaMemcpy(Layer 1 of comm. volumes from device to host)
7: CudaMemcpy(Layer 2 of comm. volumes from device to host)
8: for i = 1 to n do

9: Send comm. volumes to adjacent submesh i (Non-blocking)
10: end for

11: processEdges<<<grid, block>>>(Non-communication edges)
12: MPI Waitall (Comm. volumes from adjacent submeshes)
13: CudaMemcpy(Layer 1 of comm. volumes from host to device)
14: CudaMemcpy(Layer 2 of comm. volumes from host to device)
15: processEdges<<<grid, block>>>(Communication edges)
16: computeDeltaTVolumes<<<grid, block>>>(. . .)
17: ∆t ← getMinimumDeltaT(. . .)
18: MPI Allreduce(∆t, min∆t, . . .)
19: computeVolumeStates<<<grid, block>>>(. . .)
20: t ← t+min∆t
21: end while

We have used the Chaco software [31] to divide a mesh into equally sized

submeshes, the OpenMPI implementation [32] and the GNU compiler. All

the programs were executed in a cluster formed by four Intel Xeon servers

with 8 GB RAM each one, connected with a Gigabit Ethernet switch. Gra-

phics cards used were two Tesla C2050 and two GeForce GTX 570. Since the

GTX 570 card provides better performance for our programs than the Tesla,

it is suitable to use the four cards to measure strong scalability taking the

Tesla as the reference card. Table 2 shows the execution times in seconds

for all the meshes and number of GPUs. Figure 3a shows graphically the
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Tesla 2 Tesla C2050 2 Tesla + 2 GTX 570
Volumes C2050 Non-Overlap Overlap Non-Overlap Overlap

4016 0.0090 0.012 0.014 0.011 0.015
16040 0.045 0.038 0.040 0.027 0.031
64052 0.29 0.19 0.19 0.12 0.12
256576 2.10 1.18 1.16 0.69 0.63
1001898 15.63 8.40 7.98 4.60 4.08
2000608 45.37 23.34 23.00 12.08 11.66
3000948 82.84 43.52 41.83 23.34 21.23

Table 2: GPU execution times in seconds for the IR-Roe method.

speedups obtained with the single GPU program executed on a Tesla C2050

with respect to the CPU versions of the IR-Roe method used in Section 4.

Figure 3b shows the speedups obtained with the multi-GPU implementations

with respect to one Tesla.

As it can be seen, using a Tesla C2050, for big meshes we have reached

a speedup of 32 and 10 with respect to monocore and quadcore CPU ver-

sions, respectively. As expected, the overlapping multi-GPU implementation

outperforms the non-overlapping version, and the weak and strong scaling

reached by the overlapping version are close to perfect for up to four GPUs.

8. Conclusions and future work

In this paper we have presented an improvement of a first order well-

balanced Roe type finite volume solver for two-layer shallow water system.

This numerical scheme has proved to be computationally more efficient than

the classical Roe scheme and is more suitable to be implemented in modern

CUDA-enabled GPUs than the classical Roe scheme. A multi-GPU dis-
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(a) Tesla C2050 speedup with respect
to serial and quadcore CPU versions

(b) Multi-GPU speedup with respect
to one Tesla C2050

Figure 3: Speedups obtained for one and several GPUs.

tributed implementation of this scheme that works on triangular meshes has

been implemented using MPI and CUDA. Numerical experiments carried out

on a GPU cluster have shown the efficiency of this solver, obtaining weak

and strong scaling close to perfect for up to four GPUs by overlapping MPI

communications with CPU-GPU memory transfers and GPU computation.

As further work, we propose to extend the proposal to enable high order

numerical schemes and to integrate a dynamic load balancing strategy (which

is necessary in problems, such as flood simulations, where the computational

load for each spatial subdomain could vary dramatically).
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