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Abstract

In this paper we introduce an analysis technique for the solution of the steady
advection-diffusion equation by the PSI (Positive Streamwise Implicit) method. We
formulate this approximation as a non-linear finite element Petrov-Galerkin scheme,
and use tools of functional analysis to perform a convergence, error and maximum
principle analysis. We prove that the scheme is first-order accurate in H1 norm, and
well-balanced up to second order for convection-dominated flows. We give some nu-
merical evidence that the scheme is only first order accurate in L2 norm. Our analysis
also holds for other non-linear Fluctuation Splitting schemes that can be built from
first-order monotone schemes by the Abgrall and Mezine’s technique introduced in
[2].

1 Introduction

We revisit in this paper the problem set by the accurate numerical solution of flow
problems in advection dominated regimes. It is well known that this is a challenging
problem due to the need of combining high-order accuracy at steady state with maximum
principle. Both requirements are essential to obtain numerical solutions that are useful for
scientific and engineering applications.

This problem has received several ways of solution by means of methods that necessarily
must be non-linear , due to Godunov’s Theorem, to comply with both requirements of being
of high order at steady state and verifiying the maximum principle (See Toro [32]). Let us
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mention the method of Characteristics (See Pironneau [24], Suli [30]), and more recently
the Discontinuous Galerkin (See Cockburn [11], Cockburn and Shu [12]) and Fluctuation
Splitting or Residual Distribution methods.

Fluctuation Splitting methods originated in the work by Roe and Sidilkover where the
N (narrow) scheme was identified as the linear scheme with the smaller numerical diffusion
for the solution of transient advection equations on rectangular grids. This scheme was
extended to a large class of linear and non-linear compact schemes to solve hyperbolic
systems of conservation laws by piecewise affine finite element discretizations on triangular
grids by the same authors, and also by Deconinck, Struijs and co-workers (See [13], [21],
[28], [29] for instance) and more recently by Abgrall and co-workers (See [1], [2] and [3]).

The convergence of the N scheme for transient linear advection schemes was analysed
by Perthame and co-workers in [22] and [23], where its strong L2 convergence was proved.
This analysis is based upon an intrinsic interpretation of the N -scheme as a finite volume
scheme, and upon the obtention of weak bounded variation estimates as for the convergence
of conservation laws on triangular grids.

One of the most successful non-linear Fluctuation Splitting schemes is the PSI (Positive
Streamwise Implicit) method, introduced in [13]. This is an extension of the N-scheme to
second-order for steady state. It is monotone and is particularly accurate in zones of strong
gradients or discontinuities of the solution.

Our purpose in this paper is to analyse the solution of the steady advection-diffusion
equation when the advection operator is discretized by the PSI method and the diffusion
operator is discretized by the standard Galerkin approximation. Our main contribution
is to formulate this approximation as a non-linear finite element Petrov-Galerkin scheme,
and to use the tools of functional analysis adapted to this kind of formulation to perform
a convergence, error and maximum principle analysis.

We consider the advection-diffusion problem in this paper as a model problem, where
we introduce the basic aspects of our analysis. This analysis may be used as a basis for
several further developments. At first, to analyse the solution of unsteady convection-
diffusion problems as an straightforward extension of the present analysis.

Also, the PSI method may be used in the solution of Navier-Stokes equations by piece-
wise affine Finite Elements, to obtain a positive solver of the convection operator. This
yields a robust solver with excellent stability properties. The analysis of this solver so as
some relevant numerical tests will appear in a forthcoming paper.

The paper is organised as follows. In Section 2 we set an abstract Petrov-Galerkin
discretization for the advection-diffusion equation, satisfying some general hypotheses that
are stated in Section 3. Section 4 proves that the PSI and other non-linear Fluctuation
Splitting methods may be formulated in the abstract framework set in Section 2. Section
5 develops some technical tools that are used in following Sections to prove existence and
quasi-uniqueness results for discrete problems, and in Section 7 to perform a convergence
and error analysis. Section 8 is devoted to prove the maximum principle and to obtain
Lr-estimates. Finally, in Section 9 some numerical evidence is given that the PSI method
has an overall first order in Lr norms, while a second order well-balanced property for
advection-dominated regimes is proved.
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2 The advection-diffusion problem

In this section we introduce an approximation of the stationary advection-diffusion
problem by a non-linear Petrov-Galerkin Finite Element method. This will be an abstract
discrete variational formulation for the PSI (Positive Streamwise Implicit) method.

Let Ω be a bounded domain of Rd (d = 2 or 3) with Lipschitz boundary Γ. We consider
a measurable subset Γ− of Γ with non-zero measure, and set Γ+ = Γ \ Γ−. Denote by n
the unit normal to Γ, outer to Ω. We consider the following stationary advection-diffusion
problem: 




u · ∇ρ− ν∆ρ = f in Ω
ρ = g on Γ−

ν
∂ρ

∂n
= 0 on Γ+,

(1)

where ρ is a physical magnitude (a “tracer ”) transported by the velocity field u : Ω̄ → Rd,
and ν is the diffusion coefficient of ρ. Also, f : Ω̄ → Rd is the source term and g is the
Dirichlet data for ρ on the inflow boundary Γ−.

We assume that the velocity field satisfies u ∈ Lq(Ω)d for some q > d and ∇ · u = 0.
Then, the trace on Γ of the normal velocity u ·n belongs to Lr(Γ)d, with r = q(d−1)/d > 1.
This is proved by a duality argument based upon Sobolev’s injections. This allows us to
formalize the meaning of ”inflow boundary” as u · n is defined a. e. on Γ. Specifically, we
assume

u · n < 0 a. e. on Γ−, and u · n ≥ 0 a. e. on Γ+.

We define the space
V = {v ∈ H1(Ω)/v|Γ− = 0},

and consider the variational formulation of problem (1),

Obtain ρ ∈ G + V such that a(ρ, v) = 〈f, v〉 ∀ v ∈ V, (2)

where G ∈ H1(Ω) is some lifting of g and a : H1(Ω)×H1(Ω) 7→ R is the bilinear form

a(w, v) =

∫

Ω

(u · ∇w) v + ν

∫

Ω

∇w · ∇v. (3)

Under the above hypotheses on u, problem (2) admits a unique solution in H1(Ω) if
g ∈ H1/2(Γ−) and f ∈ V ′, by Nec̆as Lemma. (See Ern & Guermond [16].)

We may assume g = 0 up to an additive changement of the source term f , and we shall
assume it so, without loss of generality. In this case the solution ρ belongs to V .

To approximate problem (2), let us assume Ω to be a poligonal domain. Consider a
triangulation Th of Ω by triangles in 2D and tetrahedra in 3D. As usual we assume that h
denotes the largest diameter of the elements of Th. Consider the finite dimensional spaces
of piecewise affine finite elements built on Th:

V ∗
h = {vh ∈ C0(Ω̄)/ vh|T ∈ P1 ∀T ∈ Th}, Vh = {vh ∈ Vh/ vh = 0 on Γ−}. (4)
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Figure 1: Typical supports of the basis functions λj(sh).

Denote by {bj}M
j=1 the nodes of the mesh located on Ω \ Γ− and by {bj}N

j=M+1 those
located on Γ−. We consider the nodal basis functions of V ∗

h , {ϕi}N
i=1 defined by

ϕi(bj) = δij, 1 ≤ i, j ≤ N.

The nodal base of Vh is then {ϕi}M
i=1

We also associate to Th and a given element sh of V ∗
h a discrete space of piecewise

constant functions, denoted by W ∗
h (sh). This space is defined through its nodal basis

functions λ1, λ2, · · · , λN (also depending on sh), that we assume known for the time being:

W ∗
h (sh) = span{λ1(sh), λ2(sh), · · · , λN(sh)}. (5)

For simplicity of notation, we do not explicit the dependence upon sh of the λi when this
is not source of confusion.

We shall use the functions of W ∗
h (sh) to test the advection operator in equation (8).

The functions λj have supports that look for “upwind” information with respect to the
velocity field u (See Fig. 1).

The dependence upon sh is due to the non-linear nature of the PSI method, which
appears under this formulation as the dependency of the constant values that the basis
functions λi take on each triangle T of Th: λi|T = λi|T (sh). In Section 4 we give the
definition of the λj for PSI and actually other fluctuation splitting methods, although for
our analysis we shall only consider some abstract properties that we describe next.
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We construct an associated interpolation operator taking values on W ∗
h , denoted by

Πsh
, as follows:

Πsh
: C0(Ω) −→ W ∗

h

z −→ Πsh
z =

N∑
i=1

z(bi)λi. (6)

Note that if z ∈ Vh, then

Πsh
z =

M∑
i=1

z(bi)λi ∈ Wh = span{λ1, λ2, · · · , λM}.

Note also that λj = Πsh
ϕj, j = 1, 2, · · · , N . Thus, Πsh

is bijective from V ∗
h onto W ∗

h and
also from Vh onto Wh.

We shall refer to Πsh
as the Distributed Interpolation operator generated by function sh.

We may characterize each actual Fluctuation Splitting method by its associated Distributed
Interpolation operator, through the definition of the basis functions λj.

We define the bilinear form ah : Vh × Vh 7→ R as

ah(ρh, vh) =

∫

Ω

(u · ∇ρh) Πρh
vh + ν

∫

Ω

∇ρh · ∇vh. (7)

We may now formulate our discrete variational approximation of the advection-diffusion
problem (1), as follows:

{
Find ρh ∈ Vh such that
ah(ρh, vh) = 〈f, vh〉 ∀ vh ∈ Vh.

(8)

To obtain a more accurate scheme for advection-dominated flows, we may also upwind the
source term. This is obtained in a natural way, as follows:

{
Find ρh ∈ Vh such that
ah(ρh, vh) = 〈f, Πρh

vh〉 ∀ vh ∈ Vh.
(9)

The term 〈f, Πρh
vh〉 makes sense for smoother f than f ∈ V ′, for instance f ∈ L1(Ω).

3 Hypotheses

We next state the general hypotheses that we assume about our approximation, to
perform our error analysis. We prove in Section 4 that the PSI method, and some other
non-linear FS schemes, when applied to the solution of the advection-diffusion (1), may be
cast as Petrov-Galerkin methods (8) or (9), verifying these hypotheses.

We at first assume the hypotheses related to the approximation properties of the inter-
polation operator Πsh

:
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Hypothesis 1 For any element T ∈ Th,

1. λT
iT
≥ 0, i = 1, · · · , d + 1,

2.
d+1∑
i=1

λT
iT

= 1, ¤

where iT is the global index corresponding to the local index i , i = 1, · · · , d + 1 on
element T , and λT

iT
is the restriction of λiT to element T .

These properties yield the stability of the Distribution Interpolation operator (See Sec-
tion 5).

We next consider additional hypotheses required to obtain the maximum principle. For
the discrete problems (8) and (9), we understand this principle in the following sense:

Maximum Principle: If f ≥ 0 in Ω, then ρh ≥ 0 in Ω.

Several authors have performed an extensive analysis about sufficient conditions on the
grid that yield the maximum principle for piecewise affine finite element discretizations
of elliptic equations, in two and three space dimensions (See Drăgănescu, Dupont and
Scott [15] and references therein, Varga [33] ). These conditions ensure that the matrix
associated to the discrete problem is a monotone matrix, i. e., it is non-singular and its
inverse has non-negative entries.

Notice that the matrix Aν = Aν(sh) associated to problems (8) and (9) is defined as:

Aν(sh) = C(sh) + ν L,

where C(sh) and L, respectively, are the matrices associated to the discretization of the
advection and the Laplacian operators. Their coefficients are given by

Cij(sh) =

∫

Ω

(u · ∇ϕj) Πsh
ϕi =

∫

Ω

(u · ∇ϕj)λi(sh),

Lij =

∫

Ω

∇ϕj · ∇ϕi i, j = 1, · · · ,M.

Our analysis of the maximum principle is based on a property stronger than monotonicity:
We assume Aν(ρh) to be an M-matrix. We recall that A is an M-matrix if

1.
Aii > 0, ∀ 1 ≤ i ≤ M. (10)

2.
Aij ≤ 0, ∀ 1 ≤ i, j ≤ M, i 6= j. (11)

3.
Aii ≥

∑

j 6=i

|Aij|, ∀ 1 ≤ i ≤ M i.e., A has diagonal dominance. (12)
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We shall assume the following hypothesis:

Hypothesis 2
Aν(sh) is a M-matrix, for any sh ∈ Vh and any ν > 0, ¤

To ensure that the discrete Laplacian L is an M-matrix it is enough to ask that all
angles between sides (d=2) or all dyhedric angles between faces (d=3) of all elements of
the grid are acute or, at most, of π/2 degrees. This is a classical result that may be found
for instance in [15].

However, building a advection-diffusion matrix A which is a M-matrix for any value of
the diffusion coefficient ν is an achievement of FS methods. We shall prove this in Section
5.

We finally state a technical hypothesis on the dependence of the behaviour of the
convective matrix with respect to its argument sh:

Hypothesis 3
The convective matrix C(sh) is a continuous function from Vh onto the space of square

real matrices of dimension M ×M . ¤

This Hypothesis is mainly related to the boundedness of the basis functions λj. It is
verified by the PSI scheme and other non-linear FS schemes, but not by positive first-order
FS methods, in particular by the N-scheme. This agrees with the interpretation of the
N-scheme as a finite volume scheme by Perthame in [23].

4 Relationship to Fluctuation Splitting methods

This Section is devoted to prove that methods (8) and (9) are abstract formulations for
PSI and other non-linear FS methods applied to the numerical solution of the advection-
diffusion problem (1), and that under this characterization, Hypotheses 1, 2 and 3 of
Section 3 are verified.

Let us consider that the convective flow of the tracer ρ transported by the velocity field
u is

qconv = uρ.

The total balance of convective flow (“fluctuation”) through ∂T for some T ∈ Th is then

ΦT =

∫

∂T

qconv · n =

∫

T

∇ · (uρ) =

∫

T

u · ∇ρ,

where we have used that ∇ · u = 0.
The basic idea of FS methods is to split the fluctuation ΦT between the vertex neigh-

bouring the element T . This is made by means of some “flux distribution coefficients”
{βT

j }N
j=1. The fluctuation contribution to vertex bj is

Φj =
∑
T∈Th

βT
j ΦT . (13)
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To increase the compactness of the numerical scheme, usually the fluctuation generated in
an element T is only sent to the vertex of T :

βT
j = 0 if bj is not a vertex of T.

This yields the following discretization for the steady advection equation :

∑
T∈Ej

βT
j

∫

T

u · ∇ρ =
∑
T∈Ej

βT
j

∫

T

f, (14)

where Ej is the set of elements of T that share the vertex bj.
For a given vertex bj of the triangulation Th, we define the asociated piecewise constant

basis function λj by

λj : Ω 7→ R, with λj = βT
j on element T, ∀T ∈ Th

Then, the l.h.s. of (14) is re-written as

∑
T∈Ej

βT
j

∫

T

u · ∇ρ =

∫

Ω

u · ∇ρ λj,

and we recover our Petrov-Galerkin discretization of the advection operator, for the Dis-
tribution Interpolation operator associated to these actual λj.

The discretization of the source term in (14) is also re-written as

∑
T∈Ej

βT
j

∫

T

f =

∫

Ω

f λj.

To obtain a flux-conservative and a L∞-stable method, the following properties are
usually assumed (Cf. [2]):

d+1∑
j=1

βj
T
T = 1, βT

jT
≥ 0, for any node bj, for any triangle T ∈ Th. (15)

This trivially yields our first hypothesis:

Lemma 4.1 Assume the distribution coefficients verify properties (15). Then, Hypothesis
1 holds.

¤
Our proof that Hypotheses 2 and 3 hold for PSI scheme is based upon the construction of
this scheme introduced in Abgrall and Mezine [2]. In its turn, this construction is based
upon that of N scheme, which is introduced via the fluctuations

ΦT
i (sh) = βT

i ΦT (sh), for sh ∈ Vh
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sent to the local nodes. To define the ΦT
i let us introduce the inward normal vector to the

boundary of T , opposite to node bi,

nT
i = d |T | ∇ϕiT , (16)

and the values

KT
i =

1

d
ūT · nT

i , with ūT =
1

|T |
∫

T

u.

Then, the N scheme, when d = 2 for simplicity, is given by

ΦT
i (sh) =

3∑
i=1

cT
ij (sT

i − sT
j ), cij = (KT

i )+ MT (KT
j )−, (17)

where (KT
i )+ = max{KT

i , 0}, (KT
j )− = min{KT

j , 0}, MT =
3∑

j=1

(KT
j )−,

and sT
1 , sT

2 , sT
3 are the values of sh at the vertex of T (we use local notation for the index

to simplify the notation).

Notice also that MT is non-zero (in fact, it is strictly negative) if u 6= 0 as
3∑

i=1

KT
i = 0.

Also, that cij ≥ 0. This property (called monotonicity) yields the L∞ stability of the N
scheme for evolution systems of conservation laws, under a CFL condition (Cf. [2]).

Note that the sign of KT
i indicates wether the node bi is upflow with respect to u in

triangle T (KT
i ≤ 0). The nodes located upflow cannot receive any fluctuation contribution

for FS schemes to be stable.
In some cases, the fluctuation ΦT (sh) could vanish while the partial fluctuation ΦT

i (sh)
remains finite, and then the coefficient βT

i is not defined. For this reason, the N scheme
does not enter in the framework of our Petrov-Garlekin formulation.

The PSI scheme is constructed in [2] by looking at new fluctuations Φ∗
i (we drop the

superscript T and the explicit dependence upon sh for simplicity) such that

Φ∗
i = (1− µi) Φi, for some coefficients 0 ≤ µi ≤ 1, i = 1, · · · , d + 1 (18)

d+1∑
i=1

Φ∗
i = Φ. (19)

The coefficients β∗i =
Φ∗

i

Φ
are bounded independently of the mesh. (20)

This problem is solved in [2] by means of a constructive solution. It is proved that the µi

are continuous functions of the Φi, and that the β∗i ∈ [0, 1].
Note that the β∗i are functions of sh, as both Φ∗ and Φ depend on sh. Moreover, from

(19) and the property β∗i ∈ [0, 1] we recover property (15):

3∑
i=1

β∗i = 1, β∗i ≥ 0.
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We do not detail the actual construction of the PSI scheme as the solution of problem
(18)-(20) made in [2], as it is rather lengthy, and is not essential for our analysis.

The PSI scheme is now cast as a non-linear Petrov-Galerkin scheme with the structure
(8) or (9) , following the derivation of the first part of this Section. We next prove that it
satisfies Hypothesis 2 as follows:

Lemma 4.2 Assume that all angles between sides (when d = 2) or that all dihedral angles
between faces (when d = 3) of all elements of the grid are of, at most, π/2 degrees.

Then the PSI scheme satisfies Hypothesis 2 for any ν > 0.

Proof: Under the above hypotheses, the discrete Laplace matrix L is a M-matrix (Cf.,
for instance, [15]).

To prove that the discrete advection-diffusion matrix A∗
ν(sh) = C∗(sh) + ν L associated

to the PSI method is an M-matrix for any ν > 0 for some sh ∈ Vh, it is enough to prove that
the associated discrete advection matrix C∗ verifies (10), (11) and (12) but with non-strict
inequalities.

By (18), the elementary coefficients of C∗ on a triangle T of Th are obtained from those
of the N scheme cT

ij by

(CT
ij)

∗ = −(1− µT
i ) cT

ij, if i 6= j, (CT
ii )

∗ = (1− µT
i ) cT

ii.

As cT
ij ≥ 0 and 0 ≤ µT

i ≤ 1 the conclusion follows. ¤
Remark 4.1 It does not seem clear that the discrete convection matrix C∗(sh) also is
positive-defined. The global diagonal element for the PSI scheme is given by

C∗
kk =

∑
T∈Ek

(CT
kk)

∗ =
∑
T∈Ek

(1− µT
k ) cT

kk

=
∑

T∈Ek, KT
k ≤0

(1− µT
k ) cT

kk +
∑

T∈Ek, KT
k >0

(1− µT
k ) cT

kk.

If bk is an upstream node for an element T (i. e., if KT
k = 1

2
ūT · nT

k ≤ 0), then
cT
kk = βT

k KT
k = 0, and so

C∗
kk =

∑

T∈Ek, KT
k >0

(1− µT
k ) cT

kk.

Given a triangle T ∈ Ek, denote by Γk the side or face of ∂T opposite to the node bk, and
by ηT

k the unit normal to ∂T on Γk, outward to T . Using the vector function σ(x) = x− bk

we deduce the relation
nT

k = −ηT
k |Γk|,

where nT
k is the inward normal defined in (16).

As ∇ · u = 0, then

0 =

∫
⋃

T∈Ek

u · η =
∑
T∈Ek

∫

Γk

u · ηT
k =

∑
T∈Ek

ûT · nT
k = d

∑
T∈Ek

K̂T
k

10
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Figure 2: One target triangle: ∇ϕi · u ≤ 0, i = 1, 2, ∇ϕk · u > 0.
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Figure 3: Two target triangle: ∇ϕi · u > 0, i = 1, 2, ∇ϕk · u ≤ 0.

where ûT =
1

|Γk|
∫

Γk

u, and K̂T
k =

1

d
ûT · nT

k .

Then (excepting very particular grids that can be avoided), for some T ∈ Ek we have

K̂ T̃
k > 0. If u is smooth and h is small enough, this implies K T̃

k > 0, and then cT̃
kk > 0.

However, we could have µT̃
k = 1 if all the flux is sent to node i. This occurs with PSI

scheme in the case of ”two target triangle” (or three if d = 3), as it sends all the flow to
one of the targeted vertex (See Figures 2 and 3).

Therefore, we could have C∗
kk = 0 if the node bk is downstream just for one triangle of

Ek, for which it is the target of a two or more target element.

We also have:

Lemma 4.3 The PSI scheme satisfies Hypothesis 3

Proof: The construction of [2] of PSI method yields continuous elementary coefficients µT
i

as functions of the fluxes ΦT
i . As these are continuous functions of sh by (17), we conclude

that Hypothesis 3 holds. ¤

Remark 4.2 The construction of [2] allows to build a scheme satisfying properties (18),
(19) and (20) from any first-order monotone scheme, and not only from the N scheme.
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In particular, in [2] there are reported the L-Rusanov and the L-upwind, respectively con-
structed from the Rusanov and the one-dimensional upwind schemes. Thus, the same proofs
above prove that these schemes also satisfy Hypotheses 1, 2 and 3.

Consequently, all results of our analysis also apply to the the L-Rusanov and the L-
upwind schemes and to any other that could be built by Abgrall and Mezine’s technique
from a first-order scheme.

5 Tools

Our analysis is based upon some functional properties of the Distribution Interpolation
operator and the discrete advection-diffusion operator appearing in our Petrov-Galerkin
methods (8) and (9), that we state in this Section. These properties are deduced from
Hypotheses 1 and 2 stated above.

We denote by ‖ · ‖p the Lp(Ω) norm.

Lemma 5.1 There exists a constant Cp > 0 such that

‖Πrh
vh‖p ≤ Cp‖vh‖p ∀ rh vh ∈ Vh, ∀ 1 ≤ p < +∞.

Proof:
For simplicity of notation, we drop the subindex h of vh.
Step 1. Consider a function v ∈ Vh. By definition, we have:

‖Πrh
v‖p

p =

∫

Ω

∣∣∣∣∣
N∑

i=1

v(bi)λi

∣∣∣∣∣

p

=
∑
T∈Th

∫

T

∣∣∣∣∣
d+1∑
i=1

v(biT )λT
iT

∣∣∣∣∣

p

,

where λi = λi(rh). We may write the norm in Lp(Ω) of v as:

‖v‖p
p =

∑
T∈Th

∫

T

∣∣∣∣∣
d+1∑
i=1

v(biT )Bi(x)

∣∣∣∣∣

p

dx,

where Bi(x), 1 ≤ i ≤ d + 1 are the baricentric coordinates of x in the element T .
First, we are going to prove that there exists a constant C∗

p such that:

(∫

T

d+1∑
i=1

|v(biT )|pdx

)1/p

≤ C∗
p

(∫

T

∣∣∣∣∣
d+1∑
i=1

v(biT )Bi(x)

∣∣∣∣∣

p

dx

)1/p

. (21)

To see it, consider a change of variables from the reference element T̂ into T . If we take
x̂ ∈ T̂ , we define x ∈ T such that x = AT x̂ + bT , then dx = | det AT |dx̂.

Furthermore, we can write |T | =
∫

T

dx = | det AT ||T̂ |, so | det AT | = |T |
|T̂ | .

12



Define the seminorms | · |1 and | · |2 on the space C0(T ) as follows:

|v|1 =

(∫

T

∣∣∣∣∣
d+1∑
i=1

v(biT )Bi(x)

∣∣∣∣∣

p

dx

)1/p

;

|v|2 =

(∫

T

d+1∑
i=1

|v(biT )|pdx

)1/p

= |T |1/p

(
d+1∑
i=1

|v(biT )|p
)1/p

.

If we apply the change of variables in the definition of |v|1 we have:

|v|1 =

(∫

T̂

| det AT |
∣∣∣∣∣
d+1∑
i=1

v(biT )B̂i(x̂)

∣∣∣∣∣

p

dx̂

)1/p

=
|T |1/p

|T̂ |1/p

(∫

T̂

∣∣∣∣∣
d+1∑
i=1

v(biT )B̂i(x̂)

∣∣∣∣∣

p

dx̂

)1/p

.

We next define two norms on Rd+1. Given z = (z1, . . . , zd+1) ∈ Rd+1 we define:

|z|∗1 =
1

|T̂ |1/p

(∫

T̂

∣∣∣∣∣
d+1∑
i=1

ziB̂i(x̂)

∣∣∣∣∣

p

dx̂

)1/p

;

|z|∗2 =

(
d+1∑
i=1

|zi|p
)1/p

.

As we have a finite dimensional space, the norms are equivalent, so there exists a constant
C∗

p such that

|z|∗2 ≤ C∗
p |z|∗1, ∀ z ∈ Rd+1.

If we consider now vT = (v(b1T
), . . . , v(b(d+1)T

))t as a vector of Rd+1, and we use the
definitions of |vT |1 and |vT |2, we deduce (21).

Step 2. Let us conclude that ‖Πhv‖p ≤ C∗
p‖v‖p.

‖Πrh
v‖p

p =
∑
T∈Th

∫

T

∣∣∣∣∣
d+1∑
i=1

v(biT )λT
iT

∣∣∣∣∣

p

≤
∑
T∈Th

∫

T

∣∣∣∣∣
d+1∑
i=1

|v(biT )|λT
iT

∣∣∣∣∣

p

.

But by Hypothesis 1 , we have λT
iT
≥ 0, ∀ 1 ≤ i ≤ d + 1 and

d+1∑
i=1

λT
iT

= 1. As the function

g(x) = xp with p ≥ 1 is convex, then

‖Πrh
v‖p

p ≤
∑
T∈Th

∫

T

d+1∑
i=1

|v(biT )|pλT
iT
≤

∑
T∈Th

∫

T

d+1∑
i=1

|v(biT )|p,

because each λT
iT
≤ 1.

13



Thus ‖Πrh
v‖p

p ≤
∑
T∈Th

|vT |p2 and using (21):

‖Πrh
v‖p

p ≤ (C∗
p)p

∑
T∈Th

|v|T |p1 = (C∗
p)p

∑
T∈Th

∫

T

∣∣∣∣∣
d+1∑
i=1

v(biT )Bi(x)

∣∣∣∣∣

p

dx = (C∗
p)p‖v‖p

p.

This yields the conclusion.

¤

Lemma 5.2 Consider a function σh ∈ Vh. Then,

‖Πrh
σh − σh‖p ≤ h ‖∇σh‖p ∀ p ∈ [1, +∞], ∀ rh ∈ Vh.

Proof:
By the definition of Πrh

and Hypothesis 1,

‖Πrh
σh − σh‖p

p =
∑
T∈Th

∫

T

|(Πrh
σh)(x)− σh(x)|pdx =

=
∑
T∈Th

∫

T

∣∣∣∣∣
d+1∑
i=1

σh(biT )λT
iT
−

d+1∑
i=1

σh(x)λT
iT

∣∣∣∣∣

p

dx.

Using the convexity of function g(x) = xp for p ≥ 1,

‖Πrh
σh − σh‖p

p ≤
∑
T∈Th

∫

T

[
d+1∑
i=1

λT
iT
|σh(biT )− σh(x)|

]p

dx ≤

≤
∑
T∈Th

∫

T

d+1∑
i=1

λT
iT
|σh(biT )− σh(x)|pdx.

As σh is linear, σh(biT )− σh(x) = ∇σh|T · (biT − x). So,

|σh(biT )− σh(x)| ≤ |∇σh|T |hT , (22)

where hT is the diameter of the element T . Thus, by Hypothesis 1,

‖Πrh
σh − σh‖p

p ≤
∑
T∈Th

∫

T

d+1∑
i=1

λT
iT

hp
T |∇σh|T |pdx ≤ hp

∑
T∈Th

∫

T

|∇σh|T |pdx ≤ hp‖∇σh‖p
Lp(Ω).

If p = +∞, the result also follows from (22).

14



¤

Note that this result gives an error estimate for the distribution interpolation of piece-
wise affine finite elements. This estimate will be crucial to handle the transport and
up-winded source terms in our error analysis.

We next give a technical lemma to handle the convergence of our discrete approxima-
tions (8) and (9).

We shall denote
‖v‖V = ‖∇v‖2, ∀v ∈ V.

This is a norm on V equivalent to the H1(Ω) norm.

Lemma 5.3 Assume that the family of triangulations {Th}h>0 is regular. Then the fol-
lowing holds

a) Given v ∈ V , for any sequence {rh}h>0 ⊂ V with rh ∈ Vh, ∀h > 0, there exists a
sequence {vh}h>0 ⊂ V such that vh ∈ Vh, ∀h > 0, satisfying

lim
h→0

‖Πrh
vh − v‖r = 0, for any r ∈ [1, rmax), (23)

where rmax = +∞ if d = 2 and rmax = 6 if d = 3.

b) Given v ∈ V consider a sequence {vh}h>0 ⊂ V with vh ∈ Vh, ∀h > 0, that verifies

lim
h→0

‖vh − v‖r = 0, for any r ∈ [1, rmax).

Then,
lim
h→0

‖Πvh
vh − v‖r = 0. (24)

Proof:
a) As the family of triangulations is regular, there exits a sequence

{vh}h>0 ⊂ V such that vh ∈ Vh, ∀h > 0, strongly convergent to v in V (Cf [6]). As
H1(Ω) is compactly embedded in Lr(Ω) if 1 ≤ r < rmax, we may assume that this sequence
is strongly convergent to v in Lr(Ω). Using Lemma 5.2,

‖Πrh
vh − v‖r ≤ ‖Πrh

vh − vh‖r + ‖vh − v‖r ≤ h ‖∇vh‖r + ‖vh − v‖r

For 1 ≤ r ≤ 2,
‖∇vh‖r ≤ ‖∇vh‖2.

For r ∈ (2, +∞), we use an inverse inequality for finite elements (See [7], for instance):
Because of the regularity of the mesh, there exists a constant C1 > 0 such that:

‖∇vh‖r ≤ C1 hd( 1
r
− 1

2
)‖∇vh‖2 ∀ r > 2, ∀vh ∈ Vh. (25)
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Then,
‖Πrh

vh − v‖r ≤ C1 hβ ‖∇vh‖2 + ‖vh − v‖r

with β = 1− d(1/2− 1/r) > 0 if r ∈ (2, rmax) and β = 1 if r ∈ [1, 2]. This proves a)
b) Consider v ∈ V . Again, there exists a sequence {zh}h>0 ⊂ V such that zh ∈ Vh,

∀h > 0, strongly convergent to v in V ∩ Lr(Ω). Using Lemmas 5.1 and 5.2,

‖Πvh
vh − v‖r ≤ ‖Πvh

vh − Πvh
zh‖r + ‖Πvh

zh − zh‖r + ‖zh − v‖r ≤
≤ Cp ‖vh − zh‖r + h ‖∇zh‖r + ‖zh − v‖r

≤ Cp ‖vh − v‖r + (Cp + 1) ‖zh − v‖r + h ‖∇zh‖r.

Proceeding as in the proof of a),

h ‖∇zh‖r ≤ C1 hβ ‖∇zh‖0.

with the same values for β. Then, b) follows.

¤

Lemma 5.4 Under Hypothesis 1, for any rh ∈ Vh, the form b(rh) : Vh × Vh 7→ R defined
by

b(rh; vh, wh) =

∫

Ω

(u · ∇vh)Πrh
wh

is bilinear and bounded, satisfying

b(rh; vh, wh) ≤ Cq‖u‖q‖vh‖V ‖wh‖V ,

where Cq is a positive constant.

Proof: This is a direct consequence of Lemma 5.1 and the Sobolev embedding of H1(Ω)
in Lr(Ω), if 1 ≤ r ≤ rmax (excluding the case r = +∞).

¤

Note that all the above properties of operator Πrh
rely only on Hypothesis 1. We next

state some properties of the discrete advection operator, that shall also rely on Hypothesis
2.

Lemma 5.5 Under Hypotheses 2, for any rh ∈ Vh, the form b(rh) is semi-positive, in the
sense that it satisfies

b(rh; vh, vh) ≥ 0 ∀ vh ∈ Vh.

16



Proof: Consider an element zh =
M∑
i=1

ziϕi ∈ Vh. Then,

b(rh; zh, zh) =

∫

Ω

(u · ∇zh) Πrh
zh =

M∑
i,j=1

∫

Ω

(u · ∇ϕj) Πrh
ϕi zizj =

=
M∑

i,j=1

zi Cij(rh) zj = ZtC(rh)Z,

where Z = (z1 . . . zM)t. Then,
∫

Ω

(u · ∇zh) Πrh
zh + ν

∫

Ω

∇zh · ∇zh = Zt(C(rh) + ν L)Z = ZtAν(rh)Z.

By Hypothesis 2 Aν(rh) is a M-matrix, then it is semi-positive defined, and

b(rh; zh, zh) = lim
ν→0+

ZtAν(rh)Z ≥ 0.

¤

Note that this result proves that Hypothesis 2 could alternativaly be formulated as
Hypothesis 2’
Matrix C(sh) is semi-positive defined for any sh ∈ Vh, and matrix L is an M-matrix.
It is doubtful that matrix L is positive defined for PSI scheme (See Remark 4.1).

6 Existence and quasi-uniqueness

In this section we prove the existence of solution for the discrete problems (8) and (9).
Also, we obtain an estimate for the difference between two solutions of the same problem.
The proof of uniqueness is an open question due to the non-linear nature of the method
we are considering.

To prove the existence of solution for the problem above, we shall use a particular form
of Brouwer’s Fixed Point Theorem that we state in the Lemma 6.1 (cf. [17, 31]). The
semi-positiveness of the discrete convective operator (Lemma 5.5) plays a crucial role in
this proof.

Lemma 6.1 Let X be a finite dimensional Hilbert space with scalar product [·, ·] and norm
[·]. Let P be a continuous mapping from X into itself such that:

[P (ξ0), ξ0] > 0 for [ξ0] = k > 0.

Then ∃ξ ∈ X, with [ξ] ≤ k, such that

P (ξ) = 0.

17



The existence of solutions of Problem (9) is stated by

Theorem 6.1 Assume that u ∈ (Lq(Ω))d for some q > d, f ∈ Lp(Ω) for p > 1 if d = 2
and p > 6/5 if d = 3. Then problem (9) admits at least one solution ρh ∈ Vh that satisfies
the estimate

‖ρh‖V ≤ C

ν
‖f‖p (26)

where the constant C > 0 only depends on d, p and Ω.

Proof:
We define the mapping P : Vh → Vh as follows

[P (vh), wh] = b(vh; vh, wh) + ν(∇vh,∇wh)− (f, Πvh
wh), ∀ vh, wh ∈ Vh.

Due to Hypothesis 3, P is a continuous mapping on Vh. Also,

[P (vh), vh] = b(vh; vh, vh) + ν‖∇vh‖2
2 − (f, Πvh

vh).

Using Lemma 5.1 and the Sobolev embedding of H1(Ω) in Lr(Ω), we obtain

|(f, Πvh
vh)| ≤ Cp′ ‖f‖p ‖vh‖p′ ≤ Cp′ C ‖f‖p ‖∇vh‖2

As b(vh) is positive, we may write:

[P (vh), vh] ≥ ν‖∇vh‖2
2 − C ‖f‖p‖∇vh‖2 = ‖∇vh‖2(ν‖∇vh‖2 − C ‖f‖p).

Then, for ‖∇vh‖2 = k, [P (vh), vh] > 0, for k >
C ‖f‖p

ν
. Therefore, by Lemma 6.1, ∃ρh ∈ Vh

such that P (ρh) = 0. Then ρh is a solution of (9).
Furthermore,

0 = [P (ρh), ρh] ≥ ‖∇ρh‖2(ν‖∇ρh‖2 − ‖f‖p).

So (26) holds.

¤

Also, the existence of solution of Problem (8) is stated as

Theorem 6.2 Assume that u ∈ (Lq(Ω))d for some q > d, f ∈ V ′. Then problem (8)
admits at least one solution ρh ∈ Vh that satisfies the estimate

‖ρh‖V ≤ 1

ν
‖f‖V ′ . (27)

Proof: Proceeding as in the proof of Theorem 6.1, we can write

[P (vh), vh] ≥ ν‖∇vh‖2
2 − ‖f‖V ′‖∇vh‖2 = ‖∇vh‖2(ν‖∇vh‖2 − ‖f‖V ′).

By Lemma 6.1, ∃ρh ∈ Vh such that P (ρh) = 0. Then ρh is solution of (8) and so (27) holds.
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¤

The proximity between two possible solutions of problem (9) is stated in the following
result.

Lemma 6.2 Assume that the family of triangulations {Th}h>0 is regular. Assume that
f ∈ Lp(Ω) for some p > 1. Let ρ1h and ρ2h be two solutions of problem (9). Then there
exists a constant C > 0 such that

‖∇(ρ1h − ρ2h)‖2 ≤ C

ν2
‖u‖q ‖f‖p hα +

C

ν
‖f‖ph

β,

where α = 1− d
q

and β =





1 if 2 ≤ p < +∞,

1 + d
(

1
2
− 1

p

) {
if 1 < p < 2 for d = 2,
if 6/5 < p < 2 for d = 3.

Proof:
Using the previous notation, we can write

0 = [P (ρ1h)− P (ρ2h), wh] = [b(ρ1h; ρ1h, wh)− (u · ∇ρ1h, wh)]+
+ [(u · ∇ρ1h, wh)− (u · ∇ρ2h, wh)] + [(u · ∇ρ2h, wh)− b(ρ2h; ρ2h, wh)]+
+ ν(∇(ρ1h − ρ2h),∇wh) + (f, Πρ2h

wh − Πρ1h
wh).

(28)

By definition of b,

|b(ρih; ρih, wh)− (u · ∇ρih, wh)| = |(u · ∇ρih, Πρih
wh − wh)| ≤

≤ ‖u‖q‖∇ρih‖2‖Πρih
wh − wh‖q̂ ≤ h ‖u‖q‖∇ρih‖2 ‖∇wh‖q̂,

with
1

q
+

1

q̂
=

1

2
, where we have used Lemma 5.2 in the last estimate. We next use the

inverse inequality (25) that yields

‖∇wh‖q̂ ≤ C1 hd( 1
q̂
− 1

2
)‖∇wh‖2.

So we have

|b(ρih; ρih, wh)− (u · ∇ρih, wh)| ≤ C2

ν
h1− d

q ‖u‖q‖f‖p ‖∇wh‖2,

where we have used estimate (26).
By another hand, if wh = ρ1h − ρ2h, the second summand in the r.h.s. of (28) is

(u · ∇(ρ1h − ρ2h), ρ1h − ρ2h) =
1

2

∫

Γ+

u · n (ρ1h − ρ2h)
2dσ ≥ 0.

We now estimate the last summand of (28)

|(f, Πρ2h
wh−Πρ2h

wh)| ≤ ‖f‖p‖Πρ2h
wh−wh‖p′ +‖f‖p‖Πρ1h

wh−wh‖p′ ≤ 2C3 h‖f‖p‖∇wh‖p′
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where we use Lemma 5.2.
If p ≥ 2 then ‖∇wh‖p′ ≤ ‖∇wh‖2 and if p < 2, we can used the inverse estimate (25). So,

|(f, Πρ2h
wh − Πρ2h

wh)| ≤ 2C3 hβ‖f‖p‖∇wh‖2 (29)

with β =

{
1 if 2 ≤ p < +∞,

1 + d
(

1
2
− 1

p

)
if p < 2.

Thus, setting wh = ρ1h − ρ2h, we have from (28),

ν‖∇(ρ1h − ρ2h)‖2
2 ≤ 2

C2

ν
h1− d

q ‖u‖q‖f‖p ‖∇(ρ1h − ρ2h)‖2 + 2C hβ‖f‖p‖∇(ρ1h − ρ2h)‖2,

that yields the result.

¤

In the same way, we can prove the following result for problem (8)

Lemma 6.3 Assume that the family of triangulations {Th}h>0is regular. Let ρ1h and ρ2h

be two solutions of problem (8). Then there exists a constant C > 0 such that

‖∇(ρ1h − ρ2h)‖2 ≤ C

ν2
‖u‖q ‖f‖V ′ h

1− d
q .

7 Convergence analysis and error estimates

We next prove the strong convergence in H1-norm of a solution of the discretizations
(8) and (9) to the solution of the continuous problem (1) and error estimates in H1-norm.
We prove the result for discretization (9), as this is the more involved technically, and just
state it for discretization (8).

Theorem 7.1 Let Ω be a bounded polygonal domain of Rd. Assume that the family of
triangulations {Th}h>0 is regular. Assume that data of the advection-diffusion problem (1)
verify u ∈ (Lq(Ω))d for some q > d, f ∈ Lp(Ω) for p > 1 if d = 2 and p > 6/5 if d = 3.

Then the sequence of solutions {ρh}h>0 of the discretization (9) is strongly convergent
in V to the solution ρ of problem (1) as h goes to zero.

Proof: a) By (26), the sequence {ρh}h>0 is bounded in V . This is a closed sub-space of
H1(Ω). Then there exists a subsequence {ρh′}h′>0 weakly convergent in V to some ρ∗.

Consider v ∈ V , by Lemma 5.3there exists a sequence {vh}h>0 ⊂ V such that vh ∈
Vh, ∀h > 0, satisfying

lim
h→0

‖Πρh
vh − v‖r = 0, r ∈ [1, rmax)
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If u ∈ (Lq(Ω))d with q > d, q̂ ∈ [1, rmax) where q̂ is such that 1
q

+ 1
q̂

= 1
2
. Then,

lim
h′→0

∫

Ω

(u · ∇ρh′) Πρ′hvh =

∫

Ω

(u · ∇ρ∗). v;

Also, as f ∈ Lp(Ω) with p > 1 if d = 2 and p > 6/5 if d = 3, then p′ ∈ [1, rmax) and so,

lim
h′→0

∫

Ω

f Πρ′hvh =

∫

Ω

f v.

Consequently, ρ∗ satisfies

∫

Ω

(u · ∇ρ∗) v + ν

∫

Ω

∇ρ∗ · ∇v =

∫

Ω

f v, ∀v ∈ V.

We deduce that ρ∗ is the weak solution of problem (1), that we have denoted ρ. As this
solution is unique, the whole sequence {ρh}h>0 converges weakly to ρ in V .

b) We prove the convergence of the H10(Ω) semi-norm of ρh to the H1(Ω) semi-norm
of ρ. This proves the strong convergence as this is a norm on V equivalent to the norm of
H1(Ω). We follow the standard procedure. Respectively take v = ρ and vh = ρh as test
functions in the continuous and discrete problems (2) and (9). Then we have

∫

Ω

(u · ∇ρ) ρ + ν

∫

Ω

|∇ρ|2 =

∫

Ω

f ρ ; (30)

and ∫

Ω

(u · ∇ρh) Πρh
ρh + ν

∫

Ω

|∇ρh|2 =

∫

Ω

f Πρh
ρh ; (31)

By Lemma 5.3 b), Πρh
ρh strongly converges to ρ in Lq̂(Ω). Then,

lim
h→0

∫

Ω

(u · ∇ρh) Πρh
ρh =

∫

Ω

(u · ∇ρ) ρ.

Also, as f belongs to Lp(Ω),

lim
h→0

∫

Ω

f Πρh
ρh =

∫

Ω

f ρ.

So we may pass to the limit in (31) to deduce using (30) that

lim
h→0

∫

Ω

|∇ρh|2 =

∫

Ω

|∇ρ|2.

This concludes the proof.

¤
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The convergence of approximation (8) requires less regularity for the source term. It is
stated as follows

Theorem 7.2 Let Ω be a bounded polygonal domain of Rd. Assume that the family of
triangulations {Th}h>0 is regular. Assume that the data of the advection-diffusion problem
(1) verify u ∈ (Lq(Ω))d for some q > d, f ∈ V ′.

Then the sequence of solutions {ρh}h>0 of the discretization (8) is strongly convergent
in V to the solution ρ of problem (1) as h goes to zero.

We next state our main error estimates result.

Theorem 7.3 Under the hypotheses of Theorem 7.1, the following error estimates for the
solutions of the discrete problems (9) hold:

‖∇(ρ− ρh)‖2 ≤ (2 +
C

ν
‖u‖q) d1(ρ, Vh) +

C

ν2
‖u‖q‖f‖p hα +

C

ν
‖f‖p hβ, (32)

where d1(ρ, Vh) = inf
vh∈Vh

‖∇(ρ− vh)‖2, C > 0 is a constant independent of h and ν,

α = 1− d

q
> 0, β =





1 if 2 ≤ p < +∞
1 + d

(
1
2
− 1

p

) {
if 1 < p < 2 for d = 2
if 6/5 < p < 2 for d = 3.

Proof:
Denote by Ph the elliptic projection of ρ onto Vh and define the truncation error εh ∈ V ′

as:
< εh, v >= (u · ∇Ph, v) + ν(∇Ph,∇v)− (f, v) ∀ v ∈ V. (33)

Take v = vh ∈ Vh in this expression and substract it to (9):

(u · ∇ρh, Πρh
vh) + ν(∇ρh,∇vh)− (u · ∇Ph, vh)− ν(∇Ph,∇vh)

−(f, Πρh
vh − vh) = − < εh, vh > .

Interpolation error estimate.
Define the interpolation error as eh = ρh − Ph ∈ Vh. Then:

(u · ∇ρh, Πρh
vh)− (u · ∇Ph, vh) + ν(∇eh,∇vh)− (f, Πρh

vh − vh) = − < εh, vh > .

Summing and subtracting (u · ∇Ph, Πρh
vh) in the left-hand side,

(u · ∇eh, Πρh
vh) + (u · ∇Ph, Πρh

vh − vh) + ν(∇eh,∇vh)

−(f, Πρh
vh − vh) = − < εh, vh > .

Taking vh = eh,

(u · ∇eh, Πρh
eh) + (u · ∇Ph, Πρh

eh − eh) + ν‖∇eh‖2
2

−(f, Πρh
eh − eh) = − < εh, eh > .
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Thus, thanks to the semi-positiveness of the scheme,

ν‖∇eh‖2
2 ≤ − < εh, eh > −(u · ∇Ph, Πρh

eh − eh)− (f, Πρh
eh − eh).

≤ − < εh, eh > +‖u‖q‖∇Ph‖2‖Πρh
eh − eh‖q̂ (34)

+ ‖f‖p‖Πρh
eh − eh‖p′ ,

where
1

q
+

1

q̂
=

1

2
,

1

p
+

1

p′
= 1.

As Ph is the orthogonal projection of ρ on Vh,

‖∇Ph‖2 ≤ ‖∇ρ‖2 ≤ C

ν
‖f‖p. (35)

By another hand, proceeding as in the obtention of estimate (29) in Lemma 6.2, we have

‖Πρh
eh − eh‖q̂ ≤ C hα‖∇eh‖2 (36)

with α = 1− d
q
, and

‖Πρh
eh − eh‖p′ ≤ C hβ‖∇eh‖2 (37)

where β =





1 if 2 ≤ p < +∞,

1 + d
(

1
2
− 1

p

) {
if 1 < p < 2 for d = 2,
if 6/5 < p < 2 for d = 3.

Inserting estimates (35), (36), and (37), into (34) we obtain

ν‖∇eh‖2
2 ≤ − < εh, eh > +

C

ν
hα ‖u‖q‖f‖p‖∇eh‖2 + C hβ ‖f‖p ‖∇eh‖2.

Thus,

ν‖∇eh‖2 ≤ ‖εh ‖V ′ +
C

ν
hα ‖u‖q‖f‖p + C hβ ‖f‖p. (38)

Truncation error estimate.
To obtain the estimate for the truncation error, we subtract (2) to (33):

(u · ∇ρ, v) + ν(∇ρ,∇v)− (u · ∇Ph, v)− ν(∇Ph,∇v) = − < εh, v > .

Thus,
< εh, v >= (u · ∇(Ph − ρ), v) + ν(∇(Ph − ρ),∇v).

We bound this expression using Sobolev injections. We use that as q > d, then q̂ < rmax:

< εh, v > ≤ (‖u‖q ‖v‖q̂ + ν ‖∇v‖2)‖∇(Ph − ρ)‖2

≤ (C ‖u‖q + ν)‖∇(Ph − ρ)‖2‖∇v‖2;

and
‖εh‖V ′ ≤ (C ‖u‖q + ν) d1(ρ, Vh), (39)

where we have used d1(ρ, Vh) = ‖∇(Ph − ρ)‖2.
Conclusion.

Inserting estimate (39) into (38), we obtain estimate (32).
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¤

The obtention of error estimates for Problem (8) may be treated as a sub-case of the
preceding analysis. In the case of Problem (8), the error term due to the upwinding of the
source term does not appear. We may prove the following error estimate result:

Theorem 7.4 Under the hypotheses of Theorem 7.2, the following error estimates for the
solutions of the discrete problems (8) hold:

‖∇(ρ− ρh)‖2 ≤ (2 +
C

ν
‖u‖q) d1(ρ, Vh) +

C

ν2
‖u‖q‖f‖V ′ h

(1− d
q
), (40)

Remark 7.1 The error estimate (32) is of optimal order when u ∈ L∞(Ω) and f ∈ L2(Ω).
Indeed, in this case the error term due to the distribution interpolate of the test function
is of order O(h). This is the same order as the interpolation error on Vh, as d1(ρ, Vh) is
O(h) if ρ ∈ H2(Ω). In the case of problem (8), the error estimate (40) is of optimal order
when u ∈ L∞(Ω).

8 Maximum principle and Lr-estimates

In this section we prove that the maximum principle is satisfied for the discrete prob-
lems, and that we obtain Lr estimates for the discrete solutions for convex polygonal
domains.

We only prove the Lr estimates for d = 3 since for d = 2 are immediate due to Sobolev
embeddings.

Theorem 8.1 Under the conditions of Theorem 6.1 or Theorem 6.2, respectively, assume
f ≥ 0. Then, any solution ρh of the discrete problem (9) or (8), respectively, is non-
negative.

Proof:
We have approximated the advection-diffusion problem by a positive method defined

by a matrix Aν(ρh) = C(ρh) + ν L.
Let us denote by R = (ρ(b1), · · · , ρ(bM))t ∈ RM the vector of unknowns. In matrix

form, R is solution of an algebraic system with the structure

A(R) R = F, with F = (f1, · · · , fM)t ,

fi =

∫

Ω

f Πρh
ϕi ≥ 0, i = 1, · · · ,M , for problem (9).

fi =

∫

Ω

f ϕi ≥ 0, i = 1, · · · , M , for problem (8).
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Once we know that this non-linear system has a solution, we deduce R = A−1(R) F ,
and we reproduce the classical argument: As A(R) is an M-matrix, then it is monotone so
A−1(R) has non-negative entries and consequently Ri = ρ(bi) ≥ 0, i = 1, · · · ,M . As ρh is
piecewise linear, then ρh ≥ 0 in Ω.

¤

The obtention of Lr estimates, follow a duality argument developed in Brenner & Scott [7]
that generalizes the classical one by Nitsche.

Theorem 8.2 Assume that the family of triangulations {Th}h>0 is regular. Assume also
that f ∈ V ′ and u ∈ (Lq(Ω))d with q > 12. Assume finally that the advection-diffusion
problem (1) is regular in the sense that its solution satisfies

‖ρ‖2,+∞ ≤ C ‖f‖V ′ . (41)

Then, the sequence of solutions of problem (8) {ρh} is bounded in Lr(Ω), for all
1 ≤ r < +∞. More specifically, there exists a constant C > 0 such that

‖ρh‖r ≤ C ‖f‖V ′ .

Proof:
The proof for 1 ≤ r < 6 is a consequence of the theorem of Sobolev and the bound

(26).
Consider the adjoint problem: For a given F ∈ V ′,

{
Find σ ∈ V such that
a(v, σ) =< F, v > ∀ v ∈ V,

(42)

where a(·, ·) is the bilinear form associated to the continuous problem (1), defined by (3).
Consider also the approximate dual problem on Vh, by the standard Galerkin Finite

Element method : {
Find σh ∈ Vh such that
a(vh, σh) =< F, vh > ∀ vh ∈ Vh.

(43)

Under hypothesis (41), the following estimates hold for problems (1) (with g = 0), (42)
and (43) (Cf. [7]):

‖σ‖1,q ≤ Cq ‖F‖q with 1 < q ≤ ∞, (44)

‖σh‖1,r ≤ Cr‖σ‖W 1,r(Ω) with 1 < r ≤ ∞, (45)

for some positive constants Cq, Cr.

We consider problem (43) with F = sign(ρh)|ρh|r−1, that belongs to Lr′ with
1

r
+

1

r′
= 1

and
‖F‖r′ = ‖ρh‖r−1

r . (46)
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We set vh = ρh in (43). Then we have

‖ρh‖r
r = a(ρh, σh).

Also, as ρ is a solution of (1) and ρh is a solution of (8),

a(ρ− ρh, σh) = a(ρ, σh)− ah(ρh, σh) + ah(ρh, σh)− a(ρh, σh) =

=
[
(u · ∇ρh, Πρh

σh) + ν(∇ρh,∇σh)
]

− [
(u · ∇ρh, σh) + ν(∇ρh,∇σh)

]
= δh,

where ah(·, ·) is the bilinear form defined by (7) and

δh = (u ·∇ρh, Πρh
σh−σh) = (u ·∇(ρh−ρ), Πρh

σh−σh)+(u ·∇ρ, Πρh
σh−σh) = I +II (47)

Estimate for I

|I| ≤ ‖u‖q‖∇(ρh − ρ)‖2‖Πρh
σh − σh‖q̂ ≤ ‖u‖q‖∇(ρh − ρ)‖2h‖∇σh‖q̂, (48)

where
1

q
+

1

q̂
= 1, and we have used Lemma 5.2.

We can write the estimate (40) as

‖∇(ρh − ρ)‖2 ≤ C1 ‖f‖V ′h
1− 3

q

As r ∈ [6, +∞) and q > 12, we have r′ < q̂ and then an inverse inequality similar to (25)
yields

‖∇σh‖q̂ ≤ C2 h−3( 1
r′−

1
q̂ ) ‖∇σh‖r′

Inserting this last estimate into (48) we obtain

|I| ≤ C3 ‖u‖q‖f‖V ′h
γ‖∇σh‖r′

with γ = 2− 3

q
− 3

(
1

r′
− 1

q̂

)
=

7

2
− 6

q
− 3

r′
>

1

2
− 6

q
> 0, as q > 12 and r′ > 1.

Estimate for II

Thanks to the regularity of the continuos solution, we have

|II| ≤ ‖u‖q ‖∇ρ‖m ‖Πρh
σh − σh‖r′

with
1

m
= 1− 1

q
− 1

r′
.

Using (41) and Lemma 5.1, we deduce

|II| ≤ C4 ‖u‖q ‖f‖V ′ ‖σh‖r′ . (49)
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Thus,

|δh| ≤ C5 ‖u‖q‖f‖V ′(1 + hγ)‖∇σh‖r′ ≤ C6 ‖u‖q‖f‖V ′‖F‖r′ , (50)

where we have used (44) and (45) in last estimate.
Going back to (47), applying (45) and (44) we obtain

‖ρh‖r
r = a(ρh, σh) = a(ρ, σh)− δh ≤ C7 ‖ρ‖1,r‖σh‖1,r′ − δh

≤ C8‖ρ‖1,r‖F‖r′ + δh. (51)

Then, using (46) and (50) we have

‖ρh‖r
r ≤ C9 ‖f‖V ′‖F‖r′ ≤ C10 ‖f‖V ′‖ρh‖r−1

r

So,
‖ρh‖r ≤ C‖f‖V ′ .

¤

Theorem 8.3 Assume that the family of triangulations {Th}h>0 is regular. Assume also
that f ∈ Lp(Ω) for some p ≥ 1, and u ∈ (Lq(Ω))d with q > 12. Assume finally that the
advection-diffusion problem (1) is regular in the sense that its solution satisfies

‖ρ‖2,+∞ ≤ C ‖f‖p. (52)

Then, the sequence of solutions of problem (9) {ρh}h>0 is bounded in Lr(Ω), for
r ∈ [1, p]. More specifically, there exists a constant C > 0 such that

‖ρh‖r ≤ C ‖f‖p.

Proof: Proceeding as in Theorem 8.2 we obtain for ρ solution of (1) and ρh a solution of
(9),

a(ρ− ρh, σh) = a(ρ, σh)− ah(ρh, σh) + ah(ρh, σh)− a(ρh, σh) =

= (f, σh)− (f, Πρh
σh) +

[
(u · ∇ρh, Πρh

σh) + ν(∇ρh,∇σh)
]

− [
(u · ∇ρh, σh) + ν(∇ρh,∇σh)

]
= δh,

with

δh = (u · ∇ρh, Πρh
σh − σh) + (f, σh − Πρh

σh) =

(u · ∇(ρh − ρ), Πρh
σh − σh) + (u · ∇ρ, Πρh

σh − σh) + (f, σh − Πρh
σh) =

= I + II + III (53)
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Estimate of I

This estimate is the similar as that of I in Theorem 8.2 but we now use the error
estimate (32) and then we have

|I| ≤ C1 ‖u‖q‖f‖ph
γ‖∇σh‖r′ , (54)

with γ = 2− 3

q
− 3

(
1

r′
− 1

q̂

)
> 0.

Estimate of II

Using (52) and Lemma 5.1, we deduce

|II| ≤ C2 ‖u‖q ‖f‖p ‖σh‖r′ . (55)

Estimate of III

|III| ≤ ‖f‖p‖Πρh
σh − σh‖p′

As p ≥ r, then

‖Πρh
σh − σh‖p′ ≤ ‖Πρh

σh − σh‖r′

and using Lemma 5.1, we deduce

|III| ≤ C3 ‖f‖p ‖σh‖r′ . (56)

Going back to (53) and using (54), (55) and (56) we obtain

|δh| ≤ C1 ‖u‖q‖f‖ph
γ‖∇σh‖r′ + C2 ‖u‖q ‖f‖p ‖σh‖r′ + C3 ‖f‖p ‖σh‖r′

From this estimate for δh we proceed as in Theorem 8.2 and conclude the proof.

¤

Remark 8.1 The hypotheses (41) on the regularity of the advection-diffusion problem (1)
is obtained for instance if u ∈ L∞(Ω) and Ω is convex. This hypothesis is needed to deduce
estimate (44) (Cf. [4], [7]).

9 Order of accuracy and well-balanced property

A question that naturally arises after the preceding analysis is to determine the order
of accuracy of the PSI method in low-order norms, in particular in L2(Ω) norm.

We may use the standard Nitsche duality argument to estimate this error, using the
re-formulations (8) or (9) of the PSI method as a variational method, as we have done in
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h ‖ρh − ρ‖0 ph
L2 ‖ρh − ρ‖∞ ph

L∞ ‖∇(ρh − ρ)‖0 ph
H1

1/20 0.00653321 − 0.0161677 - 0.0422375 -
1/40 0.00332201 1.02445 0.00869829 0.894308 0.0218688 0.949653
1/80 0.0017075 0.982763 0.00439685 0.984262 0.0115252 0.924079
1/160 0.000840325 1.03452 0.00217046 1.01847 0.00569981 1.01581

Table 1: Convergence orders for PSI method, Test 1.

the proof of Theorem 8.2. However, this procedure only yields first-order accuracy, due to
the first-order error stemming from the Distribution Interpolation of the test functions.

This does not necessarily indicates that the convergence order in L2(Ω) norm can not
be better than the first order obtained for the H1(Ω) norm. To test this question we have
approximated the advection-diffusion problem (1) in a simple but meaningful R2 test, when
this has a C∞(Ω) solution, and Ω is the unit square. Specifically, we have considered:

Test 1

u = (1, 0), f = y ex+y
[
(y − 1)(x2 + x− 1)− 2x ν(xy + x + y − 3)

]
, g = 0.

The exact solution is
ρ(x, y) = xy(x− 1)(y − 1)ex+y.

We have solved this problem with the PSI method (9) on non-structured grids. This
ensures the distribution of the flux and the genuine non-linear nature of the PSI method
for this test. This would not had been the case if we had used structured grids for this
particular velocity u = (1, 0).

We have estimated the order of convergence in Lq(Ω) norm by means of the numerical
solutions ρh and ρ2h computed on two meshes of sizes h and 2h, respectively, as

ph
Lq ' log2

(‖ρ− ρ2h‖L2(Ω)

‖ρ− ρh‖L2(Ω)

)
.

Similarly, the convergence order in H1(Ω) norm has been estimated by

ph
H1 ' log2

(‖∇(ρ− ρ2h)‖L2(Ω)

‖∇(ρ− ρh)‖L2(Ω)

)
.

Table 1 shows the estimated convergence orders in L2(Ω), L∞(Ω) and H1(Ω) norms, for
h = 1/N with N = 40, 80 and 160, where N denotes the number of subdivisions on each
side of Ω. We observe that all orders of convergence are close to 1. Although our grids
are non-structured, and then we cannot expect a very smooth behaviour of the estimated
convergence order, this value roughly approaches the value 1 as h decreases.

As the solution is very smooth and the domain is convex, then the standard Galerkin
Finite Element approximation of problem (1) yields a second order accuracy in L2(Ω)
norm. However, this does not seem the case for the PSI method in view of our results.
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Nevertheless, our Petrov-Galerkin formulation allows to prove another remarkable prop-
erty of the upwinded formulation (9): Its well-balanced character for advection-dominated
regimes. To give a rigourous definition of this property, let us consider a solution of problem
(1), and define the consistency error ε(ρ) ∈ V ′

h

〈ε(ρ), vh〉 =

∫

Ω

(u · ∇ ρ) Πrh
vh + ν

∫

Ω

∇ρ · ∇vh −
∫

Ω

f Πrh
vh,

where rh ∈ Vh is some interpolate of ρ.

Definition 9.1 (Well-balanced scheme)
Consider a smooth solution ρ of the advection-diffusion problem (1).

• We say that the numerical scheme (9) is well-balanced for the solution ρ if ε(ρ) = 0.

• We say that the numerical scheme (9) is well-balanced for the solution ρ up to order
p > 0 if ‖ε(ρ)‖V ′h = O(hp).

For p = 2, this property is the adaptation to our context of the “Second-order accuracy at
steady state” property stated in [3]. This property is cited as a basic desgin principle for
conservative schemes to solve hyperbolic systems of conservation laws.

In the context of numerical solution of Shallow Water equations, for instance, this
property helps to design accurate schemes. It ensures, in particular, that water at rest is
solved with high accuracy if p ≥ 2 (See Bermúdez & Vázquez-Cendón [5], Chacón et al.
[10]).

Let us remember the definition of the Péclet and grid Péclet numbers,

Pe =
U L

ν
, Peh =

U h

ν
,

where U and L respectively are a characteristic speed and lenght of the flow. The Péclet
number measures the relative balance between the convective and the diffusive terms in
equation (1). The advection-diffusion process is said to occur in advection dominated
regime –with respect to the current grid– if Peh ≥ 1.

Lemma 9.1 The upwinded PSI scheme (9) is

• Exactly well-balanced for the advection equation

{
u · ∇ρ = f in Ω

ρ = g on Γ−,
(57)

and

• Well-balanced up to second order for the advection-diffusion equation (1) when the
flow takes place in advection-dominated regime.
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Proof:

• Transport equation. This is a direct consequence of the upwinded structure of
scheme (9). Indeed, the consistency error acts as

〈ε(ρ), vh〉 =

∫

Ω

(u · ∇ ρ− f) Πrh
vh = 0, ∀ vh ∈ Vh.

• Advection-diffusion equation. Let us assume for simplicity that equation (1) is
written in adimensional quantities. In this case, Pe = 1/ν and Peh = h/ν.

Assume ρ ∈ H2(Ω). Using integration by parts, ∀ vh ∈ Vh,

〈ε(ρ), vh〉 =

∫

Ω

(u · ∇ ρ− ν ∆ρ− f) Πrh
vh + ν

∫

Ω

∆ρ (Πrh
vh − vh).

Then, by Lemma 5.2

| 〈ε(ρ), vh〉 | ≤ ν ‖∆ρ‖2‖Πrh
vh − vh‖2 ≤ ν h ‖∆ρ‖2‖∇vh‖2.

So ‖ε(ρ)‖V ′h ≤ ν h ‖∆ρ‖2. Using that Peh ≥ 1,

‖ε(ρ)‖V ′h ≤ ν h Peh ‖∆ρ‖2 ≤ ‖∆ρ‖2 h2.

¤

Similarly, it may be proved that the scheme (8) is well-balanced up to second order for
flows in diffusion-dominated regime, when ν ≥ C U h−1.
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[15] Drăgănescu A., Dupont T. and Scott L Ridgway. Failure of the discrete maximum
principle for an elliptic Finite Element problem, Math. Comp. 74, No. 249, pp. 1-23
(2004).
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