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Abstract

We consider a non-linear viscous bi-layer shallow water model with
capillarity effects and extra friction terms in a two-dimensional space.
This system is issued from a derivation of a three-dimensional Navier-
Stokes equations with water-depth depending on friction coefficients.
We prove an existence result for global weak solution in a periodic
domain Q = T2.
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1 Introduction

The Shallow-Water flows cover a very large number of geophysical and engi-
neering applications as ocean circulation, coastal areas, rivers, lakes,
avalanches, ... But, in many situations one layer of Shallow-Water cannot be
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used to model the system. The simplest example is the flow in the Strait of
Gibraltar. It is necessary in this case to consider two layers of water. Indeed,
the conservation of the volume of water and salinity in the basin indicates the
presence of two opposite flows: the surface Atlantic water and the deeper,
denser Mediterranean water flowing into the Atlantic. Thus, it is necessary
to consider at least two layers model if we want to simulate the flow in this
region. We assume that for this phenomena one can make an appropriate
Shallow-Water approximation. For this purpose we can find many deriva-
tions of bi-layer and multi-layers Shallow-Water models. In [1], AUDUSSE
derived a multi-layer Shallow-Water model to extend the case of one layer
established by GERBEAU and PERTHAME in [17]. In this work, using the
hydrostatic pressure and the kinematic boundary conditions, he derived mo-
mentum equations of the form:
Ha Hooo Yo Yo

) /H udz + 0, /H Wz 4 ghaduh = " 0.u(Halt, 7)) = “0.u(Haor(1,2))
and Gsé at the leadainlg order a finite difference method with respect to the

vertical variable when the equation is an interface equation to deduce the
friction term:

Ua+1 - Ua
haJrl + ha ‘

In [25], PEYBERNES deduce a bi-layer viscous Shallow-Water model which
take into account the friction at the interface. But instead of asymptotic
analysis several assumptions of simplifications are used in the boundary con-
ditions to deduce the final system. Also, the energy of the system is obtained
under restrictive hypothesis on the data.

On the other hand, we propose in this paper a new viscous bi-layer
Shallow-Water model with different constant densities. Following the work
performed in [17] for one layer in one dimensional case and in [20] for one
layer but in the two dimensional case, here the considered model is a simpli-
fied system of a general obtained in [16]. In [20], a viscous one layer of two
dimensional Shallow-Water system is derived by MARCHE. The originality
in this work is the introduction of surface-tension term through the capillary
effects at the free surface and quadratic friction term at the bottom. Such
surface-tension and quadratic friction terms have been useful to establish the
existence of global weak solutions in [2]. Our model also take into account
friction term on the bottom and capillary term on the interface and on the
free surface. Another work related to the derivation of 2D Shallow-Water
model has been done by FERRARI and Saleri in [15]. In particular the au-

po.u(Hy) = p



thors include the atmospheric pressure in the derivation. For the sake of
brevity, we have not included in this work the deduction of our new viscous
bi-layers model, see [16] for detail.

We prove the existence of global weak solution for the considered system.
The analysis developed here is based on the techniques used by BRESCH,
DESJARDINS and LIN in [2] and [6]. In these works, they obtain the existence
of global weak solution for a 2D Shallow Water system and a Korteweg
system with a diffusion term of type v div (hD(u)). They prove that the
considered systems is energetically consistent without any restriction on the
data. The key point of this proof is based in a estimate of a new entropy
(in mathematical sense), called “mathematical BD entropy”, which gives a
bound of the term V+v/h. This inequality is extended later to a more general
Navier-Stokes equation with an algebraic relation between the shear and the
bulk viscosities coefficients. But the authors used quadratic frictions terms
and capillary effects to get the stability of the system in [2]. More recently,
another proof based also on the “BD entropy” estimate of the stability for
the Navier-Stokes equations for barotropic compressible fluids is developed in
[21] by MELLET and VASSEUR. Notice that this analysis includes the case of
Shallow-Water without any regularizing term. Their analysis is based on the
estimate of pu? which is enough to get the compactness result. In fact this
estimate replace that of A'/3u in [2] obtained by using a drag term of the form
r|h||u|u. But it is not actually possible to construct a suitable approximate
sequences of weak solutions with this method.

In [14] and [25], the authors prove the existence of global weak solution of a
bi-layer Shallow-Water model without any friction term but with a diffusion
term of the form vAwu. This analysis uses the method developed by ORENGA
in [24] and the system is energetically consistent only for small enough initial
data. Others works concerning the existence of global weak solution of a
bi-layer Shallow-Water using the preceding method can also find in [11] and
23].

In this work we consider in a periodic domain €2, a system composed by two
layers of immiscible fluids with different and constant densities (p; and ps,
resp.) and viscosities (v; and vy, resp.).

From now on, index 1 refers to the deeper layer and index 2 to the upper
layer of the flow. So, h;, u; for i« = 1,2 denote the thickness and the velocity
field of each layer. We define h to be h = hy + hy. We assume that the
friction coefficient at the bottom ¢y and the coefficients aq, ay representing
respectively the interface and free surface tensions coefficients are positive.



The model proposed here reads as:

0th1 + div (hlvl) = O; (1)

plﬁt(hlvl) + P1 div (h1U1 & U1> — 21/1 div (th(Ul))

cof(h1)h ,
+p19h1Vhi + pagh1Vhy — (1 + Oﬂéyl)l> fric(vy,ve) + coB(h1)vy
1
—Oélhlv<Ah1) — Oégh1V(Ah2> = 0, (2)
8th2 + div (hgvg) == O, (3)

pgat(hQ’Ug) + P2 div (hQ'UQ & ’U2> — 21/2 div (th(’Ug))

+p2ghaVhy + paghaVhy + fric(vy,ve) — asha V(AQ) =0 (4)
with initial conditions:
hijp—o = hiy 20, Vi = My, (5)
for which we assume the following regularity:
hiy € L*(9), Vhi, € (L2())?, Vi/hi, € (L*(Q2))?

e € L'(Q), log (hy) € L'(Q).

The function 3 depending on h, is one of the drags coefficients given by:

o) = (14 22m,) (7)

3V1

We denote by D(v) the strain tensor, defined by D(v) = Y2t¥0 and by

2
A(v), the vorticity tensor such that A(v) = V”’Tvt”.

The friction term between the two layers, denoted by fric(vy,vs) is propor-
tional to v; — v, and is taken as follows:

fric(vi,ve) = —c1B(hy, he)(v1 — v3), (8)
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where

hihs

Bl ho) = 5y

(9)
is the other drag coefficient (friction term at the interface). ¢; is taken
constant and strictly positive. The drag coefficient B is also used in [18]. It
seems that it is not possible to control the interface friction term of the form
c1|vy — vo|(v1 — v2). But the friction coefficient B makes possible the control
of friction term (8). Note that CHUESHOV and all in [12] study a system
of 3D Navier-Stokes equations in a two-layer thin domain with an interface
condition
(viOsul — k(uy —ul))|oy=0 =0 0,5 =1,2.

This condition is the same of type as the condition appearing in the Prim-
itive Equations of the Coupled Atmosphere and Ocean which describes the
atmosphere-ocean interaction. They prove the existence of strong solution
corresponding to a large set of initial data and forcing terms.

An other important particular case of our system is that when the viscos-

cof(hy)h
Oﬁél)l> tends to 3/2 but not
n

to 0 and B tends to 0; so the limit system with respect to v; is not closed to
those obtained at the leading order as for one layer case.

We assume the following hypothesis on the data:

ity coefficient 1, and v, tend to zero, (1 +

p1 > P2, V1 <lz, Q1> 09, (10)

and the “mathematical relationship” between viscosity and tension coeffi-
cients given by:
Yy (11)
Vo a1 P2
This paper is organized as follows: In Section 2 we define the notion of
a weak solution and we give our main existence result. Section 3 is devoted
to the classical physical energy and the mathematical BD entropy. We prove
the existence theorem in Section 4 and finally, in Section 5, we give the proof
of the classic energy and BD entropy inequalities stated in Section 3.

2 Existence of weak solution

In this section we state the results of existence of weak solution for the system
(1)-(4). Previously we introduce in what sense this weak solution is defined.



We introduce the initial energy associated to the system (1)-(4):

1 1 1
& = ipl/ﬂhlo|vlo|2 + §P2/§2h20|vzo|2 + 59([)1 - Pz)/ﬂ|h10|2
1 2 1 2
5029 | [l + hay[* + 5 (= a2) [ [V, | (12)

1
+§042/Q\V(h10 + hoy ) [%;

and the expression:

Fom g 19yl + 5 [ 19yl (13)

And we assume both of them are bounded.

Definition 2.1 We shall say that (hy, ha,v1,v2) is a weak solution of (1)-(4)
if (1) and (3) hold in (D'(0,T) x Q)?; hy,_, = h} > 0 and hy,_, = hj in
D'(Q2); the following assumptions are satisfied:

hi € L=(0,T; L*(Q));

Vh; and \/hyv; € L=(0,T; (L*(£2))?);
v € L*(0,T;(L*(2))%);

VhiD(v;) € L*(0,T; (L*())%); (14)
\/M(Ul - 112) € L2(0>T§ <L2<Q))2)3

V/hi, € L0, T; L3()?);

Ah; € L2(0,T; L*(Q)).

And for any ¢ € C=((0,T) x Q)* with o(T,-) = 0, (p with compact
support), we have:

T T
—p1hYv? R0 (0, ) —/0 /th?vlatsoﬂwl/o /Qh?(vl - ) div vy

o [ [ e b s D)+ 20 [ [ R(D(): D))



T T
+2V1/0 /th(D(Ul) 1 (Vhy ® ¢)) —i—Co/O /Qﬂ(hl)vlhlgp
coB(hy)
—Cq / / <1+ 056 ! )B(hl,hg)(vg—vl)hlgﬁ
"
vomo [ [ W dive+ sog [ [ Be- i)
S0 | |0 dive+Spg || Bie - Vi
T T
g [ [ B Vho) an [ [ B2AR div e
0 Q 0 Q
T T
w200 [ [ Akl Vi) +ao [ [ BEAR div g
0 Q 0 Q

T
+a2/0 /Qh1(<p~Vh1)Ah2 —0

and

T T
—p2h3vahYp(0, -) —/0 /szhgvzf)t@er/o /th(?h - p) div vy

o [ [ (s @ hava) s Do)+ 20 [ [ 1(DG) - D)

T
2, /0 /Q ha(D(vs) : (Vhe ® )

T
+Cl/0 /QB(hlahﬂ(UQ — v1)hay (16)

1 T 1 T

+2029/0 /th div ¢ + szg/O /th(so-th)

T 2 T 2 -
+pgg/0 /QhQ(go-Vhl) ~|—a2/0 /QhQA(hl + hy) div g

T
—FQCYQ/O /QhQA(hl + hg)(@ : th) =0

Remark 2.2 This definition of weak solution with test functions depend-
ing on the solutions itself was first introduced in [13] by DESJARDINS and
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ESTEBAN when dealing with motion of rigid or elastic bodies evolving in vis-
cous compressible or incompressible fluids. In [6], the authors use the same
definition. It will allow us to get the compacity when limit height vanishes.

We will prove the following theorem:

Theorem 2.3 There exists a global weak solution (hy,hg,v1,v2) of (1)-(4)
satisfying entropy inequalities (17) and (19).
3 Energy inequalities

We give in this section, the classical energy estimate and the mathematical
BD entropy. These two inequalities will allow us to prove the main theorem.

Lemma 3.1 Let (hy, ho,v1,v2) be a solution of the system (1)-(4). Then,
the following inequality holds:

Sou [l + 2o [l + 20 [ (D) - D(wy))

1 d
59(/)1 - Pz)%/QVMP + 00/9101’2

1 d , 1 d ,
+§P29%/Q\h1+h2| +§(041—042)%/Q’Vh1| (17)

—0—2V2/Qh2(D(712) : D(v)) +

+** IV( h1+h2)| +*C1/B (h1, ho)|v —U2|

2 dtJa
< <+Cl>/h1|U1’

Remark 3.2 1. Notice that the two terms in the right can be controled
using Gronwall’s lemma.

2. From this enerqgy estimate (17), we deduce the following bounds:
Vhior € L¥(0,T5 (L)) y/havs € L(0,T; (L3());
o€ L2(0,T; L2(Q)); \/lhn D(v) € L*(0, T; (LX(Q)");
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hy € L>(0,T; L*(Q2)); Vhy D(va) € L*(0,T; (L*(Q))*);
Vhy € L®(0,T; (L*(Q))?);  Vhy € L®(0,T; (L*(Q))?):

18
v € L*(0,T; (L*())%); o

B(hl, hg)(?)l — Ug) € L2(0, T, (LQ(Q))2)

But it is well-known that these estimates are not enough to pass to the
limit and get the stability of the system.

So we are going to obtain further estimates from the BD entropy that we
state in the following lemma, (see [6]).

Lemma 3.3 If we assume that (hq, he,v1,v2) is a smooth solution of system

(1)-(4), then

§Pzdt/h1|l)w1 + 211V log hy|* + 2/)1dt/h2|l)zv2 + 21,V log hs|?

1 d , 1 d ) )
+p1p2 (29(01 —Pz)dt/ﬂ|h1| + 2ngdt/ﬂlh1+h2| +00/Q|711\ )
2012 [ halA(ee) : A(va)) + 200102 | In(A(wr) : Alw))
tseroupn [ Bl oy — vl + Lprpa(n — o) 5 [ [P

201P1P2 0 1, 112)|V1 — V2 2/71P2 Q1 — Qo diJ)o 1

1 d
+§042P1P2£/Q\V(h1 + ho)|* + 21/1P1P29/Q’Vhl|2

+2V2p1p2g/(2|Vh2|2 + 2V1a1p2/ﬂ|Ah1|2 + 27/2042p1/Q|Ah2’2

B Ty d/lo L
10P2 04 Jo %8 \ 301 + ol

+2V1Co,02/Qﬁ/(h1)U1Vh1 + 2p29(porn + ,01V2)/QVh1Vh2



+2a(pory + p17/2)/QAh1Ah2

B(hy, hs)
T((”l —vg) - Vhy)

2
coB(h)hy\ B(hy,h
+2V16102/Q <1 + Oﬁéyi) 1) ( }; 2) ((v1 —v2) - Vhy)

2
< p1p2 (CO/ havi|* + C1ﬂ/ h1|U1|2> :
- 3v1Ja Vo JQ

Remark 3.4 We would like to point out the boundness of the ‘non usual’
terms appearing above.

—2v5¢1 P

h1

1. The term including log (3+01h1
C 1/1

) 1s bounded. In fact, we write it as:
log S = log hy —log(3 + covy hy).
3+ C()Vl_lhl

Since 3 + covy'hy > 1 the second term is bounded. If we denote
log, hy = log(max{hi,1}) and log_h; = log(min{hy,1}), and using
the reqularity assumed for initial conditions, it is sufficient to control

log, hi. But 0 < log, hy < hy, so we can bound this term because
hy € L*(0,T; L*(Q)).

2. In the energy equality (19), it remains to control the four last terms on
l.h.s.

e Pressure:

We use all pressure terms to write them together as follows: We
only take the sum

u2,01g/Q]Vh2|2 + 2(11p2 + V2Pl)g/QVh1Vh2

since the remainder being positive. We have:

’/2;019/Q|th|2 + 2(v1p2 + V2Pl)9/QVh1Vh2

< (v1p2 + V2P1)9/Q|Vh2‘2
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+2(n1p2 + V2p1)g/QVh1Vh2 + (np2 + Vzpl)g/ﬂ\wlllz (20)

= (11p2 + Vzpl)g/QW(hl + ho)?

and these two terms on the right member can be controled by Gron-
wall’s lemma.

Tension:

27/10é1,02/Q|Ah1|2 + 2V26Y2,01/Q|Ah2|2 + 2a9(porn + p17/2)/QAh1Ah2
= ag(vep1 + V102)/9|A(h1 + h2)‘2 + ap(vapr — V102)/Q‘Ah2|2
+(aqvipg — OéQVzPl)/Q|Ah1|2 + (11 pa — 042V1/)2)/Q|Ah1|2.

Thanks to hypothesis (10) and (11), each term appearing in the
right is positive.

Friction terms: First we have

B(h ,h
Il = 21/201,01/ ( ! 2)< —Ul)VhQ

/ h,h [B(hn, 1
= 4V201p1/\/7 L2 Ug—Ul }1 2>V\/h72

Then, Young’s inequality allows us to conclude that

2
IL < 27/20101/(23(711, ha)|vr — va|* + 201p172/SZ|V\/ hol?.
1

Next in the same way, one can write

coB(h)hy\ B(hy,h
L = e | (H Oﬁéul) 1) (ﬁ ) (1, — va) - V)
1 1

B(hy. h
< 31/101,02/(2(;2)‘(?11 —vg) - Vhy|

h ,h hi, h
< 37/101p2/\/7 ! 2 |U1—U2| M|Vhl|



[B(hy. h Bl h
< 6V101P2/Q\/ hy (}12)\@1 — g (£2>V\/ hq
1 1

B(hy, h —
S 31/161p2/QB(h1,h2)|Ul — U2|2 + 3V101p2/ﬂ(£2)|v h1|2
1

V2
S BI/lClpg/ﬂB(hl,hg)‘Ul — U2’2 + 361/)271/Q|V\/h1|2.
2

It 1s easy to note that both terms

V2 V2
3 é/v\//ﬂ d —Z/V\/h2
01021/2 Q\ 1’ an Clﬂly1 Q’ 2‘

can be absorbed by Gronwall’s lemma.

3. These results and the BD entropy allow us to find the estimates:
Vi/hy € L0, T5 (L(Q))%): - Vy/hy € L*(0, T3 (L*(2))%);
Ahy € L*(0,T; L*(Q));  Ahy € L*(0,T; L*(Q)); (21)

Vhy € L®(0,T; (L*(2))%); Vhy € L>=(0,T; (L*(R2))?).

4 Proof of the Theorem 2.3

To perform the proof, first we justify the existence of an approximate solution
satisfying the energy inequalities of Section 3. Secondly we pass to the limit
in the fluid transport equation and finally in the momentum equation.

We assume that a sequence of approximate solution (hy,, he, ,v1,,0s,)
has been constructed and has suitable regularity to justify the formal energy
estimates. In the case of one-layer, in [4] and in [5], such approximate solution
is constructed. The method used by the authors can be applied in our case
to get an approximate solution. We need only to prove the stability of the
system.

Thus, using the classical energy estimate and the mathematical BD en-
tropy, we obtain the following uniform bounds:

"hlnHLw(O,T;LQ(Q)) < C; HthHL‘X’(O,T;LQ(Q)) <C;

[/ 1, v1, | oo 0.1 z2(0)2) < O
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[/ A2, va, |0, ri22(0)2) < C5
1/ 1, D(v1,) || 20,7520y < C
|1/ P2, D (v, 20.1;22(0))1) < C5
(22)
VR, || 2o 0.2 0)2) < O

[V ha, || Lo 0,13 (z20))2) < C;

V1, 122 0.1322(0)2) < C5

H\/W — v, ) l20m522 02 < C
Hv\/EHLQ(O,T;(LQ(Q))Q) < C;
1V/ha,

ALy, || 220,020 < C;

and

r20,r;L2(9))2) < C;
(23)

ARy, (| L200,7,12(0)) < C.
Convergence in the fluid transport equations.

For i = 1,2, we have h;, bounded in L*(0,T; H*(Q2)) N L°°(O,T,H1( ))-
Moreover 0;h;, = — div (h;,v;,) is bounded in L2(0 T; H1(Q)).
Thanks to the Sobolev’s imbedding (cf. [8]), we have Vs € (0, 1)

and

HAQ) — HY™(Q)
H'Y$(Q) cc H Q).

13



Then, due to [26], up to the extraction of a sequence, there exists h; €
L*(0,T; H*(2)), (i = 1,2) such that Vh; and V/h; belongs to L>(0, T'; L*(2)?)
and

hi, — h; in LP(0,T; HVP(Q)) nC([0, T); H'/7(Q)),

Vp € (2,+00) and p € (2, 00). (24)

Next, since \/Evin is bounded in L*(0,T;(L?(2))?), we deduce that it
converges weakly in L?(0,T; (L*(Q))?) up to a subsequence to some limit
2 € L0, T (I2(Q))?).

Let us define v; to be:

Z.
V; = \/h' ' (25)
0 it h; = 0.

N

To prove the convergence of h; v; , we write it as h;, v;, = \/h;, vi \/hi,.

Notice that
Vhi, vi, = 2z in L2(0,T; (L())?), (26)

and so, it suffices to prove the strong convergence for y/h;, in L*(0,T; L*(Q)).
This proof is given as follows:
Thanks to (22) and (23),

IV R 220,73 (22(0))2) ¢
and ||\/hz‘n“Loo(o’T;(Lél(Q))Q) S C, (27)

so, we can write that \/h;, is bounded in L*>°(0,7T; H'(Q)) and
O/ hi,, = 31/ hi, div vy, — 5 div (y/h, v;,) is bounded in L*(0,T; H ().

Consequently, up to a subsequence, /h; converges strongly to some \/h; in
L*(0,T; L*(Q)). From (26) we deduce that

IN

hi, vi, = \Jhizi = hyvi in L2(0, T; L3(Q)?). (28)
We then prove the convergence in the mass equations that means we have

Oihi + div (h;v;) =0 in (D'(0,T) x Q) (29)
and hi,_, = hi, in (D'(Q)). (30)

Lt=0

14



Convergence in the momentum equation

We prove it in two steps:

Step 1: Compactness of h;, v;, .

We first give important two lemmas that will be useful in this part.
Lemma 4.1 (h] v;,) converges strongly to (hjv;)in L*(0, T LA(Q)%) up to a
subsequence for all v > 1/2

Lemma 4.2 Let f € L™(0,T; L*(Q)) such that f > 0 a.e. on (0,T) x €,
Ve L®0,T; L2(Q)%) and Af € L*(0,T; L*(2)). Let us also consider a vec-
tor field h such that \/ fh and \/?Vh respectively belong to L>(0, T L2(Q)3)
and L*((0,T) x Q)3*3.

Then V(f3/?h) € L*((0,T); L3/2(Q)3) and there exists C' > 0 independent of
f and h such that

IV 2 0m o2y < IVl zoases@ys IV Loz (31)
ClIV IV L2 <)) (| fll Lo 0,102 + IV fll o075 02(0))) -

For the proofs of these lemmas we refer the reader to [6] and [5]. We only
make here the remark that the proof of the first lemma uses the second one.

e First, we remark that h;, and v;, verify the conditions of this lemma. So
we deduce that V(h3/2vln) is uniformly bounded in L?(0, T’; (L3/2(2))*).
Moreover, since we work in dimension 2, Sobolev’s embedding implies

that h3/ v;, is uniformly bounded in Lz(O,T7 (L5(£2))%).

n

e Secondly, we estimate 0y(h;,v;,). More precisely, we will prove that
Oy(hi,v;, ) is uniformly bounded in L?(0,7; H*(2)?). We only prove
the estimate J;(hs, vy, ); it can be adapted to estimate 9;(hq, vy,,).

Using (4), we deduce the value of py0;(he,vo,). So we have to find
bounds for every term which compose it. We have:

— hy, Vs, @ vy, = hy *va, @ h vy, € L0, T; (L'(Q2))Y).
— hy, D(vy,) = hy!* k> D(vy,) € L0, T; (L*/*7)(Q2))?).
— hg, Vhy, and hy, Vhy, are bounded in L=(0,T; (LP/%(Q))?).

Combining this result with hg E L>(0,T; (H3(2))?) we deduce
that hy, VAR is in L*(0, T; (W ~1H(Q))?).

15
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— VBisin L®(0,T; L®(())) and vV B(vy, —v1, ) is in L2(0, T; (L*((Q)))?).
Then fric(vy, —v,) € L*(0,T; (L*(Q))?).

We then conclude that 9;(hs, v, ) is uniformly bounded in L2(0, T'; H=*(£2)?)
with s large enough.

Conclusion: We get the strong convergence of hy, vo to hovs in

L*(0,T; (L9(2))% ¢ > 1.

In the same way, using (2)
to hyvy in L?(0,T; (LY(2))?

, we obtain that hy vy, converges strongly
);q > 1.

Step 2: Passage to the limit.

Remark 4.3 We can now pass to the limit in the convection terms

T T

—pi/ /(hinvin ® h;,vi,) + D(p) and in pz-/ /h?nvinatgo since we
o Jo o Jo

have the strong convergences of h; v;, and h; . Also we can pass to

the limit in —p;(hy )?v;. (0, ). It remains to see the other terms which

appear in (15) and (16):

e Using the strong convergence of h;, to h; in C([0,T]; H*(Q2)) for
all s € (0,1), we deduce the strong convergence of h} to h? in
L3(0,T; L*(Q)).

e The pressure terms. h? is bounded in L>(0,T; LP/3(£2)). More-
over h? Vh;, and h? Vh;, (i # j) are bounded in L>(0, T; (LP/3(Q))?).
Hence, they weakly converge to h?Vh; and to h7Vh; and so we
can pass to the limit in the six pressure terms.

e The friction terms.
For the first one, we must prove the convergence of 3(hy,)v1, hy,,.

We have:
3V1 _ 3V1

3V1 -+ COhln 3V1 —+ Cohl
3V100(h1 — hln)

(31 + coha,, ) (Bv1 + coha)’

B(h,) = B(h)

So, (32) gives
B(h1,) = B)| < 5V = b, (33)
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and this leads to
B(hy,) — B(hy) in LP(0,T; LP(Q)) Vp € (2, +00). (34)

Since hy, vy, converges strongly to hyvy in L*(0,T; L?(Q2)). This
gives weak convergence of 3(hy,)vy, hi, to B(hi)vihy

in L2P/24p(0, T; L%/247(Q)).

Next, we prove the convergence of B(hy, ,hs, ). By a simple cal-
culation,

hi,ha, hihs
Uhy, + Zhy,  Dhy+ Zhy
2 hy, i (ha, — ha) + 2ha, ho(ha, — i)
(Dhy, + 2hy, ) (4hy + 2hy)

B(hln; h2n> - B(hl,hQ) —

So we obtain immediately that,
1% 1%
|B(h,,, ha,) — B(hi, ho)| < ;2|h2n — ha| + ;2|h1n —hi|  (35)
1 1

which gives the strong convergence of: B(hy,, hs,) to B(hq, hs) in
LP(0,T; LP(£2)).

The convergence of the friction term in layer 2 is achieved due to
the strong convergence of hy, vo, and ho, and the weak convergence
of vy,,. In fact,

B(hy,, ha,)(v1, — va, )he, = —B(hy,,hs,)ha, v, + B(h,, ha,)v1, ho, .

n

Then B(hy,,, hs, )(v1, — v, )ha, converges weakly to
B(hy, ho)(vy — va)hy in L#/2%P(0,T; (L*/*7(Q))?). Tt remains
to establish the convergence of the second friction terms for the

Coﬁ(hln>hl

L converges StIOHgly
61/1

in LP(0,7; LP(§2)) and therefore, thanks to the

first layer. For the coefficient, 1 +
Coﬁ(hl)hl

V1
strong convergences of B(hy, , hs,) and hy, vy,
Coﬁ(hl )hl
1 n n
( + 61/1
Cofi(h1) I

6V1

to 1+

)B(ha,, ha, )h1,v1, converges weakly to

(1+ )B(hy, hy)hyvy in L2P/PH3(0, T; L2/P+3(Q))).

17



Next, for the term including vy, multiplying and dividing by
hs, , we write

B(hy,, ho,) —
B(hln, hgn)vgnhln = <17;L2) hgnvgnhln. (36)
2

n

Thus, it suffices to prove the strong convergence of w. To
25

Bll, ha,) _ Blhwho)| o

h, \V ha, hl\/h_2

2 2] vy 2]
hi, + Phe,  Trha + F2ho

do this, we study the difference

have:

B(hy,,ha,)  B(hi,hs)

st (ha, = Vha) 2 hayfhy, — s, V)
(hy, + 2hy, ) (Lhy + 2hy) (37)

Vha. = b + 2 b bl ha, = /o

14
- (hg/Q\hln — |+ hoJhalhs — h2n\> .
1

The above last inequality gives the strong convergence of

IN

vy
151

B(hln 7h2n)

\/ h2,

to % in L°°(0,T; L'*4(2)) where s € (0, 1), s small enough.

Combining this result with the weakly convergence of the product
\/Evznhln in L%/P2(0, T; (L*/772(Q))?), we deduce the weak
convergence of B(hy, , ha, Jvs, by, in L2P/PF2(0,T; (L(2))?), t being
stricly greater than 1 and defined by:

I p+2 1

t 2p +1+3'

e The surface-tension terms. Formally, they appear in the following
form:

hi A(hi, + hj,) + hi, Vhi, A(hy, + h,), (0 # ).

18



Due to the strong convergence of h} in LP2(0,T; LP*(Q)) and
the weak convergence of A(h;, + hj, ) in L*(0,T; L*(Q2)), the first
converges weakly in L2/P*4(0, T'; L*/P+4(Q0)). Next, since h;, con-
verges strongly to h; in LP(0, T; H'*1/?(Q)), Vh;, converges strongly
in L?(0,7; LP(2)) and then we get the weak convergence of the
second in L%/P*4(0, T; L*/P+4(Q)).

Finally it remains to do the proof of the convergence of the six
diffusion terms namely

/ /hln ) div v;,, / /hln (vin) + (Vh;, ® ),
[ [0, Do)

For this aim we follow the lines performed in [6].

We define a function § € C*(R), such that 0 < §(-) <1 and

3(s) = { (1) ; i f (38)

For a given positive number 7 we denote 6,(s) = 0(s/7).

Using the function 9, defined above we write hfnvl-n div v;, as fol-
lows:

hi vy, div vy, = (1= 6-(hi,))h; v;, div vi, + 6, (hy, )BZ v, div vy,

So now, we study each of the terms of the sum separately.

Note that we can write under the same form the others terms:
hi D(v;,) and h;, (D(v;,) - D(v;,)).

First we estimate the part including 1 — 0.(h;,). We can write
that for all 7 > 0,

11 = &:(hi,))RE, i, div v, |1 O @)
S ||\/ hln div UanLz (0,T;L2()) ||hzn UanL?(O,T;LG(Q)?) (39)
X[[(1 = 67 (hi )l o 0.7:(2)) < CT
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Similarly we can estimate the others diffusion terms as follows:

II(1— 5T(hin))h?nD(Uin) L1072 (2)9)

3/2
< I\ hi, D(vi, ) || 20,7209 [| (1 — 5r(hin))hu{ 202 (40)
S Cv,7_3/27

and

|| (1 - 6T(hin))hln‘D(vzn)1]8 hZTL ||L1(0 T; Ll(Q)4)

< I\ i, D(Wi, )l 20022000 (1 = 67 (R, ) i Lo 0,z )y (41)
X |V hi, || 20,102 (0)) < C\/F

Therefore all of them converge to 0 when 7 tends to 0. So it
remains to study the sequences:

57— (hzn )hZQn vi'n le /Uin ? 67' (h'L'n ) hl2n D<U'Ln ) ’
5T(hzn)hzn D('Uzn )ijﬁjhin s

for a given positive 7.

Notice that d,(h;,)\/hi, D(v;,) converges weakly to some &, in
L2(0,T; L*(Q)*). We want to prove that

— 5, (hi)\/h:D(vy). (42)
We write
8- (hi )\ hi D(vi,) = D(67(hs, )/ hi,vi,)
b0, &V, ( >) (43)

Next, using the strong convergence of d,(h;,) and

O (hs,) + % in C([0,T]; LP(2)), Vp < 400, the strong conver-
gence of Vh; in L*(0,T; (L?(2))?) and the weak convergence of
\/avin to vhiv; in L2(0,T; (L?(2))?), we get the following iden-
tity in D'((0,T) x Q)*:

& = D(éf(hi)\/;ivi) - \/E’%@Vhi <5/T(hz) + 6;(:Z)> ;o (44)
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and therefore, (42).
So we have

5 (hiy )\ hi, D(vs,) — 6,:(hi)\/hiD(v;) in D'((0,T) x Q)* (45)
We write the remaining three terms as:

+5T(h2n) hlnD(UZn)hifz X{h¢n<a}>
57- (hzn ) h?n Uin le ’Uin = (57- (h’tn ) hfn Uin le Uin X{hzn >al

+(5T (hzn ) h7,2n Uin le Uin X{hzn <Oé}
and

Or(hiy )hi, D (i, )ijOihi, = 07 (hi, )/ i, D(viy, )ij\/ Rin Ol X(hi, >0
+07(hi, )\ T, D (i, )i/ P, O5hi, X(hi, <ar-

Thanks to the definition of . (-) and using the strong convergence
of b2 X thy say, B P0i, and y[hy, Vhi, Xqn, ey in L2(0, T; (L(2))?)
respectively to hf/zx{hQa}, hf/%i and \/Eth‘X{hiza}, we can pass
to the limit in the three terms.

Note that, due to (38)

lin% o0-()=1. (46)
So, finally, let T goes to zero to get the convergence of the diffusion
terms in equations.

O

5 Proof of the energy inequalities

This section is devoted to prove the energies inequalities given by Lemmas
3.1 and 3.3.
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5.1 Proof of the classic energy inequality (Lemma 3.1)

To find the system energy, we multiply the equations for the first layer (resp.
second layer) by vy (resp. vy) and integrate over 2. First, we shall do it for
equation (2). Let us simplify the first two terms and the diffusion term. We
have

/ (@ (hvy) + div (hyvs ® v1))o §p1 y ( / o || ) (47)

and
—zyl/g( div (D (v1))or = 21/1/Qh1(D(v1) . D(w)). (48)

Thus, we obtain:

ipldt (/ hilvy | >+ 9,01/ Vhiv +9,02/ hiVhavy

[ttt = [ (1 220 rictun, e

(49)
—{—21/1/Qh1(D(v1) . D(w)) —al/QmV(Ahl)vl

—OéQ/Qh1V(Ah2)U1 =0.

We do the same for the second layer, to get:

1 d 1
§’O2dt </ 2|U2’2> + §9P2/QVh§U2 +QP2/Qh2Vh1vz

+2V2/Qh2(D(v2) : D(vg))%—/ﬂfric(vl,vg)vg (50)

—OéQ/QhQV(Ah)’UQ =0.

We sum up the above two equations, and we study the pressure, friction and
tension terms, that we denote respectively by PT', F'T" and T"T" given by:

1
PT = §9P1/ Vh%?fl—i‘ng/ h1Vhavy
Q Q

1
+§9P2/ thvz +9P2/ haV hjvg;
Q Q
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Coﬁ(hl)}h

61/1

FT = — /eric(vl,vg)vl—/ﬂ

fric(vy, ve)vy

£ [ et + [ frictvr, e
and

T = —Oél/Qh1V<Ah1)U1 — OéQ/Qh,lv<Ah2>’Ul — OCz/QhQV(Ah)U2

Pressure Terms: Integrating by parts and using equations (1) and (3),
one can write

PT = _gpl/th le (hlvl) — gpQ/QhQ le (hg?)g)
+902/Q(h25th1 + h10,hs)

= gpl/ﬂhlathl +gp2/9h28th2+gpg/ﬂat(hzh1)-

1
Now we add and subtract 29p2 / O;h? to obtain finally:
Q

1

PT = Sq(pi = p / I + ng / By + haf?. (51)

Friction Terms: Next, thanks to definition of fric(vy,ve) given by (8), F'T
reads

FT' = /Qcoﬁ(h1)|v1|2+01/QB(h17h2)|Ul—U2|2

+C1/QCOB(hl)hlB(h1,h2)(’Ul —’UQ)'Ul.

6V1
Also, due to the definition (7)

006<h1>h1 _ Cohl 31/1 _ } Cohl < 1
6V1 6V1 31/1 + C(]h1 2 3V1 + C0h1 - 2

This allows us to get:

hi)h
CI/QCOﬁéVi)lB(hl,hg)(Ug —Ul)Ul (52>

1 1
< fcl/ B(hy, ho)lvs — v1]* + *cl/ B(hy, h)|on 2.
2 Q 2 Q
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Moreover, writing co3(h1) = co(1 — (1 — 5(h1))), we deduce that

1
sa [ Bl ha)loy = s + co [ Junf?
201/Q (h1, ho)|v1 — v2]” + ¢ Q|111’

c2 1
<—0/h 24 = /Bh ho)|vy |2
=30 Ja 1]v1] +201 o (h1, ho)|vy |

c? 1 1y
<—°/h 24 7/11 2 53
=30 Jo 1o +261V2 o 1o (53)

Tension Terms: Finally, let us transform the tension terms T7. If we use
equations (1) and (3), we can write them as follows

Tr = Oél/ Ahl div (hlvl) + CVQ/ Ahg div (hl’l)l) -+ 042/ Ah div (hg?)g)
Q Q Q

= —Oél/ Ahlﬁthl - @2/ Ahg&thl - OéQ/ Ahathg
Q Q Q
Using Leibnitz formula, we obtain

1 d 1 d
TT = 50(1%/Q|Vh1|2 + Oéz/Qthachl + 5(){2%/Q|Vh2|2
—az/ N
Q
1 d 1 d
= 50&1%/Q|Vh1|2 -+ ozg/QVhQ@Vhl + 50&2%/Q|Vh2|2
s /Q Vhi0,(Vhs)

— 5aldt/whl\ n Qagdt/|wzﬁ+a2dt/w2vm

So, finally, we write the energy inequality as follows:
*pldt/ h1|U1‘ +2l/1/ h1 Ul)l + p2dt/ h2|1)2|
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1 d ,
205 [ ha(D(vs) : D(e2) + 39(p = p2) 2 [ 11

1 d 1
+§P2g% /Q |h|2 + 501/QB(U17U2)|U1 — 02‘2 + C()/Q‘Uﬂ2

1 d 1 d d
Can [V 4 - f/ hol? f/ Y
+2a1dt/9|v 1| +2a2dt QIV o +a2dt QV 1Vhs

(54)
1 d
+§P29£/Q|h|2+ Cl/B U1, v2) U1 — o] +CO/\01|2
41 d/|Vh\2+ /|Vhy+ /Vth
—oy— ey a
2 atta VT T o gy 2 2t P
c? 1 v
S 70/ hl‘Ul‘Q -+ *01*1/ hl‘U1|2
V1 /0 2 1l
O

5.2 Proof of the entropy inequality (Lemma 3.3)

We use the both transport equation and the renormalize technique to get:
0 Vhy + div (hiV'vy) + div (v; ® Vhy) =0
0;Vhy + div (haV'v,) + div (vy ® Vhy) = 0.
Replacing Vh; by h;V log h; and introducing the viscosity 2v;, they become
0;(2v1h1Vlog hy) + 21y div (b Vi) + div (hyv; @ 20,V 1oghy) =0
and
0y (2v5hyV log hy) + 2vy div (haVis) + div (hovy ® 21,V log hy) = 0.
Next, we add the momentum equation to obtain:

8t(h1(p1'l]1 + 2V1V10g h1>> + div (hlvl X (p1U1 -+ 2V1V10g hl))

—2V1 div (h1<D(’Ul) - th)l)) + plgh1Vh1 + ,029h1Vh2
55)
hi)h (
- (1 + COﬁ(l)l) fTiC(U1, UQ) + Coﬁ(hl)vl - CY1h1V(Ahl>

6V1
—a2h1V(Ah2) =0
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and
8t(h2(p2112 + QVQV IOg hg)) + div (hgvg & (pgvg + 2V2V IOg hg))

—2V2 div (hQ(D(’UQ) — VtU2>) -+ pQQhQVhQ + pgghQVhl (56)

+fric(vy, va) — aahaV(A(hy + hs)) = 0.

We multiply every equation ¢ by p; (p;v; + 21,V log h;), with i # j, take the
integrate over {2 and sum the two equalities. We transform now every term.

e From the first two ones:

pi | 0uhulpivs + 209 log ho)) (pivs + 209 log h)

—|—pj/Q div (hyv; @ (pivi + 21,V log b)) (piv; + 213V log hy)

1 d
= 5/%‘%/9}%%% + 21,V log hy|*.

e Using the definition of the deformation tensor and vorticity tensor we
obtain:

QVin/Q div (hi(D(v;) — V') (pivi + 20,V log hy)

Next, we only study all terms which are not appear in the classical
energy.

e The pressure terms become:

2V1p1p2g/gh1Vh1Vlog hi + 2V1p§g/gh1Vh2V10g hy
205129 [ haVhoV 10g ha + 203p1p2g | 12 ViV log hy
- 2vlplp2g/QIVhl|2 + 2V2p1ng/Q|Vh2l2
+2p29(parn + plyg)/Qthth.
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e Now, we change the tension term as follow:
—2V1a1p2/ﬂh1V(Ah1)V log hy — 2u1a2p2/ﬂh1V(Ah2)V log hn
—2V2042,01‘/QV(A(}21 + hg))v 10g hg

= 2V10[1p2/ﬂ|Ah1|2 + 21/2052p1/Q|Ah2’2 + 2@2(p2V1 + pll/g)/nghlAhQ.
e Friction at bottom:

3v1c
Cop2/ﬂﬁ(h1)U1V1Ogh1 = pg/ 7101)1V10gh1

Q31 + cohy
3V100 8th1 .
= - d .
p2 Q3V1 + Cohl ( h1 + v

h
So, define a function f such that f(hy) = c¢ylog 71_1 , we
3+COV1 h/l

then have

1 1
1 (hy) 31 = coﬁ(hl)h— and therefore

- 3v1 + cohy E 1
d
cho/ﬂﬁ(hl)UlVIOg hy = —P2%/Qf(h1) + ,0200/95,(h1)711Vh1- (57>

e And finally, the interface friction terms are:

)b\ B(hy, b
2V1c1p2/Q <1+C°ﬁéyi) 1) (l; 2)((1;1_@2).%1)

B(hy, h
—2V2C1p14(éﬁ((vl — 'UQ) . VhQ)
2

So we find the inequality (19).
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