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Abstract

In this work we present a new two-dimensional bilayer Shallow-Water model including
viscosity and friction effects on the bottom and interface level. It is obtained following [[6]]
from an asymptotic analysis of non-dimensional and incompressible Navier-Stokes equations
with hydrostatic approximation. In order to obtain the viscosity effects into the model we
must have into account a second order approximation. To evaluate this model we perform two
numerical tests consisting of an internal dam-break problem for both, one and two dimensional
cases. In the first one we make a comparison between the model obtained and the Navier-
Stokes simulation.

Shallow Water equations, bilayer models, viscosity, friction, capillarity, Finite Volume
methods.

1 Introduction

The goal of this paper is the derivation of a new viscous bilayer Shallow Water model. We
also present some numerical test with the aim of checking its validity. So we shall compare
the solution obtained by this new model with the Navier-Stokes solution.

The Shallow Water (SW) equations are usually used to simulate a large number of geophys-
ical and engineering applications as ocean circulation, coastal areas, rivers, etc. But sometimes
these equations are not sufficient to model specific situations as, for instance, the flow involved
in the Strait of Gibraltar. In this physical domain two layers of water with different proper-
ties are founded, the denser Mediterranean and the Atlantic water. So in this case we must
consider a model of at least two layers.

For this purpose we can find several derivations of one and two layers SW models to tackle
these kind of situations in one and two dimensional case.

Usually there are two effects that are neglected in Shallow Water models: the viscosity
and the Coriolis force. On the one hand it is important to remark that the viscous effects
are essential to obtain an accurate approximation in dam-breaks problems or hydraulic jumps
situations, as we can see in [[6, 9]]. On the other hand the Coriolis force plays an important
role in geophysical fluid dynamics applications. To include this force in equations does not
add any meaningful difficulty for the deduction of the model. Nevertheless its effects are of
major importance in these kind of applications, see for example [[8, 14]]. The objective is to
find a bilayer model as complete as possible that takes the Coriolis force into consideration,
includes the viscosity effect, friction -at the bottom and at the interface- and tension effect
-on the surface and the interface-.
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The pioneer work performed in [[6]] has been considered as a basis to develop the deduction
of our model. In this work a viscous Shallow Water model is obtained for the one-dimensional
one-layer case by performing the asymptotic analysis of the Navier-Stokes equations where
friction effect at the bottom has been taken into account. When only first order approximation
is considered the viscous terms doesn’t appear in the equations, so moving on to the second
order is needed to get the viscosity effects. The authors also put in evidence the difference
between two approximations through an application to a dam-break problem.

In [[9]], a viscous one layer 2D Shallow-Water system is derived. The originality of that
work is the introduction of a surface-tension term through the capillary effects at the free
surface and quadratic friction term at the bottom. These terms have been useful to establish
the existence of global weak solutions in [[2]].

With regard to bilayer models we must mention the work performed in [[12]] and those
developed in [[1]].

In [[12]], it is deduced a bilayer viscous Shallow-Water model which takes into account
the friction at the interface. But instead of asymptotic analysis development, several simpli-
fications are used in the boundary conditions to deduce the final system. The energy of the
system is also obtained under restrictive hypothesis on the data.

In [[1]], a derivation of a multi-layer Shallow-Water model is performed to extend the case
of one layer established in [[6]]. In this work, using the hydrostatic pressure and the kinematic
boundary conditions, the author derives momentum equations of the form:

∂t

Z Hα

Hα−1

udz + ∂x

Z Hα

Hα−1

u2dz + ghα∂xh =
ν0

ǫ
∂zu(Hα(t, x)) − ν0

ǫ
∂zu(Hα−1(t, x)) and use at

the leading order a finite difference method with respect to the vertical variable when the
equation is an interface equation to deduce the friction term:

µ∂zu(Hα) = µ
Uα+1 − Uα

hα+1 + hα

. (1.1)

Another works related to the derivation of 2D Shallow-Water model can be find in [[4]] and in
[[5]].

In [[4]] the authors include the atmospheric pressure in the derivation.
In [[5]] a non-viscous two-layer Shallow Water system is deduced following [[6]]. Linear

friction conditions have been taken into account on the interface and on the bottom.

The deduction of the bilayer model developed in the present work has been obtained by
integrating the three dimensional Navier-Stokes equations with Coriolis force and by using the
asymptotic analysis to get the viscosity effects. We have also considered the friction effects on
the surface and at the bottom and the tension effect on the surface and at the interface.

We would like to remark that the friction term usually carries some difficulties in its
treatment (both in the model deduction and for the proof of the existence of solution). So we
can find several definitions to avoid these troubles. Often one takes non linear friction terms,
for example in [[13]] the tangential displacement has been considered in the definition of the
friction traction or a more complex expression can be found in [[10]] where a microscopic
study has been tackled to set it. In [[9]] a non linear friction under the form −γ|v|α v is
considered at the bottom. So, in a equivalent way we could define the interface friction as
−γ|v1 − v2|(v1 − v2).

In [[16]] we have performed the theoretical ana-lysis of the model presented in this work,
obtaining the existence of weak solutions. In order to get it we have not been able to control
the interface friction of quadratic form, so we have defined

fric(v1, v2) = −ξB(h1, h2)(v1 − v2), B(h1, h2) =
h1h2

ρ1

ρ2
h1 + ρ2

ρ1
h2

, (1.2)

with ρi the density of each layer and ξ a positive constant. So to be in agreement with these
results we have considered in this paper the linear definition of the friction term (1.2).

The drag coefficient B is also used in [[7]] and allows us to control the friction term. Note
that in [[3]] the authors study a system of 3D Navier-Stokes equations in a two-layer thin
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domain with an interface condition

(νi∂3u
i
j − k(u1

j − u2
j))|x3=0 = 0 i, j = 1, 2. (1.3)

This condition is the same kind condition appearing in the Primitive Equations of the Coupled
Atmosphere and Ocean which describes the atmosphere/ocean interaction.

The paper is organized as follows: In Section 2 we develop the derivation of the model.
First we write the equations in non-dimensional variables, later we perform the hydrostatic
approximation to obtain the Shallow Water equations and finally we study the asymptotic
analysis of two layers. In the last part of the section we state the final systems found and we
include some remarks about them.

Section 3 is devoted to show some numerical test in which we notice the improvement
obtained in the solution when considering viscous Shallow Water model in front of considering
the first order one. In Test 1 we compare them with a solution of the Navier-Stokes equations
for an internal dam-break problem in one-dimensional case. In the second test we present a
2D circular dam-break problem comparing the solutions of the models deduced in this work.

2 Derivation of the bilayer viscous Shallow Water

model

In this section we perform the derivation of the model proposed in this paper. We start from
the Navier-Stokes equations in a periodic domain D(t) ∈ R

3.
We consider a two layer environment of inmiscible fluids including three boundary regions.

We assume that the bottom is defined by the function b(x), and we denote by η1,2(t, x) the
interface and the free surface is given by η(t, x). The vertical direction is denoted by z and by
x we denote a point in a domain χ ⊂ R

2. So the global domain is D(t) = D1(t)∪D2(t)∪Γb ∪
Γ1,2(t) ∪ Γs(t), being:

D1(t) = {(x, z) ∈ R
3/x ∈ χ, b(x) < z < η1,2(t, x)};

D2(t) = {(x, z) ∈ R
3/x ∈ χ, η1,2(t, x) < z < η(t, x)};

Γb = {(x, z) ∈ R
3/x ∈ χ, z = b(x)};

Γ1,2 = {(x, z) ∈ R
3/x ∈ χ, z = η1,2(t, x)};

Γs = {(x, z) ∈ R
3/x ∈ χ, z = η(t, x)};

(2.1)

From now on, subscript 1 will correspond to the layer located below and subscript 2 to those
located on the top. We denote by h1(t, x) = η1,2(t, x) − b(x) the thickness of the layer 1 and
by h2(t, x) = η(t, x) − η1,2(t, x) the thickness of the second one. See Fig. 1.

We consider ui = (vi, wi) the velocity of each layer, ρi the density, µi denote the dynamic
viscosity and pi is the pressure, for i = 1, 2. With this notation, the Navier-Stokes equations
for each layer i = 1, 2 state as:


ρi∂tui + (ρiui∇)ui − div (σi) + 2ρi

−→
Ω × ui = −ρigez;

div (ui) = 0.
(2.2)

We have included the Coriolis force given by the term 2ρi

−→
Ω × ui where

−→
Ω = Ω(0, cos θ, sin θ),

being θ the latitude. The stress tensor is defined as σi = 2µiD(ui) − piId where D(u) =
∇u+∇⊥u

2
is the strain tensor. Finally g is the gravity constant. We denote by subscript n the

normal component and by τ the tangent component, that is, d = dnn + dττ for all d ∈ R
2.

In order to obtain a well-posed system we impose the following conditions on the bound-
aries:

• On the free surface z = η(t, x):

We assume the pressure to be constant. One usually neglect the atmospheric pressure
effect but here we have considered it. If we denote by ns the unit normal vector to η(t, x)
towards the increasing z and by κ the mean curvature of the surface (κ = div (ns)), the
tension effect on the surface is given by:

σ2 · ns = α2κ · ns, (2.3)
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Figure 1: Domain.

being α2 constant.

Finally we impose the kinematic condition for the surface:

∂tη + v2 · ∇xη = w2. (2.4)

• At the interface z = η1,2(t, x):

First we consider the conditions related to the movement of the interface that is advected
by the two flows, i.e., the kinematic condition that we write as:

∂tη1,2 + vi · ∇xη1,2 = wi; i = 1, 2. (2.5)

At the interface we consider the friction effects between the two layers and the continuity
of the tension force. These conditions concern the tangent and normal components of
the stress term respectively in the following sense. We consider the friction term between
the two layers with coefficient γ done by −γ(u1 − u2) , so we impose:

(σi · n1,2)τ = −γ(u1 − u2)τ ; i = 1, 2. (2.6)

We now consider κ1,2 = div (n1,2) the mean curvature at the interface being n1,2 the
unit normal vector to Γ1,2 pointing from layer 1 to layer 2, so we have:

(σ1 · n1,2)n = (σ2 · n1,2)n + ((α1 − α2)κ1,2 · n1,2)n, (2.7)

being α1 constant.

• At the bottom z = b(x):

We consider a Navier condition with a friction coefficient α:

(σ1 · nb)τ = α(u1)τ , (2.8)

and a no-penetration condition:
u1 · nb = 0; (2.9)

being nb the unit normal vector to Γb pointing to the increasing z.

To obtain the model, first we shall write these equations under a non-dimensional form,
secondly we shall develop the vertical integration in each layer to obtain the Shallow Water
system. Finally we shall perform the asymptotic analysis studding both first and second order
approximations. Therefore, two models are proposed depending if the viscous and friction
terms are included or not.
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2.1 Dimensionless equations

Before changing equations to non-dimensional variables, we shall write the Navier-Stokes equa-
tions and the boundary conditions in a explicit form. First we look at the Coriolis term that
reads:

~Ω × ui = Ω(wi cos θ − (vi sin θ)e2, vi sin θe1,−vi cos θe1). (2.10)

If we write the equations for each component of the velocity, we have:

ρi∂tvi + ρivi∇xvi + ρiwi∂zvi + 2ρiΩ(wi cos θe1 + (vi)
⊥ sin θ)−

−2µidiv x(Dx(vi)) − µi∂
2
zvi − µi∇x(∂zwi) + ∇xpi = 0, i = 1, 2;

(2.11)

ρi∂twi + ρivi∇xwi + ρiwi∂zwi − 2ρiΩvi cos θe1 − µi∆xwi−

−µi∂z(div xvi) − 2µi∂
2
zwi + ∂zpi = ρig, i = 1, 2;

(2.12)

and
div xvi + ∂zwi = 0 i = 1, 2. (2.13)

Now, we explicitly write the boundary conditions concerning tension and friction terms
using the definition of the stress tensor when needed.

• Free surface.

We take the normal vector ns =
1p

1 + (∇xη)2

„
−∇xη

1

«
, so the tension condition

state at follows:
8
<
:

(−2µ2Dx(v2) + p2 + α2κ)∇xη + µ2(∇xw2 + ∂zv2) = 0;

−µ2(∇xw2 + ∂zv2)∇xη + 2µ2∂zw2 − p2 − α2κ = 0.
(2.14)

• Interface.

In this case the normal vector is n1,2 =
1p

1 + (∇xη1,2)2

„
−∇xη1,2

1

«
, obtaining for

the tension condition:

(2µ1Dx(v1) − p1)|∇xη1,2|2 − 2µ1(∇xw1 + ∂zv1)∇xη1,2+

+2µ1∂zw1 − p1 = (2µ2Dx(v2) − p2 + (α1 − α2)κ1,2)|∇xη1,2|2−

−µ2(∇xw2 + ∂zv2)∇xη1,2 + 2µ2∂zw2 − p2 + (α1 − α2)κ1,2.

(2.15)

For the friction condition we must consider the tangent vector ~τ = (τ1, τ2), that we define
as follows:

τ1 =
1

|∇xη1,2|

„
∇⊥

x η1,2

0

«
, τ2 =

1p
|∇xη1,2|2 + |∇xη1,2|4

„
−∇xη1,2

−|∇xη1,2|2
«

. (2.16)

So, the conditions for i = 1, 2 are:

1p
1 + |∇xη1,2|2

µi(∇xwi + ∂zvi) = −γ(v1 − v2);

1p
1 + |∇xη1,2|2

`
− 2µiDx(vi)∇xη1,2 + µi(∇xwi + ∂zvi)(1 − |∇xη1,2|2)+

+2µi∂zwi∇xη1,2

´
= γ((v1 − v2) + (w1 − w2)∇xη1,2).

(2.17)

• Bottom.

In the same way, we consider the normal vector

nb =
1p

1 + |∇xb|2

„
−∇xb

1

«
. So for the no-penetration condition we obtain:

− v1∇xb + w1 = 0. (2.18)
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For the other one we take ~τ = (τ1, τ2) being

τ1 =
1

|∇xb|

„
∇⊥

x b
0

«
, τ2 =

1p
|∇xb|2 + |∇xb|4

„
−∇xb

−|∇xb|2
«

, (2.19)

and the condition state as:

1p
1 + |∇xb|2

µ1(∇xw1 + ∂zv1) = αv1; (2.20)

1p
1 + |∇xb|2

`
2µ1Dx(v1)∇xb − µ1(∇xw1 + ∂zv1)(1 − |∇xb|2)−

−2µ1∂zw1∇xb
´

= −α(v1 + w1∇xb).
(2.21)

We introduce now a small parameter ǫ = H
L

where H and L are two characteristics dimen-
sions along the edges OZ and OX respectively. We also introduce some others characteristic
dimensions: V for the horizontal velocity, W = ǫV for the vertical component of the velocity
and P = V 2 for the pressure. Next, we consider the following dimensionless variables, we use
the overline notation to denote them:

x = Lx̄ z = Hz̄
vi = V vi wi = ǫV wi

t =
L

V
t̄ pi = V 2pi

Rei =
V L

µi

Ro =
V

2LΩ
Fr =

V√
gH

(2.22)

γ = V γ α = V α

κ =
ǫ

L
κ κ1,2 =

ǫ

L
κ1,2

αi =
V 2L

ǫ
αi ; i = 1, 2

b = Hb.

(2.23)

where we have denoted by Re the Reynolds number, Ro the Rossby number and Fr the Froude
number.

Thus, the equations get as follows (we drop the “overline” notation for the sake of clarity):

ρi∂tvi + ρivi∇xvi + ρiwi∂zvi + ρi
1

Ro
ǫwi cos θe1 + ρi

1

Ro
(vi)

⊥ sin θ−

− 2

Rei

div x(Dx(vi)) − 1

Rei

1

ǫ2
∂2

zvi − 1

Rei

∇x(∂zwi) + ∇xpi = 0;
(2.24)

ρi∂twi + ρivi∇xwi + ρiwi∂zwi − ρi

1

ǫ

1

Ro
vi cos θe1 −

1

Rei

∆xwi−

− 1

ǫ2
1

Rei

∂z(div xvi) − 2
1

ǫ2
1

Rei

∂2
zwi +

1

ǫ2
∂zpi = −ρi

1

ǫ2
1

Fr2
;

(2.25)

div xvi + ∂zwi = 0. (2.26)

In the same way the boundary conditions must be modified, we specify them next.
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• Conditions at the free surface:

∂tη + v2 · ∇xη = w2; (2.27)

„
−2

1

Re2
Dx(v2) + p2 + α2κ

«
∇xη +

1

Re2
∇xw2 +

1

ǫ2
1

Re2
∂zv2 = 0; (2.28)

„
−ǫ2

1

Re2
∇xw2 − 1

Re2
∂zv2

«
∇xη + 2

1

Re2
∂zw2 − p2 − α2κ = 0. (2.29)

• Conditions at the interface:

∂tη1,2 + v2 · ∇xη1,2 = w2; (2.30)

∂tη1,2 + v1 · ∇xη1,2 = w1; (2.31)

−
„

2ǫ2
1

Re1
∇xw1 + 2

1

Re1
∂zv1

«
∇xη1,2 + 2

1

Re1
∂zw1 − p1 =

= −
„

2ǫ2
1

Re2
∇xw2 + 2

1

Re2
∂zv2

«
∇xη1,2 + 2

1

Re2
∂zw2 − p2+

+(α1 − α2)κ1,2;

(2.32)

1

Rei

(∇xwi +
1

ǫ2
∂zvi) = −1

ǫ
γ(v1 − v2)

p
1 + ǫ2|∇xη1,2|2; (2.33)

−2
1

Rei

Dx(vi)∇xη1,2 +
1

Rei

(∇xwi +
1

ǫ2
∂zvi)(1 − ǫ2|∇xη1,2|2)+

+2
1

Rei

∂zwi∇xη1,2 =

=
1

ǫ
γ((v1 − v2) + ǫ2(w1 − w2)∇xη1,2)

p
1 + ǫ2|∇xη1,2|2.

(2.34)

• Conditions at the bottom:

− v1∇xb + w1 = 0; (2.35)

1

Re1
(∇xw1 +

1

ǫ2
∂zv1) =

1

ǫ
α v1

p
1 + ǫ2|∇xb|2; (2.36)

2
1

Re1
Dx(v1)∇xb − 1

Re1
(∇xw1 +

1

ǫ2
∂zv1)(1 − ǫ2|∇xb|2)−

−2
1

Re1
∂zw1∇xb = −α

1

ǫ
(v1 + ǫ2w1∇xb)

p
1 + ǫ2|∇xb|2.

(2.37)

2.2 Hydrostatic approximation

We assume ǫ to be small and we take the formal expression of the system at O(ǫ2), keeping
the terms of order zero and one. Thus, the hydrostatic system state as follows:

ρi∂tvi + ρidiv x(vi ⊗ vi) + ρi∂z(viwi) + ǫρi
1

Ro
wi cos θe1 + ρi

1

Ro
(vi)

⊥ sin θ−

− 2

Rei

div x(Dx(vi)) − 1

ǫ2
1

Rei

∂2
zvi − 1

Rei

∇x(∂zwi) + ∇xpi = 0;
(2.38)

−ǫρi
1

Ro
vi cos θe1 − 1

Rei

∂z(div xvi) − 2
1

Rei

∂2
zwi + ∂zpi = −ρi

1

Fr2
; (2.39)

div xvi + ∂zwi = 0. (2.40)

And boundary conditions:
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• Conditions at the free surface:

∂tη + v2∇xη = w2; (2.41)

„
−2

1

Re2
Dx(v2) + p2 + α2κ

«
∇xη +

1

Re2
∇xw2 = 0; (2.42)

∂zv2 = O(ǫ); (2.43)

− 1

Re2
∂zv2∇xη + 2

1

Re2
∂zw2 − p2 − α2κ = 0. (2.44)

• Conditions at the interface:

∂tη1,2 + v2 · ∇xη1,2 = w2; (2.45)

∂tη1,2 + v1 · ∇xη1,2 = w1; (2.46)

−2
1

Re1
∂zv1∇xη1,2 + 2

1

Re1
∂zw1 − p1 =

= −2
1

Re2
∂zv2∇xη1,2 + 2

1

Re2
∂zw2 − p2 + (α1 − α2)κ1,2;

(2.47)

1

Rei

∂zvi = ǫfric(v1, v2); (2.48)

−2
1

Rei

Dx(vi)∇xη1,2 +
1

Rei

(∇xwi +
1

ǫ2
∂zvi) + 2

1

Rei

∂zwi∇xη1,2−

− 1

Rei

∂zvi|∇xη1,2|2 = −1

ǫ
fric(v1, v2).

(2.49)

Where we have denoted by fric(v1, v2) = −γ(v1 − v2) the friction term between the two
layers.

• Conditions at the bottom:

− v1∇xb + w1 = 0; (2.50)

1

Re1
∂zv1 = ǫα v1; (2.51)

2
1

Re1
Dx(v1)∇xb − 1

Re1
(∇xw1 +

1

ǫ2
∂zv1) +

1

Re1
∂zv1|∇xb|2−

−2
1

Re1
∂zw1∇xb = −1

ǫ
α v1.

(2.52)

2.3 Shallow Water system and asymptotic analysis

To obtain the Shallow Water equations, we assume that the height is small with respect to
the length of the domain, that is, ǫ ≪ 1. We first integrate the equations for each layer. Then
we shall perform the asymptotic analysis of the system by introducing an asymptotic regime
hypotheses over the physical data.

We shall obtain the system at first order, but we will must analyze the second order to
obtain a system with viscosity.

We first perform the integration of the layer 1.
We want to obtain the pressure value, so from equation (2.39) for i = 1:

∂zp1 = −ρ1
1

Fr2
+ ǫρ1

1

Ro
cos θv1e1 +

1

Re1
∂z(div xv1) + 2

1

Re1
∂2

zw1. (2.53)
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To get p1, we integre this equations from z to η1,2, with z ∈ (b, η1,2),

p1(z) − p1(η1,2) = −ρ1
1

Fr2
(z − η1,2) + ǫρ1

1

Ro
cos θe1

Z z

η1,2

v1dz+

+
1

Re1
(div xv1 − div xv1|z=η1,2

) + 2
1

Re1
(∂zw1 − ∂zw1|z=η1,2

).

(2.54)

By using the divergence free condition we obtain the following expression for p1:

p1(z) = p1(η1,2) − ρ1
1

Fr2
(z − η1,2) + ǫρ1

1

Ro
cos θe1

Z z

η1,2

v1dz−

− 1

Re1
(div xv1 − div xv1|z=η1,2

).

(2.55)

Now, we integrate the system equations from b to η1,2.
For the equation (2.40) and using conditions (2.46) and (2.50), we have:

∂tη1,2 + div x

Z η1,2

b

v1dz = 0. (2.56)

If we integrate the equation for the horizontal velocity (2.38), and we use the condition (2.46)
it gives:

ρ1∂t

Z η1,2

b

v1dz + ρ1div x

Z η1,2

b

(v1 ⊗ v1)dz + ǫρ1
1

Ro
cos θe1

Z η1,2

b

w1dz+

+ρ1
1

Ro
sin θ

Z η1,2

b

(v1)
⊥dz − 2

1

Re1
div x

Z η1,2

b

Dx(v1)dz + ∇x

Z η1,2

b

p1dz+

+
1

ǫ2
1

Re1
∂zv1|z=b +

1

Re1
∇xw1|z=b − p1(η1,2)∇xη1,2+

+2
1

Re1
Dx(v1)|z=η1,2

∇xη1,2 − 1

ǫ2
1

Re1
∂zv1|z=η1,2

− 1

Re1
∇xw1|z=η1,2

−

−2
1

Re1
Dx(v1)|z=b∇xb + p1(b)∇xb = 0.

(2.57)

Due to condition (2.49), we can write

2
1

Re1
Dx(v1)|z=η1,2

∇xη1,2 − 1

ǫ2
1

Re1
∂zv1|z=η1,2

− 1

Re1
∇xw1|z=η1,2

=

=
1

ǫ
fric(v1, v2) + 2

1

Re1
∂zw1|z=η1,2

∇xη1,2 − 1

Re1
∂zv1|z=η1,2

|∇xη1,2|2.
(2.58)

And thanks to condition (2.52), we have

−2
1

Re1
Dx(v1)|z=b∇xb +

1

ǫ2
1

Re1
∂zv1|z=b +

1

Re1
∇xw1|z=b =

=
1

ǫ
α v1|z=b +

1

Re1
∂zv1|z=b|∇xb|2 − 2

1

Re1
∂zw1|z=b∇xb.

(2.59)

So, we get for the first layer the following equation:

ρ1∂t

Z η1,2

b

v1dz + ρ1div x

Z η1,2

b

(v1 ⊗ v1)dz + ǫρ1
1

Ro
cos θe1

Z η1,2

b

w1dz+

+ρ1
1

Ro
sin θ

Z η1,2

b

(v1)
⊥dz − 2

1

Re1
div x

Z η1,2

b

Dx(v1)dz + ∇x

Z η1,2

b

p1dz−

−p1(η1,2)∇xη1,2 + p1(b)∇xb +
1

Re1
(2∂zw1 − ∂zv1∇xη1,2)|z=η1,2

∇xη1,2−

− 1

Re1
(2∂zw1 − ∂zv1∇xb)|z=b∇xb +

1

ǫ
fric(v1, v2) +

1

ǫ
α v1|z=b = 0.

(2.60)
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Now, we calculate the integration for the upper layer in the same way that for layer one. From
equation (2.39) for i = 2 we have:

∂zp2 = −ρ2
1

Fr2
+ ǫρ2

1

Ro
cos θe1v2 +

1

Re2
∂z(div xv2) + 2

1

Re2
∂2

zw2. (2.61)

We integrate this equations from z to η with z ∈ (η1,2, η) to obtain the value of p2, we have
also used the condition (2.44):

p2(z) = −ρ2
1

Fr2
(z − η) − ǫρ2

1

Ro
cos θe1

Z η

z

v2 − 1

Re2
(div xv2|z=η + div xv2) − ǫα2κ. (2.62)

Integrating from η1,2 to η the divergence equation, we obtain:

∂t(η − η1,2) + div x

Z η

η1,2

v2 = 0. (2.63)

Now, we integrate equation (2.38):

ρ2∂t

Z η

η1,2

v2dz + ρ2div x

Z η

η1,2

(v2 ⊗ v2)dz + ǫρ2
1

Ro
cos θe1

Z η

η1,2

w2dz+

+ρ2
1

Ro
sin θ

Z η

η1,2

(v2)
⊥dz − 2

1

Re2
div x

Z η

η1,2

Dx(v2) + ∇x

Z η

η1,2

p2dz+

+2
1

Re2
Dx(v2)|z=η∇xη − 1

Re2
∇xw2|z=η − p2(η)∇xη−

−2
1

Re2
Dx(v2)|z=η1,2

∇xη1,2 +
1

ǫ2
1

Re2
∂zv2|z=η1,2

+
1

Re2
∇xw2|z=η1,2

+

+p2(η1,2)∇xη1,2 = 0.

(2.64)

We use conditions (2.49) and (2.42) to get:

−2
1

Re2
Dx(v2)|z=η1,2

∇xη1,2 +
1

ǫ2
1

Re2
∂zv2|z=η1,2

+
1

Re2
∇xw2|z=η1,2

=

= −1

ǫ
fric(v1, v2) − 2

1

Re2
∂zw2|z=η1,2

∇xη1,2 +
1

Re2
∂zv2|z=η1,2

|∇xη1,2|2
(2.65)

and

2
1

Re2
Dx(v2)|z=η∇xη − 1

Re2
∇xw2|z=η − p2(η)∇xη = α2κ∇xη. (2.66)

So the equation for the second layer state as follows

ρ2∂t

Z η

η1,2

v2dz + ρ2div x

Z η

η1,2

(v2 ⊗ v2)dz + ǫρ2
1

Ro
cos θe1

Z η

η1,2

w2dz+

+ρ2
1

Ro
sin θ

Z η

η1,2

(v2)
⊥dz − 2

1

Re2
div x

Z η

η1,2

Dx(v2) + ∇x

Z η

η1,2

p2dz−

− 1

Re2
(2∂zw2 + ∂zv2∇xη1,2)|z=η1,2

∇xη1,2 + p2(η1,2)∇xη1,2−

−1

ǫ
fric(v1, v2) + α2κ∇xη = 0.

(2.67)
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2.3.1 Asymptotic analysis

We assume the problem to be in an asymptotic regime by supposing the following hypothesis
over the data:

1

Rei

= ǫµ0i, α = ǫα0, αi = ǫα0i, γ = ǫγ0. (2.68)

We make the development of the unknowns up to order 2:

v1 = v0
1 + ǫv1

1 + O(ǫ2); v2 = v0
2 + ǫv1

2 + O(ǫ2);
w1 = w0

1 + ǫw1
1 + O(ǫ2); w2 = w0

2 + ǫw1
2 + O(ǫ2);

p1 = p0
1 + ǫp1

1 + O(ǫ2); p2 = p0
2 + ǫp1

2 + O(ǫ2);
η = η0 + ǫη1 + O(ǫ2); η1,2 = η0

1,2 + ǫη1
1,2 + O(ǫ2).

(2.69)

So from now on we denote fric0(v1, v2) = −γ0(v
0
1 − v0

2).
For the development of h1, we have into account that η1,2 = h1 + b, so we can write

h1 = h0
1 + ǫh1

1 + O(ǫ2), (2.70)

where h0
1 = η0

1,2 − b and h1
1 = η1

1,2 − b. In the same way we can write

h2 = h0
2 + ǫh1

2 + O(ǫ2), (2.71)

being h0
2 = η0 − η0

1,2 and h1
2 = η1 − η1

1,2, remember that η = η1,2 + h2.
We can approximate κ1,2 = ∆xη1,2 + O(ǫ2) and κ = ∆xη + O(ǫ2).

Now we perform the asymptotic analysis for the two layers. Firstly we study the first order
approximation where the viscosity terms do not appear. The second order approximation is
derived to obtain a viscous system. Due to the bilayer situation we must consider the influence
of two friction terms, one on the bottom and other one on the interface. In [[6]] one can find
how to make the correction of the velocity in order to obtain a modified coefficient for the
friction at the bottom. But in our case there is a friction term at the interface to be taken
into account, so we have performed a correction in both velocities to derive model.

1. First order approximation.

Layer D1.

If we consider the terms of the principal order (ǫ0), we obtain from (2.38), (2.48) and (2.51)
that:

∂2
zv1 = O(ǫ);

∂zv1|z=η1,2
= O(ǫ);

∂zv1|z=b = O(ǫ).
(2.72)

From here, we deduce that v1 does not depend on z at first order so we can write:

v0
1(t, x, z) = v0

1(t, x). (2.73)

Under this hypothesis, we can rewrite the expressions above up to order one to obtain the
final equation for layer 1 at first order. First, we write (2.56) as:

∂tη
0
1,2 + div x(h0

1v
0
1) = 0, (2.74)

and from (2.55) we obtain the pressure:

p0
1(z) = −ρ1

1

Fr2
(z − η0

1,2) + p0
1(η

0
1,2). (2.75)

But the term appearing in (2.60) involves the integral of the pressure, so we calculate it
from (2.75):

∇x

Z η1,2

b

p0
1dz = h0

1∇x(p0
1(η

0
1,2)) + p0

1(η
0
1,2)∇x(η0

1,2 − b) +
1

2
ρ1

1

Fr2
∇x(h0

1)
2. (2.76)
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If we take these values into equation (2.60), considering only principal order terms, we
obtain:

ρ1∂t((η
0
1,2 − b)v0

1) + ρ1div x((η0
1,2 − b)v0

1 ⊗ v0
1) + ρ1

1

Ro
sin θ(η0

1,2 − b)(v0
1)⊥+

+(η0
1,2 − b)∇x(p0

1(η
0
1,2)) + p0

1(η
0
1,2)∇x(η0

1,2 − b) +
1

2
ρ1

1

Fr2
∇x(b − η0

1,2)
2−

−p0
1(η

0
1,2)∇xη0

1,2 + p0
1(b)∇xb + fric0(v1, v2) + α0v

0
1 = 0.

(2.77)

Now we simplify the pressure terms. We use the definition of p0
1 (2.75) to write

− p0
1(η

0
1,2) + p0

1(b) = −ρ1
1

Fr2
(b − η0

1,2). (2.78)

From (2.47) up to first order we have p0
1 = p0

2 + O(ǫ).
So the final equation reads:

ρ1∂t(h
0
1v

0
1) + ρ1div x(h0

1v
0
1 ⊗ v0

1) + ρ1
1

Ro
sin θh0

1(v
0
1)⊥ + h0

1∇x(p0
2(η

0
1,2))+

+
1

2
ρ1

1

Fr2
∇x(h0

1)
2 + ρ1

1

Fr2
h0

1∇xb + fric0(v1, v2) + α0v
0
1 = 0.

(2.79)

Layer D2.

Following the same way, we obtain the equations for the second layer.
Thus, from equations (2.38), (2.48) and (2.42) we can write:

∂2
zv2 = O(ǫ);

∂zv2|z=η1,2
= O(ǫ);

∂zv2|z=η = O(ǫ).
(2.80)

So we can deduce that v2 does not depend on z at order zero:

v0
2(t, x, z) = v0

2(t, x), (2.81)

That allows us to write (2.63) as

∂th
0
2 + div x(h0

2v
0
2) = 0 (2.82)

and from the pressure (2.62),

p0
2(z) = −ρ2

1

Fr2
(z − η0) + O(ǫ). (2.83)

We integrate (2.83) to obtain the pressure term in equation (2.67):

∇x

Z η0

η0

1,2

p0
2 =

1

2
ρ2

1

Fr2
∇x(h0

2)
2. (2.84)

So, the equation for the layer 2 at first order is:

ρ2∂t(h
0
2v

0
2) + ρ2div x(h0

2v
0
2 ⊗ v0

2) + ρ2
1

Ro
sin θh0

2(v
0
2)

⊥ +
1

2
ρ2

1

Fr2
∇x(h0

2)
2+

+ρ2
1

Fr2
h0

2∇xη0
1,2 − fric0(v1, v2) = 0.

(2.85)

Remark 2.1. The equation for layer 1 given by (2.79) includes the value of the pressure of
the second layer. Now, using (2.83) we can write the equation for D1 as follows:

ρ1∂t(h
0
1v

0
1) + ρ1div x(h0

1v
0
1 ⊗ v0

1) + ρ1
1

Ro
sin θh0

1(v
0
1)⊥ + ρ2

1

Fr2
h0

1∇xh0
2+

+
1

2
ρ1

1

Fr2
∇x(h0

1)
2 + ρ1

1

Fr2
h0

1∇xb − fric0(v1, v2) + α0v
0
1 = 0.

(2.86)
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2. Second order approximation: Correcting the friction terms.

As we can see, there are no viscous terms involved in the equations above. To obtain a
viscous system we must take into account the second order approximation. We perform the
equivalent correction for the bottom friction presented in [[6]] but for the bilayer case.

We purpose an additional correction for the friction term at the interface in the equations
obtained. For this aim first we are going to develop the second order approximation for each
term in both layers equations, later we shall perform the velocities correction and we shall
state the final model.

Layer D1.

Now we consider the approximation up to order 2 for the unknows:

ev1 = v0
1 + ǫv1

1 ,

ep1 = p0
1 + ǫp1

1,

gη1,2 = η0
1,2 + ǫη1

1,2,

fh1 = h0
1 + ǫh1

1,

(2.87)

and we back to the equations writing them up to second order.
First, for (2.40):

∂t
fh1 + div x(fh1 ev1) = O(ǫ2). (2.88)

Now, we want to get an expression for v1 with the aim of determine its average. We take
equation (2.38) to principal order:

ρ1∂tv1 + ρ1div x(v1 ⊗ v1) + ρ1∂z(v1w1) + ρ1
1

Ro
(v1)

⊥ sin θ − 1

ǫ
µ01∂

2
zv1 + ∇xp1 = 0. (2.89)

Thus,

1

ǫ
µ01∂

2
zv1 = ρ1∂tv

0
1 + ρ1v

0
1∇xv0

1 + ρ1
1

Ro
(v0

1)⊥ sin θ + ∇x(p0
1(η

0
1,2))+

+ρ1
1

Fr2
∇xη0

1,2 + O(ǫ).

(2.90)

From (2.79), we can write

h0
1(ρ1∂tv

0
1 + ρ1v

0
1∇xv0

1 + ρ1
1

Ro
sin θ(v0

1)⊥ + ∇x(p0
2(η

0
1,2)) + ρ1

1

Fr2
∇xη0

1,2) =

= fric0(v1, v2) − α0v
0
1

(2.91)

So we can simplify the expression of ∂2
zv1:

1

ǫ
µ01∂

2
zv1 =

1

h0
1

fric0(v1, v2) − α0

h0
1

v0
1 + O(ǫ). (2.92)

If we integrate this equation from b to z and we use condition (2.51) we obtain:

v1 = ev1|z=b +
ǫ

µ01
α0v

0
1(z − b) +

ǫ

µ01
(fric0(v1, v2) − α0v

0
1)

(z − b)2

2h0
1

+ O(ǫ2). (2.93)

From here, we can obtain the average of the velocity v1:

v1 =
1

h1

Z η1,2

b

v1 =

„
1 + ǫ

h0
1α0

3µ01

«
ev1|z=b + ǫ

h0
1

6µ01
fric0(v1, v2) + O(ǫ2). (2.94)

Note that v1 ⊗ v1 = v1 ⊗ v1 +O(ǫ2). For the sake of brevity we do not include the proof, (Cf.
[[15]] for details).
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We must calculate the term for the pressure at first order, we back to equation (2.55):

p1(z) = ep1(gη1,2) − ρ1
1

Fr2
(z − gη1,2) + ǫρ1

1

Ro
cos θv0

1e1(z − η0
1,2) + O(ǫ2). (2.95)

Thus the integral of the pressure reads:

∇x

Z η1,2

b

p1 =
1

2
ρ1

1

Fr2
∇x(fh1)

2 − 1

2
ǫρ1

1

Ro
cos θe1∇x((h0

1)
2v0

1) + ∇x(fh1 ep1(gη1,2)). (2.96)

Looking at (2.60), we need to obtain the integral of w0
1 , so we integrate the equation of free

divergence Z η1,2

b

w0
1dz = h0

1v
0
1∇xb − (h0

1)
2

2
div xv0

1 . (2.97)

And finally, from equation (2.94) we obtain the velocity at the bottom:

ev1|z=b = βv1 − ǫ
h0

1

6µ01
βfric0(v1, v2) + O(ǫ2), (2.98)

where β = β(h1) =

„
1 + ǫ

h0
1α0

3µ01

«−1

.

Layer D2.

As in the case of layer 1, we look for the second order to obtain the viscosity terms in the
equation.

We define the approximations of second order:

ev2 = v0
2 + ǫv2

1 ;

ep2 = p0
2 + ǫp1

2;

eη = η0 + ǫη1;

fh2 = h0
2 + ǫh1

2.

(2.99)

So we obtain for the first equation:

∂t
fh2 + div x(fh2 ev2) = O(ǫ2). (2.100)

We write the equation (2.38) at principal order to obtain v2,

1
ǫ
µ02∂

2
zv2 = ρ2∂tv

0
2 + ρ2div x(v0

2 ⊗ v0
2) + ρ2v

0
2∂zw

0
2 + ρ2

1
Ro

sin θ(v0
2)⊥+

+ρ2
1

Fr2
∇xη0 + O(ǫ),

(2.101)

and using (2.85),

h0
2

„
ρ2∂tv

0
2 + ρ2v

0
2∇xv0

2 + ρ2
1

Ro
sin θ(v0

2)⊥ + ρ2
1

Fr2
∇xη0

«
= fric0(v1, v2), (2.102)

from where we get
1

ǫ
µ02∂

2
zv2 =

1

h0
2

fric0(v1, v2). (2.103)

Integrating this expression from η0
1,2 to z and using (2.48), we find the expression for v2:

v2 = ev2|z=η1,2
+

ǫ

µ02
fric0(v1, v2)(z − η0

1,2)

„
1 − z − η0

1,2

2h0
2

«
+ O(ǫ2), (2.104)
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that we integrate to obtain the average for the velocity of the second layer:

v2 =
1

η − η1,2

Z η

η1,2

v2 = ev2|z=η1,2
+ ǫ

1

3µ02
h0

2fric0(v1, v2) + O(ǫ2). (2.105)

Again, v2 ⊗ v2 = v2 ⊗ v2 + O(ǫ2).
The divergence condition allows us to know the integral of w0

2:

Z η0

η0

1,2

w0
2 = w0

2x=|η0

1,2
h0

2 − 1

2
(h0

2)
2div xv0

2 , (2.106)

and from (2.62) we get the integral of the pressure:

∇x

Z η0

η0

1,2

p2 =
1

2
ρ2

1

Fr2
∇x(h0

2)
2 − ǫρ2

1

2

1

Ro
cos θe1∇x((h0

2)
2v0

2)−

−2ǫµ02∇x(h0
2div xv0

2) − ǫα02∇x(h0
2∆xη0).

(2.107)

Now we perform the correction for the specifics friction terms.
This correction is based in the same idea that we have developed for the layer 1 to obtain

the value of the velocity v1|z=b
in function of the average v1 in equation (2.98). This will

provide us the correction of the friction coefficient at the bottom.
For this aim we take the definition of the friction term at the interface:

fric(v1, v2) = −γ(v1 − v2), with γ > 0. (2.108)

Remember that for the asymptotic assumption we have taken γ = ǫγ0, and fric0(v1, v2) =
−γ0(v

0
1 − v0

2).
On the contrary to the first case we make the correction at the same time for both layers.
Now we want to get a modified friction coefficient at the interface, the idea is to find a

value of the difference of velocities (v1−v2)|z=η1,2
in function of the averages v1 and v2 because

this is the term appearing in the friction term (2.108). First we give the expression of v1 in
function of v1|z=η1,2

. So we return to (2.92) that we write now as:

1

ǫ
µ01∂

2
zv1 = − 1

h0
1

γ0(v
0
1 − v0

2) − α0

h0
1

v0
1 + O(ǫ). (2.109)

We integrate this equation from z to η1,2 getting:

v1 = ev1|z=η1,2
− ǫ

µ01
γ0(v

0
1 − v0

2)(z − η1,2)−

− ǫ

µ01

`
γ0(v

0
1 − v0

2) + α0v
0
1

´ (z − η1,2)
2

2h0
1

+ O(ǫ2)

(2.110)

and we compute the average of v1:

v1 = −1

6

ǫ

µ01
h0

1α0 ev1|z=b +

„
1 +

ǫ

3µ01
γ0h

0
1

«
ev1|z=η1,2

− ǫ

3µ01
h0

1γ0 ev2|z=η1,2
+ O(ǫ2) (2.111)

Remember that thanks to (2.98) we have

v1 =

„
1 +

ǫ

3µ01
α0h

0
1

«
ev1|z=b −

1

6

ǫ

µ01
h0

1γ0( ev1 − ev2)|z=η1,2
+ O(ǫ2). (2.112)

We had too the value for the average of velocity v2 in equation (2.105):

v2 = − ǫ

3µ02
γ0h

0
2 ev1|z=η1,2

+

„
1 +

ǫ

3µ02
h0

2γ0

«
ev2|z=η1,2

+ O(ǫ2). (2.113)
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Subtracting the last two expressions we get:

v1 − v2 = − ǫ

6µ01
h0

1α0 ev1|z=b +

„
1 +

ǫ

3
γ0

„
h0

1

µ01
+

h0
2

µ02

««
( ev1 − ev2)|z=η1,2

+ O(ǫ2). (2.114)

We solve the following system for obtaining ev1|z=b and ( ev1 − ev2)|z=η1,2
:

8
>><
>>:

v1 =

„
1 +

ǫ

3µ01
α0h

0
1

«
ev1|z=b −

ǫ

6µ01
h0

1γ0( ev1 − ev2)|z=η1,2
;

v1 − v2 = − ǫ

6µ01
h0

1α0 ev1|z=b +

„
1 +

ǫ

3
γ0

„
h0

1

µ01
+

h0
2

µ02

««
( ev1 − ev2)|z=η1,2

.
(2.115)

The results are:

ev1|z=b = Dδv1 + D
ǫγ0h

0
1

6µ01
(v1 − v2), (2.116)

and

( ev1 − ev2)|z=η1,2
= D

ǫα0h
0
1

6µ01
v1 + Dβ−1(v1 − v2), (2.117)

being

β =

„
1 +

ǫ

3µ01
α0h

0
1

«−1

, δ = 1 +
ǫ

3
γ0

„
h0

1

µ01
+

h0
2

µ02

«
(2.118)

and

D =

„
β−1δ − ǫ2

36µ2
01

(h0
1)

2α0γ0

«−1

. (2.119)

As we can check that β−1δ > 1 and having into account that we have a second order appro-
ximation, we set:

D = βδ−1. (2.120)

So we can rewrite the solutions as:

ev1|z=b = βv1 + βδ−1 ǫγ0h
0
1

6µ01
(v1 − v2), (2.121)

and

( ev1 − ev2)|z=η1,2
= βδ−1 ǫα0h

0
1

6µ01
v1 + δ−1(v1 − v2). (2.122)

We take these values to equations (2.60) and (2.67):

ρ1∂t(fh1v1) + ρ1div x(fh1v1 ⊗ v1) − ǫ

2
ρ1

1

Ro
cos θe1(fh1)

2div xv1+

+ρ1
1

Ro
sin θfh1(v1)

⊥ − 2ǫµ01div x(fh1Dx(v1)) +
1

2
ρ1

1

Fr2
∇x(fh1)

2−

− ǫ

2
ρ1

1

Ro
cos θe1∇x((fh1)

2v1) + ρ1
1

Fr2
fh1∇x

eb+

+ǫρ1
1

Ro
cos θfh1

ˆ
(v1 · ∇x

eb)e1 − (v1 · e1)∇x
eb
˜
+

+δ−1γ0

„
β

ǫα0h
0
1

6µ01
v1 + (v1 − v2)

«
+ βα0

„
v1 + δ−1 ǫγ0h

0
1

6µ01
(v1 − v2)

«
−

−2ǫµ01∇x
fh1div xv1 + fh1∇x( ep1(gη1,2)) = 0.

(2.123)
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ρ2∂t(fh2v2) + ρ2div x(fh2v2 ⊗ v2) −
ǫ

2
ρ2

1

Ro
cos θe1(fh2)

2div xv2+

+ρ2
1

Ro
sin θfh2(v2)

⊥ − 2ǫµ02div x(fh2Dx(v2)) +
1

2
ρ2

1

Fr2
∇x(fh2)

2−

−ǫ
1

2
ρ2

1

Ro
cos θe1∇x((fh2)

2v2) − 2ǫµ02∇x(fh2div xv2)+

+ǫρ2
1

Ro
cos θe1h

0
2w

0
2 |z=η1,2

− δ−1γ0

„
β

ǫα0h
0
1

6µ01
v1 + (v1 − v2)

«
+

+∇x gη1,2( ep2(gη1,2) + 2ǫµ02div xv2)−

−ǫα02∇x(h0
2∆xη0) + ǫα02∇xη0∆xη0 = 0,

(2.124)

where we can check now how the coefficients for both friction terms have been corrected for
two layers.

In order to simplify the last two terms in (2.123), we use the interfaz condition (2.32) to
write:

ep1(gη1,2) + 2ǫµ01div xv1 = ep2(gη1,2) + 2ǫµ02div xv2 − ǫ(α01 − α02)κ1,2. (2.125)

So if we also include the expression of κ1,2 we get:

−2ǫµ01∇x
fh1div xv1 + fh1∇x( ep1(gη1,2)) = −2ǫµ01∇x

fh1div xv1+

+fh1∇x(−2ǫµ01div xv1 + ep2(gη1,2) + 2ǫµ02div xv2 − ǫ(α01 − α02)∆x gη1,2) =

= −2ǫµ01∇x(fh1div xv1) + fh1∇x( ep2(gη1,2) + 2ǫµ02div xv2)−

−ǫ(α01 − α02)fh1∇x(∆x gη1,2).

(2.126)

Finally the equation for layer 1 reads as:

ρ1∂t(fh1v1) + ρ1div x(fh1v1 ⊗ v1) − ǫ

2
ρ1

1

Ro
cos θe1(fh1)

2div xv1+

+ρ1
1

Ro
sin θfh1(v1)

⊥ − 2ǫµ01div x(fh1Dx(v1)) +
1

2
ρ1

1

Fr2
∇x(fh1)

2−

− ǫ

2
ρ1

1

Ro
cos θe1∇x((fh1)

2v1) + ρ1
1

Fr2
fh1∇x

eb − 2ǫµ01∇x(fh1div xv1)+

+ǫρ1
1

Ro
cos θfh1

ˆ
(v1 · ∇x

eb)e1 − (v1 · e1)∇x
eb
˜
+

+δ−1γ0

„
β

ǫα0h
0
1

6µ01
v1 + (v1 − v2)

«
+ βα0

„
v1 + δ−1 ǫγ0h

0
1

6µ01
(v1 − v2)

«
+

+fh1∇x( ep2(gη1,2) + 2ǫµ02div xv2) − ǫ(α01 − α02)fh1∇x(∆x gη1,2) = 0.

(2.127)

In the same way we work on the last terms in (2.124) by using (2.62) to rewrite them as:

ep2(gη1,2) + 2ǫµ02div xv2 = ρ2
1

Fr2
fh2 − ǫρ2

1

Ro
cos θe1

fh2v2 − ǫα02κ. (2.128)

So:
∇gη1,2( ep2(gη1,2) + 2ǫµ02div xv2) =

= ∇gη1,2(ρ2
1

Fr2
fh2) − ǫρ2

1

Ro
cos θe1∇x(gη1,2)fh2v2 − ǫα02∇xη0

1,2∆xη0.
(2.129)
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We can finally write the equation for layer 2 as

ρ2∂t(fh2v2) + ρ2div x(fh2v2 ⊗ v2) −
ǫ

2
ρ2

1

Ro
cos θe1(fh2)

2div xv2+

+ρ2
1

Ro
sin θfh2(v2)

⊥ − 2ǫµ02div x(fh2Dx(v2)) + ρ2
1

Fr2
(fh2∇x

fh2 + fh2∇x gη1,2)−

−ǫ
1

2
ρ2

1

Ro
cos θe1∇x((fh2)

2v2) − 2ǫµ02∇x(fh2div xv2)+

+ǫρ2
1

Ro
cos θe1h

0
2w

0
2 |z=η1,2

− δ−1γ0

„
β

ǫα0h
0
1

6µ01
v1 + (v1 − v2)

«
−

−ǫρ2
1

Ro
cos θe1

fh2v2∇x gη1,2 − ǫα02h
0
2∇x(∆xη0) = 0.

(2.130)

Remark 2.2. We can use the equation (2.128) to write (2.127) as:

ρ1∂t(fh1v1) + ρ1div x(fh1v1 ⊗ v1) − ǫ

2
ρ1

1

Ro
cos θe1(fh1)

2div xv1+

+ρ1
1

Ro
sin θfh1(v1)

⊥ − 2ǫµ01div x(fh1Dx(v1)) +
1

2
ρ1

1

Fr2
∇x(fh1)

2−

− ǫ

2
ρ1

1

Ro
cos θe1∇x((fh1)

2v1) + ρ1
1

Fr2
fh1∇x

eb − 2ǫµ01∇x(fh1div xv1)+

+ǫρ1
1

Ro
cos θfh1

ˆ
(v1 · ∇x

eb)e1 − (v1 · e1)∇x
eb
˜
+

+δ−1γ0

„
β

ǫα0h
0
1

6µ01
v1 + (v1 − v2)

«
+ βα0

„
v1 + δ−1 ǫγ0h

0
1

6µ01
(v1 − v2)

«
−

−ǫα01
fh1∇x∆x

fh1 − ǫα01
fh1∇x∆xb + ρ2

1

Fr2
fh1∇x

fh2−

−2ǫρ2
1

Ro
cos θe1

fh1∇x(fh2v2) − ǫα02
fh1∇x∆x

fh2 = 0.

(2.131)

2.4 Final models

In this section we write the final equations for the two models obtained with dimension and
dropping the cosines terms, having into account that

1

Rei

= ǫµ0i, α = ǫα0, αi = ǫα0i, γ = ǫγ0. (2.132)

We also divide the second and fourth equations in the systems by ρ1 and ρ2 respectively. For
a good writing of equations we introduce some notation about the coefficients involved in the
system. First we define the density relation by r = ρ2

ρ1
, we explicit the dynamic viscosity

as µi = ρiνi for i = 1, 2, being νi the kinematic viscosity and finally we take the following
definition for the friction and tension coefficients: γ = γ̃ρ2, α = α̃ρ1, αi = α̃iρi with γ̃, α̃ and
α̃i being positive constants.

Next we introduce some remarks about the approximations obtained mainly related to the
friction terms.

First, we state the system without viscosity, from equations (2.74), (2.86), (2.82) and
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(2.85), we found the following system that we denoted by (BL1):

(BL1)

8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

∂th2 + div x(h2v2) = 0;

∂t(h2v2) + div x(h2v2 ⊗ v2) + 2Ω sin θh2(v2)
⊥+

+
1

2
g∇xh2

2 + gh2∇xη1,2 = γ̃(v1 − v2);

∂th1 + div x(h1v1) = 0;

∂t(h1v1) + div x(h1v1 ⊗ v1) + 2Ω sin θh1(v1)
⊥ +

1

2
g∇xh2

1+

+gh1∇xb + rgh1∇xh2 = −rγ̃(v1 − v2) − α̃v1.

(2.133)

In the same way, we consider equations (2.88), (2.131), (2.100) and (2.130) to write the
viscous model with correction on the bottom and interface friction, (BL2):

(BL2)

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

∂th2 + div x(h2v2) = 0;

∂t(h2v2) + div x(h2v2 ⊗ v2) + 2Ω sin θh2(v2)
⊥ +

1

2
g∇xh2

2+

+gh2∇xη1,2 = δ−1γ̃

„
β

α̃h1

6ν1
v1 + (v1 − v2)

«
+ α̃2h2∇x∆xh2+

+α̃2h2∇x∆xη1,2 + 2ν2div x(h2Dx(v2)) + 2ν2∇x(h2div xv2);

∂th1 + div x(h1v1) = 0;

∂t(h1v1) + div x(h1v1 ⊗ v1) + 2Ω sin θh1(v1)
⊥ +

1

2
g∇xh2

1+

+gh1∇xb + rgh1∇xh2 = −δ−1γ̃ r

„
β

α̃h1

6ν1
v1 + (v1 − v2)

«
−

−βα̃

„
v1 + δ−1r

γ̃h1

6ν1
(v1 − v2)

«
+ α̃1h1∇x∆xh1+

+α̃1h1∇x∆xb + 2ν1div x(h1Dx(v1)) + 2ν1∇x(h1div xv1),

(2.134)

being

β =

„
1 +

α̃

3ν1
h1

«−1

, δ = 1 +
γ̃

3

„
r
h1

ν1
+

h2

ν2

«
. (2.135)

Remark 2.3. We want to remark that friction terms that we have obtained in (2.134) have
the same order of the friction and viscosity coefficients. That is to say, if we suppose that the
coefficients νi, α̃i, α̃ and γ̃ are of order ε, with ε ∼ 10−3, then we next prove that the terms

δ−1γ̃r

„
β

α̃h1

6ν1
v1 + (v1 − v2)

«
, βα̃

„
v1 + δ−1r

γ̃h1

6ν1
(v1 − v2)

«
(2.136)

have order ε too. We write them as follows:

δ−1γ̃rβ
α̃

6ν1
h1v1 + δ−1γ̃r (v1 − v2), βα̃ v1 + δ−1γ̃rβ

α̃

6ν1
h1(v1 − v2). (2.137)

So, it is enough to prove that the coefficients given by

δ−1γ̃β
α̃

ν1| {z }
[1]

, δ−1γ̃| {z }
[2]

, and βα̃|{z}
[3]

(2.138)
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have order ε.
First we develop β and δ−1:

β =
3ν1

3ν1 + α̃h1
, δ−1 =

3ν1ν2

3ν1ν2 + γ̃rν2h1 + γ̃ν1h2
(2.139)

and we observe that they have order ε0 because νi, α̃ and γ̃ have the same order.
Now we study each term in (2.138).
Term [1]: Since β and δ−1 have order ε0 and ν1, α̃ and γ̃ have order ε we deduce that this

first term have order ε.
Term [2]: this term has order ε because δ−1 has order ε0 and γ̃ has order ε.
Term [3]: for the same reason that for the second one, we find the ε order for this term,

because β has order ε0 and α̃ has order ε.

Remark 2.4. We have performed the deduction of a bilayer Shallow Water equations following
the work developed in [[6]] for the one-layer case.

Then, if we throw out the layer on top, we should get the model for one-layer obtained by
them in that work. So, taking h2 = ρ2 = 0 in the final system (2.134):

8
>>>>><
>>>>>:

∂th1 + div x(h1v1) = 0;

∂t(h1v1) + div x(h1v1 ⊗ v1) + 2Ω sin θh1(v1)
⊥ +

1

2
g∇xh2

1 + gh1∇xb+

+rgh1∇xh2 = −βα̃v1 + 2ν1div x(h1Dx(v1)) + 2ν1∇x(h1div xv1);

(2.140)

that is just the same correction for the friction that Gerbeau and Perthame have found but in
2d case.

Remark 2.5. In [[16]] a theoretical study of a simplified (BL2) model is performed proving
the existence of global weak solution for the system above but in the particular case when b = 0.

To obtain this result, the following form for the friction coefficient is taken:

γ =
h1h2

ν1

ν2
h1 + ν2

ν1
h2

(2.141)

Remark 2.6. The proof of the global weak solution for the (BL2) system is in course, it shall
appear in a forthcoming paper.

3 Numerical assessment

This section is devoted to check the validity of the new viscous bilayer model that we have
derived in the previous section. In the first test we solve a 1D internal dam-break problem
following the work [[6]] and we compare the numerical solution obtained by solving (BL1) and
(BL2) with the Navier-Stokes equations. In Test 2 we make a comparison of the solution of
the models for a 2D dam-break problem.

The results obtained show us that the new viscous model improves the no viscous one for
both unknowns, height and discharge. But as it is already confirmed in precedent works (see
[[6, 9, 1, 12]]) we notice that the more significant difference relies on the discharge.

Test 1: An internal dam-break problem.

We present a test for which we compare the solutions obtained for Navier-Stokes equations
with variable density with those given by systems (BL1) and (BL2).

In the numerical discretization we have defined the friction term at the interface as follows:

fric(v1, v2) = −κB(h1, h2)(v1 − v2), with B(h1, h2) =
h1h2

ρ1

ρ2
h1 + ρ2

ρ1
h2

and κ > 0. (3.1)

In [[6]] a dam-break test is calculated to validate the viscous model obtained. In this work
we present a similar case but solving an internal dam-break problem where two flows with
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different densities are involved, with the aim of emphasizing the importance of the friction
term between layers.

To make the comparison between the approximated Shallow-water systems and Navier-
Stokes equations, we have computed the non-dimensional problem in each case without tension
terms (i.e. α̃i = 0, for i = 1, 2). For the sake of clarity we specify these problems below.

So for the first order approximation we have:

(BL1adim)

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

∂th2 + div x(h2v2) = 0;

∂t(h2v2) + div x(h2v2 ⊗ v2) +
1

2

1

Fr2
∇xh2

2 +
1

Fr2
h2∇xη1,2 =

= γ̃0(v1 − v2);

∂th1 + div x(h1v1) = 0;

∂t(h1v1) + div x(h1v1 ⊗ v1) +
1

2

1

Fr2
∇xh2

1+

+
1

Fr2
h1∇xb + r

1

Fr2
h1∇xh2 = −rγ̃0(v1 − v2) − α̃0v1.

(3.2)

For the second order approximation we solve:

(BL2adim)

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

∂th2 + div x(h2v2) = 0;

∂t(h2v2) + div x(h2v2 ⊗ v2) +
1

2

1

Fr2
∇xh2

2+

+
1

Fr2
h2∇xη1,2 = δ−1γ̃0

„
β

α̃0h1

6
ǫ2Re1 v1 + (v1 − v2)

«
+

+2
1

Re2
div x(h2Dx(v2)) + 2

1

Re2
∇x(h2div xv2);

(3.3)

for the upper layer and for the lower one:

(BL2adim)

8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

∂th1 + div x(h1v1) = 0;

∂t(h1v1) + div x(h1v1 ⊗ v1) +
1

2

1

Fr2
∇xh2

1 +
1

Fr2
h1∇xb+

+r
1

Fr2
h1∇xh2 = −δ−1γ̃0 r

„
β

α̃0h1

6
ǫ2Re1 v1 + (v1 − v2)

«
−

−βα̃0

„
v1 + δ−1r

γ̃0h1

6
ǫ2Re1 (v1 − v2)

«
+

+2
1

Re1
div x(h1Dx(v1)) + 2

1

Re1
∇x(h1div xv1),

(3.4)

being

β =

„
1 +

α̃0

3
ǫ2Re1 h1

«−1

, δ = 1 +
γ̃0

3
ǫ2 (rh1Re1 + h2Re2) . (3.5)
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And finally for the Navier-Stokes equations we take the following problem:

(NSadim)

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ρ∂tv + ρv∇xv + ρw∂zv−
− 2

Re
div x(Dx(v)) − 1

Re

1

ǫ2
∂2

zv − 1

Re
∇x(∂zw) + ∇xp =

= −γ[v]δε(ρ);

ρ∂tw + ρv∇xw + ρw∂zw − 1

Re
∆xw−

− 1

ǫ2
1

Re
∂z(div xv) − 2

1

ǫ2
1

Re
∂2

zw +
1

ǫ2
∂zp = −ρ

1

ǫ2
1

Fr2
− γ[w]δε(ρ);

div xv + ∂zw = 0.

(3.6)

with boundary conditions at the bottom:

(
1

Re
(∇xw +

1

ǫ2
∂zv) =

1

ǫ
α v;

w = 0.
(3.7)

And δε being an approximation of the Dirac mass on the interface, defined as follows:

δε =
1

ε
ξ

“ρ

ε

”
|∇ρ|, with ξ(ϑ) =


1
2
(1 + cos(πϑ)) if |ϑ| < 1

0 otherwise
(3.8)

So the term involving δε in (3.6) is an approximation of the friction condition at the interface
that we have in the two layers case.

We take a domain D with length L = 1 meters and we set the friction coefficient as
ν = ν0 ζ, γ = γ0 ζ, α = α0 ζ with ζ being a quantity depending on the jump height, given

by ζ =
h1L

−h1R

L
. The height before the jump is taken as h1L

= 0.9 and h1R
= 0.1 after the

jump.
If we denote by ρi, i = 1, 2 the densities associated with each layer, we have defined

r = ρ2

ρ1
= 0.98 and the upper layer density, ρ2 = 1.

We have also set the following constant data:

ǫ = 0.04,
1

Rei

=
1

Re
=

ǫ

10
(for i = 1, 2),

1

Fr2
= 1, and ζ = 10 to put in evidence the

influence of the friction term.

The resolution of problems (BL1adim) and (BL2adim) has been performed by using a Finite
Volume method of Roe’s type; see [[11]]. We take the following initial conditions:

h(t = 0) =


h1L

x < 0;
h1R

x > 0,
q(t = 0) = 0. (3.9)

In order to solve the Navier-Stokes equations for this problem, we have solved it in a
two-dimensional domain D × Υ, Υ with length 1, in the terms that we specify next.

To calculate the density ρ, we have solved the transport problem for the salinity S given
by:

∂tS + ∇(uS) − ς∆S = 0, (3.10)

ς being the molecular diffusion.
Then, the density is updated by the state equation ρ = ρ0 [1 + F (S)], where ρ0 is a reference

density and F (S) is a function of the salinity S.
For the time being we are not able to solve the bilayer problem using Navier-Stokes equa-

tions so in order to simulate this situation, we have taken the following constant piecewise
function for the initial density value, (see Fig. 3) related to initial condition (3.9):

ρ(t = 0) =


ρ2 if {x < 0, y > h1L

} and {x > 0, y > h1R
}

ρ1 otherwise,
(3.11)

and the corresponding initial data for the salinity. At the initial time, we have taken u = 0.
Regarding the constants involving the Navier-Stokes problem, we have fixed the reference
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Figure 2: Evolution in time of the interface from t=1 to t=6.
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Figure 3: Initial density for Navier-Stokes problem.

density ρ0 = 1 and in our case, we have considered linear functions F , F (S) = bS for a
positive constant b, concretely we set b = 1. Finally, the molecular diffusion for the salinity
problem is taken as ς = 10−5.

We numerically solve this problem using a Finite Element discretization in the stable pair of
spaces (P2, P1). The computational work has been performed by using the software Freefem++
(http://www.freefem.org).

Computing the test at time T = 6 seconds for the three problems, we compare the solutions
obtained for the interface and the velocity.

In Fig. 3 we show the interface level obtained in each case for times from t = 1 to t = 6.
For problems (BL1adim) and (BL2adim) we plot the height of the lower layer, h1, but for
Navier-Stokes equations, this value must be obtained as a function of the density profile, so
we show the isolines of the density (colored lines).

As we can see in the figure this approximation for Navier-Stokes is not too meaningful to
compare it with the models studied here. Anyway we can see that the solution given by the
two systems keep on the profile of the Navier-Stokes solution.

Finally, in Fig. 3 we show the velocities of the lower layer obtained by solving problems
(BL1adim), (BL2adim) and (NSadim) at times t = 1 to 6. We notice that the solutions of the
Shallow-Water systems are getting further when the time increases and that the second order
approximation gives us a closer solution to the Navier-Stokes velocity.

Test 2: Circular dam-break problem in a 2D domain.

We consider a circular dam-break problem in both, surface and interface with a no constant
bottom.

The domain is the square D = [0, 2]× [0, 2], the bottom is given by the following function:

b(x, y) =


1
8
(1 + cos(2πx))(1 + cos(2πy)) (x − 1)2 + (y − 1)2 ≤ 0.12;

0 otherwise.
(3.12)

The initial condition is given by:

h1(t = 0) + b(x, y) =


1.1 (x − 0.9)2 + (y − 1)2 ≤ 0.22;
0.6 otherwise.

(3.13)

h2(t = 0) + h1(t = 0) + b(x, y) =


1.7 (x − 1.6)2 + (y − 1)2 ≤ 0.12;
1.2 otherwise;

(3.14)

and q1(t = 0) = q2(t = 0) = 0. A longitudinal section in y = 1 of the height initial condition
is shown in Fig. 5.

The CFL is set to 0.7 and we consider a partition with ∆x = ∆y = 0.02, the final time is
T = 2. The friction coefficients and the kinematic viscosity has been taken as γ̃ = α̃ = ν1 =
ν2 = 10−3 and the density ratio is set to 0.8.
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Figure 4: Evolution in time of the velocity of the layer below for times t=1 to t=6.
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In Fig. 6 we show the evolution in time, from t = 0.2 to t = 2 of the interface and the free
surface.

In Figs. 7-10 a longitudinal section in y = 1 is drawn. The heights of layers are shown
in Fig. 7 for the same times values. We can see that the difference between the solution of
problems (BL1) and (BL2) is getting higher in time. This behavior can also been check for
the discharges, see Fig. 8 for layer 1 and Fig. 9 for layer 2.

In order to weigh up the influence of the friction at the interface we show in Fig. 10 the
difference between horizontal velocities v1x − v2x. Remember that fric(v1, v2) = −γ(v1 − v2).
We can see that for small times the difference is about 0.4 near the bottom bump and for final
times this quantity is reduced to the half.
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Figure 6: Free surface and interface.
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Figure 7: Longitudinal section of heights.
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Figure 8: Discharge layer 1.
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Figure 9: Discharge layer 2.
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Figure 10: Difference between velocities: v1x − v2x.
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4 Conclusions

In this work we propose a bilayer Shallow Water 2D model, taking into account viscosity and
tension effects on the surface and the interface. The model is obtained from the Navier-Stokes
equations through a second order development in the asymptotic analysis and the integration
process, following [[6]].

The main difficulty is related to the correction of the friction term at the interface. Usually
to make this correction we must write the velocities at the interface in function of the average
velocities. Due to that the friction term depends on the velocity difference of the two layers,
we have a coupled problem and a second order friction correction cannot be performed layer
by layer. To solve this problem we set out a linear system of equations where the unknowns
are the velocities at the interface and at the bottom, that we write in function of the average
velocities. So we obtain the correction for both friction terms: at the interface and at the
bottom. And, in particular we can observe in the model the influence of the friction at the
bottom in the upper layer.

Finally we present two numerical tests to check the influence of the viscosity terms and fric-
tion corrections in the model. In the first test a one-dimensional internal dam-break problem is
presented. We make a comparison between the solution of two models (first and second order)
and the solution of Navier-Stokes equations with variable density. In this case we observe that
the interface position and velocities computed by the models are comparable with the solution
of the Navier-Stokes equations with variable density. Moreover, we can see that the velocity
obtained from the second order model is closer to the velocity computed for Navier-Stokes
problem.

In the second test, a problem with higher velocities is considered. We set a double circular
dam-break problem with a bump in the bottom. The test is designed in order to obtain a
great difference between the velocities of the two layers, consequently we find an important
influence of friction terms. As motivated in the first test, we show that the effects added in
the second order model are significants.

The research of E.D. Fernández-Nieto and G. Narbona-Reina to carry on this work was
partially supported by the Spanish Government Research project MTM 2006-01275. The
authors wish to thank Manuel J. Castro Dı́az for interesting discussions about the numerical
tests.
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