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Abstract

This paper deals with the numerical resolution of a shallow water viscoplastic flow
model. Viscoplastic materials are characterized by the existence of a yield stress: below a
certain critical threshold in the imposed stress, there is no deformation and the material
behaves like a rigid solid, but when that yield value is exceeded, the material flows like a
fluid. In the context of avalanches, it means that after going down a slope, the material can
stop and its free surface has a non trivial shape, as opposed to the case of water (Newtonian
fluid). The model involves variational inequalities associated to the yield threshold: finite-
volume schemes are used together with duality methods (namely Augmented Lagrangian
and Bermúdez-Moreno) to discretize the problem. To be able to accurately simulate the
stopping behaviour of the avalanche, new schemes need to be designed, involving the clas-
sical notion of well-balancing. In the present context, it needs to be extended to take into
account the viscoplastic nature of the material as well as general bottoms with wet/dry
fronts which are encountered in geophysical geometries. We derived such schemes and
numerical experiments are presented to show their performances.
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1 Introduction

The objective of this paper is to present improved numerical schemes for shallow water models
for viscoplastic materials on variable topography (or bathymetry). The associated difficulties are
twofold. First, we will place ourselves in a context –increasingly in use– where no regularization
method is used and thus the variational inequalities traducing the plastic nature of the mate-
rial are handled directly through duality methods. Second, we will describe new well-balanced
schemes in this viscoplastic context to take into account general bottoms and wet/dry fronts.

In recent years, an increasing interest has been developed for shallow water models in the
context of simulations for the flow of viscoplastic materials down inclined planes. Viscoplastic
materials are characterized by the existence of a yield stress: below a certain critical threshold
in the imposed stress, there is no deformation and the material behaves like a rigid solid, but
when that yield value is exceeded, the material flows like a fluid. Such flow behaviour can be
encountered in many practical situations such as food pastes, heavy oils, lavas and avalanches.
As a consequence, the theory of the fluid mechanics of such materials has applications in a wide
variety of fields such as chemical industry, energy industry and geophysical fluid dynamics.
From the mathematical viewpoint, the non-linearity associated to viscoplastic models (such as
the Bingham model, as we will see below), leads to feasible but very expensive computational
times for the full 3D equations (see e.g. [28]). Consequently, numerous reduced 2D model us-
ing the shallow flow approximation have been derived. In the context of avalanches, we refer
to the article of Ancey [2] and references therein for a detailed review on these developments.
Recently, in [25], an interesting shallow water model based on a Bingham-like constitutive law
together with Coulomb frictional condition on the bottom was derived, in local coordinates for
the case of a non-planar topography. But the algorithm, presented to solve associated equations,
does not take into account either well-balanced properties or the treatment of wet/dry fronts.
Another shallow model based on the Herschel-Bulkley constitutive law (which generalizes the
Bingham law) was derived in [1] and a new well-balanced scheme was introduced to take into
account both non-linearities of this constitutive law, leading to a scheme which preserves more
accurately stationary states. This point is important when it comes to determine the stopping
time of the flow, when the material enters in its rigid state. And this kind of property is also
linked to the use of duality methods which allow to properly deal with the plasticity.

Indeed, a common point of an increasing part of the recently developed numerical methods
for viscoplastic flows (see e.g. [33], [37, 36], [24], [35], [25]) is that they use decomposition-
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coordination methods to solve the variational inequality associated to constitutive laws with a
so-called plastic threshold (the most simple and iconic one being the Bingham model). This
kind of approach takes its roots in the seminal works of Duvaut-Lions [15] and the series of
papers of Glowinski and coworkers (see the recent book [22] for a detailed review), initiated
at the end of the seventies and anchored in the Augmented Lagrangian formalism. One of the
crucial advantage of these methods over regularized approaches (see e.g. Papanastasiou’s [29]
or the so-called bi-viscosity methods [14]) is that they rigorously take into account the plastic
threshold. Of note, it is well known that in Augmented Lagrangian (AL) methods, the opti-
mal values of the parameters are not easy to determine in the general case. These parameters
((r, ρ) in Glowinski’s nomenclature) influence the speed of convergence of the iterative process
towards the saddle-point, solution of the problem. As a consequence, a study of some sort of
optimality for such parameters is of real interest when it comes to improve the computational
efficiency. As an alternative duality method, one can use the so-called Bermúdez-Moreno (BM)
algorithm. This method, which is built upon some properties of the Yosida regularization of
maximal monotone operators, has been extensively used for a wide range of applications (see
[19] and the references therein). In order to apply the method, the Yosida regularization of the
subdifferential associated to the non-differentiable operator appearing in the formulation of the
considered model needs to be determined. As for the AL, the performance of the algorithm
strongly depends on the choice of two constant parameters. Fortunately, several ways to over-
come this problem have been proposed in the literature ([31, 30, 19]), and they will be considered
in this paper.

Another difficulty that appears when it comes to couple shallow-water models and viscoplas-
tic constitutive laws, is the adequate coupling between the discretization associated to the duality
method and the one associated with the spatial terms, in such a way the global scheme is well-
balanced. For shallow water type equations, finite volume methods have proved their efficiency
and we adopt them in the present work. In this context, a careful treatment must be made to
design a well-balanced scheme when coupling the finite volume scheme and the duality method.
This idea was first introduced in [8], in the context of a Bingham fluid treated with an AL
method. We extend here this idea for a Shallow-Water-Bingham model on a general topography
and in the presence of wet/dry fronts.
The well-balanced properties are related to the stationary solutions of the system. In our case,
we seek numerical schemes which preserve exactly two types of stationary solutions. For hyper-
bolic systems with source terms, a discretization of the source terms compatible with the one
of the flux term must be performed. Otherwise, stemming from the numerical diffusion terms,
a first order error in space takes place. This error, after time iteration, may yield large errors
in wave amplitude and speed. The pioneering work by Roe [32] relates the choice of the ap-
proximation of the source term with the property of preserving stationary solutions. Bermúdez
and Vázquez-Céndón introduced in [5] an extension of Roe’s solver, in the context of shallow
water equations, which preserves exactly the stationary solution of water at rest. This work
originated the so-called well-balanced solvers, in the sense that the discrete source terms balance
the discrete flux terms when computed on some (or all) of the steady solutions of the continuous
system. Different extensions have been done: see for instance Greenberg-Leroux [23], LeVeque
[27], Chacón et al. [12].
An additional difficulty in the simulation of free surface flows comes from the appearance of
dry areas in the computational domain, due to the fluid evolution or to the initial conditions.
Standard numerical schemes may compute spurious solutions in the presence of wet/dry fronts,
unless appropriate modifications are made. See [7, 34] for a review on some methods appearing
in the literature to deal with this problem. Moreover, in the context of shallow water equa-
tions, Roe-type schemes lose their well-balanced properties when wet/dry transitions appear.
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Indeed, they may produce nonphysical negative values of the thickness of the water layer near
the wet/dry front. Some ways to modify Roe’s method to fix these problems have been proposed
in [10, 11].

The contribution of this paper is twofold. First, by adapting the guidelines in [30], we de-
termine, in a theoretical way, an optimal choice of parameters in the sense that they provide
the highest rate of convergence for the BM algorithm. For the AL, we perform some numeri-
cal studies of the optimal choice of parameters and we then compare both methods on various
problems to give insight on their respective behaviours. To our best knowledge this is the first
time that BM is applied to such kind of models and that such a systematic comparative study
of the behaviour of the number of iteration in duality methods is done for several very different
viscoplastic flows.
Second, both for the AL and BM methods which are embodied in a general framework, we design
a well-balanced scheme which takes into account wet/dry fronts on general bottoms, for such
viscoplastic free surface flows. Again, this is the first time that dry area treatment is proposed
for flows with plastic behaviour. This is crucial when it comes to study real applications where
there are always a flow with wet/dry front and a rigorous treatment is needed to compare qual-
itatively numerical simulations and physical experiments.

This work is organized as follows. In Section 2, we introduce a typical model for viscoplastic
free-surface flows on general bottoms and the general resolution approach. Then in Section 3,
we present in detail the two duality methods used to treat the viscoplastic behaviour of the ma-
terial, namely the AL and the BM methods. In Section 4, we describe the design of the overall
well-balanced scheme which takes into account general bottoms and the presence of wet/dry
fronts. Numerical tests are finally presented in Section 5 to illustrate the various properties of
the scheme and compare both methods. A duct flow test and a stationary test allow to make
a convergence analysis thanks to the availability of analytic solutions. Then, several tests of
avalanches, academic but very challenging from the numerical viewpoint, are performed to show
the robustness of the scheme. Conclusions are drawn in Section 6.

2 Model and resolution approaches

As a model problem for viscoplastic shallow flows, we use the Bingham shallow-water model
derived in [8], but we add here the fact that the bottom is more general than a plane slope.
The derivation being very close, we refer to [8] for more details and here we directly present the
resulting model. Its physical characteristics and relevance are briefly described in the following.

The geometry is as shown on Figure 1. We consider a fluid domain of height H over a general
bottom b. More precisely, let Ω ⊂ R2 be a given domain for the space variable x. The R2 plane
generated by Ω is supposed to be sloping at an angle α from the horizontal plane. We denote
by z ∈ R the variable in the orthogonal direction to Ω. The bottom which bounds the fluid by
below is defined by b(x), x ∈ Ω. We denote by D(t) the fluid domain defined as

D(t) = {(x, z) ∈ Ω× R / b(x) < z < b(x) +H(t, x)}, (1)

where H is the time-dependent height of the fluid.

As usual for shallow water type models, we denote by V = V (t, x) ∈ R2 the vector of the
average of the velocity (orthogonal to the z-axis) along the depth of the fluid (i.e. from z = b(x)
to z = b(x) +H(t, x)). We take into account the fact that there may be friction on the bottom
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Figure 1: Domain in 2D (left) and 1D (right).

through a coefficient β. The fluid undergoes a body force denoted as (fΩ, fz) ∈ R2 × R in the
Ω× z frame of reference. Note that fΩ and fz are both assumed to be constant.
Since we are considering a Bingham constitutive law, the material is characterized by a viscosity
η and a yield stress τy. The latter is associated to the plastic behaviour of the material and this
leads (cf. [15]) to a variational inequality for the momentum conservation relation (see equation
4). On the contrary, the conservation of mass is rather classic for this type of integrated model
(see equation 3). Given the space

V(t) = {Ψ ∈ H1(Ω)2 / Ψ = 0 on ∂Ω} := H1
0 (Ω)2 (2)

and some initial conditions at t = 0, the problem is to find H ∈ L2([0, T ], L∞(Ω)), V ∈
L2([0, T ];V(t)), with ∂tV ∈ L2([0, T ];L2(Ω)2), such that

∂tH + divx(HV ) = 0, (3)

and

∀Ψ ∈ V(t),

∫
Ω

H

(
∂tV · (Ψ− V ) + V · ∇xV (Ψ− V )

)
dx+

∫
Ω

βV · (Ψ− V )dx

+

∫
Ω

2ηHD(V ) : D(Ψ− V )dx+

∫
Ω

2ηHdivxV (divxΨ− divxV )dx

+

∫
Ω

τyH
(√
|D(Ψ)|2 + (divxΨ)2 −

√
|D(V )|2 + (divxV )2

)
dx

≥
∫

Ω

H(fΩ + fz∇xb) · (Ψ− V )−
∫

Ω

(H)2

2
fz(divxΨ− divxV )dx, (4)

where

D(U) :=
1

2

[
∇xU + (∇xU)t

]
, (5)

∇xU :=

(
∂Ui
∂xj

)
i,j

, i = 1, 2, j = 1, 2, (6)

divxU :=
∂U1

∂x1

+
∂U2

∂x2

, ∀U(t, ·) := (U1, U2) ∈ V(t). (7)

Of note, usual Sobolev embeddings and the fact that H is bounded allow aforementioned prob-
lem to be well-posed. As said previously, this model is based on a so-called shallow water
approximation, i.e. the height of the fluid is assumed to be much smaller than the characteristic
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length of the domain. Furthermore, this model was derived through an asymptotic expansion
where the slope is supposed to be small (α � 1) and the norm of the gradient of b(x) is small
(‖∇xb‖ � 1).
But it is worth noting that this model is also valid for a slope α = 0 (horizontal bottom), which
is not generally the case for other models proposed in the literature (see for example [3], [17]).
Another interesting feature of the model is that in the case of a plane horizontal slope (α = 0)
and with a vanishing yield stress (τy = 0), we recover a viscous shallow water system which has
the same structure as the one derived by Gerbeau and Perthame in [20] (note that the hypoth-
esis of friction at the bottom, instead of a no-slip condition is a key point in this degeneracy
to [20]). The shallow water formulation (4) is in weak form. It can be rewritten in the strong
form to have the expression of the associated (integrated) Bingham constitutive law. Namely,
the corresponding formulation is

H

(
∂tV + V · ∇xV

)
+ βV − divx(Hσ) = H(fΩ + fz∇xb)−∇x

(
(H)2

2
fz

)
, (8)

where 
σ = 2η (D(V ) + tr(D(V ))I) + τy

D(V ) + tr(D(V ))I√
|D(V )|2 + |tr(D(V ))|2

if |D(V )| 6= 0

|σ| ≤ τy if |D(V )| = 0,

(9)

the second invariant |σ| of a tensor σ being defined here as

|σ| :=
√

Σi,jσ
2
ij. (10)

Note that in the following, the body force will be the influence of gravity, denoted by g.
To write this force, we must decide what is the orientation of the plane generated by Ω; by
convention we will say that if (x1, x2, z) is the frame of reference (cf. Figure 1-a), then the tilted
axis (with respect to the horizontal) is x1, i.e.

fΩ = (−g sinα , 0), fz = −g cosα. (11)

In this paper, we will fulfill our objectives on the 1D version of (2)-(3)-(4). Of note, the ideas
presented here can be extended in 2D. This extension being not trivial, it will be presented in
another article. In the 1D case, we naturally take x ∈ Ω = [0, L] and the associated frame of
reference becomes (x, z) (cf. Figure 1-b). We have then

V(t) = {Ψ ∈ H1(Ω) / Ψ = 0 on ∂Ω} := H1
0 ([0, L]), (12)

and the problem (3)-(4) degenerates to: find H ∈ L2([0, T ], L∞([0, L])) and V ∈ L2([0, T ],V(t)),
with ∂tV ∈ L2([0, T ], L2([0, L])), such that

∂tH + ∂x(HV ) = 0, (13)

and

∀Ψ ∈ V(t),

∫ L

0

H

(
∂tV (Ψ− V ) +

1

2
∂x(V

2)(Ψ− V )

)
dx+

∫ L

0

4ηH∂xV ∂x(Ψ− V )dx

+

∫ L

0

τy
√

2H
(
|∂xΨ| − |∂xV |

)
dx+

∫ L

0

βV (Ψ− V )dx

≥
∫ L

0

H(fΩ + fz ∂xb)(Ψ− V )dx−
∫ L

0

H2

2
fz(∂xΨ− ∂xV )dx. (14)
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The gravity becomes (note that, as the velocity, the projection of the force on Ω is now a scalar):

fΩ = −g sinα, fz = −g cosα. (15)

In this paper, as in many schemes used in the literature for this type of models, we will
consider a first order backward semi-discretization in time (explicit Euler’s method). We denote
the time step by ∆t. We have:

Hn+1 −Hn

∆t
+ ∂x(H

nV n) = 0, (16)

and ∫ L

0

Hn

(
V n+1 − V n

∆t
(Ψ− V n+1) +

1

2
∂x((V

n)2)(Ψ− V n+1)

)
dx+

∫ L

0

βV n+1(Ψ− V n+1)dx

+

∫ L

0

τy
√

2Hn
(
|∂xΨ| − |∂xV n+1|

)
dx+

∫ L

0

4ηHn∂x(V
n+1)∂x(Ψ− V n+1)dx

≥
∫ L

0

Hn

(
fΩ + fz ∂xb

)
(Ψ− V n+1)dx−

∫ L

0

(Hn)2

2
fz(∂xΨ− ∂xV n+1)dx, ∀Ψ. (17)

Doing so, we see that problem on the height and problem on the velocity are decoupled.
At each time step, supposing that we know (Hn, V n), we need to solve both problems for
(Hn+1, V n+1).
One of the goals of this article is to compare two duality methods to handle the variational
inequality of the problem on the velocity, namely the augmented Lagrangian method and
Bermúdez-Moreno method. It is the subject of the next section, where we will also see more
clearly the underlying shallow water nature of this system. For this kind of equations, finite
volume discretizations are particularly well suited and this is why we want to use them in this
context. The other goal of this paper is to show that a careful design of the scheme is needed to
obtain a well-balanced property in the case of variable bottom and in the presence of wet/dry
fronts. This will be treated in Section 4.

3 Treating the velocity inequality with two duality

methods

The speed problem of the above shallow Bingham model is a variational inequality and conse-
quently specific methods to solve it are needed. Various types of methods exist in the literature
and, in this paper, we choose two of them which have proved to be efficient for such problems
(see e.g. [26]), namely the augmented Lagrangian method and the Bermúdez-Moreno method.
Their definitions and derivations are different, but interestingly the obtained structure of the
algorithms is the same. We will thus make the most of this fact in Section 4, to design an unified
scheme for the space discretization. In addition, this common structure in terms of code imple-
mentation makes it interesting to compare their efficiency and computational cost. In particular,
both algorithms depend on a parameter which influence the speed of convergence to the solution.
Consequently, it is interesting to determine if optimal parameters can be derived theoretically.

The Augmented Lagrangian algorithm is a method which has been extensively used for a wide
range of non linear optimization problems (see [21]). It appears that (17) can be reformulated as
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a minimization problem and solving for V n+1 ends up to find the saddle-point of an augmented
Lagrangian. This approach allows to elegantly deal with the non-differentiable terms of (17).
For sake of brevity, the full derivation of the Augmented Lagrangian algorithm for (17) is given
in Appendix A. Of note, the final form of the present Augmented Lagrangian algorithm has a
structure which is very similar to the one derived the following subsection and Appendix A is
also here for completeness in comparing the two approaches.
Concerning the so called augmentation parameter r, it is generally difficult to find a priori an
optimal value which leads to the fastest convergence of this iterative method. Some optimal
parameters are derived in [18] for very simple model problem and, in the context of seismic
reflection tomography, a heuristics was proposed to evolve r along the iterations of the AL to
increase the speed of the algorithm [13]. But overall, a general methodology to find theoretically
an optimal value of r seems to remain an open question. This fact was one of the reasons to
study in more details another duality method, namely the Bermúdez-Moreno method.

3.1 Study of the BM approach

For the sake of brevity, the full derivation of the Bermúdez-Moreno method is given in Appendix
B and we will directly give the resulting algorithm in the following. It is important to note that
it is as easy to implement as the Augmented Lagrangian algorithm.

3.1.1 The BM algorithm

Let us summarize the BM algorithm for the speed problem (17).

Bermúdez-Moreno algorithm

• Initialization: suppose that V n, Hn and θn are known. For k = 0, we set V k = V n and
θk = θn.

• Define the parameters λ and ω (See Section 3.1.2).

• Iterate:

– Find V k+1 ∈ V solution of the following linear problem:(
Hn

∆t
+ β

)
V k+1 − ∂x((4ηHn + ω) ∂xV

k+1)− ∂x(ω∂xV k+1)

=
Hn

∆t
V n − Hn

2
∂x((V

n)2) +
1

2
∂x((H

n)2fz) +Hn(fΩ + fz∂xb) + ∂xθ
k. (18)

– Update the so called Bermúdez-Moreno multiplier θk+1 via ξk+1 = ∂xV
k+1 + λθk and

θk+1 =



−ω ξk+1 + τy
√

2Hn(x)

1− λω
if ξk+1 > λτy

√
2Hn(x),

ξk+1

λ
if ξk+1 ∈ [−λτy

√
2Hn(x), λ τy

√
2Hn(x)],

−ω ξk+1 − τy
√

2Hn(x)

1− λω
if ξk+1 < −λτy

√
2Hn(x).

(19)

Note that this computation is local in space, i.e., it is done at each discretization
point.
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– Check convergence (see below) and update: V k = V k+1, θk = θk+1, k 7→ k+ 1 and go
to the next iteration...

• ... until convergence is reached:

‖θk+1 − θk‖
‖θk‖

≤ tol. (20)

At convergence, we get the value of V n+1 by setting V n+1 = V k+1 (in the numerical tests pre-
sented in this paper, we set tol = 10−5).

Up to now, we did not describe the discretization in space. As we said previously, we want
to adopt a finite volume approach. Consequently, it is worth realizing that the underlying global
problem coupling (16) and (17) involves the following system (we use a slight change of notation
which will be useful in the following: Hn+1 is denoted as Hk+1; in spite of this choice, note again
that Hk+1 is not involved in the Bermúdez-Moreno algorithm and, so, does not change in this
loop):

(P̃ )n,k



Hk+1 −Hn

∆t
+ ∂x(H

nV n) = 0,

Hn

(
V k+1 − V n

∆t

)
+ βV k+1 − ∂x

(
4ηHn∂x(V

k+1)
)
− ∂x(ω∂xV k+1)

= Hn(fΩ + fz∂xb)−
Hn

2
∂x((V

n)2) +
1

2
∂x((H

n)2fz) + ∂xθ
k.

(21)

Consequently, even if there is a decoupling of both problems in terms of the time discretization
and the Bermúdez-Moreno algorithm, it appears that to obtain a global well-balanced scheme,
there must be a coupling between the mass and momentum equations induced by the source
terms (involving topography and the multiplier θ). For shallow water type systems with source
terms, this has been extensively studied in the literature. In Section 4, we precisely describe the
aforementioned coupling for the present problem.

3.1.2 Study of the optimal parameter

As it has been documented in the literature, the main drawback of the BM algorithm is that
its rate of convergence strongly depends on the choice of parameters λ and ω. Several efforts
have been made to overcome this problem, allowing the choice of appropriate parameters in
different functional frameworks ([30], [31], [19]). We will adapt here the guidelines in [30] in
order to deduce an optimal choice of parameters, the main idea being to look for ω minimizing
the contractivity constant of the sequence θk − θ. The condition

λω =
1

2

will be assumed throughout the rest of the paper, so only one of the parameters has to be chosen,
say ω. The interested reader will find all the details of the derivation in Appendix C. To sum
up, a quasi-optimal choice of the parameter ω would be given by

ωopt(H
n
max) =

(
Hn

max

∆t
+ β

)
L2

Nπ2
+ 4ηHn

max, (22)

where Hn
max = ‖Hn‖∞.
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3.1.3 Some remarks on the treatment of wet/dry fronts

Although not explicitly stated, in the preceding sections it has been assumed that Hn(x) ≥ Hn
min

for a certain constant Hn
min > 0, which means that there is no dry area in the computational

domain. Following [30, 31], one possible way to take into account the appearance of dry areas
is to extend the function Φ (cf. Appendix C) as follows:

Φ(x, z) =

{
τy
√

2Hn(x)|z| if Hn(x) ≥ 0,

+∞ otherwise.

In this case, a simple computation shows that the expression (61) for the Yosida regularization
Gω
λ remains valid, including the case Hn(x) = 0. Therefore, the BM algorithm in Section 3.1.1

can be applied in the presence of wet/dry fronts, after taking into account the modifications to
be proposed in Section 4.

On the other hand, as Hn approaches to zero the coercivity constant (57) also tends to zero,
thus degrading the convergence of the BM method. Moreover, when looking for the optimal
value of the parameter ω, the contractivity constant L(ω) appearing in (68) is close to one.
It has been verified numerically that, if no modification is made, the convergence of the BM
algorithm is considerably slower in the presence of wet/dry fronts. Fortunately, this problem
can be overcome by taking the parameter ω depending on Hn(x), following the guidelines in
[31]. After extensive numerical investigation, we have found that the best convergence results
are obtained for

ωopt(H
n(x), Hn

max) = $opt(H
n
max)Hn(x), (23)

with

$opt(H
n
max) =

(
1

∆t
+

β

Hn
max

)
L2

w

Nπ2
+ 4η,

where Lw is the length of the wet domain. As it is shown in Test 5.2, in this case the speed of
convergence of the BM algorithm is greatly improved.

4 Well-balanced discretization with general bed and

wet/dry fronts

As said previously, either for AL and BM methods, we need now to describe how to perform the
discretization in space. This point is essentially inspired by finite volume methods for shallow
water type systems. Since the structure of the resulting systems are very close, we will try to
unify the description as much as possible and point out when necessary the adaptation needed
for each case.

The space domain [0, L] is divided in computing cells Ii = [xi−1/2, xi+1/2]. For simplicity, we
suppose that these cells have a constant size ∆x. Let us define xi+ 1

2
= (i+1/2)∆x and xi = i∆x,

the center of the cell Ii. We define W k+1 (thanks to the aforementioned cosmetic harmonization
of the notation) as the following vector of the unknowns of problem (P )n,k (or (P̃ )n,k),

W k+1(x) =
[
Hk+1(x), V k+1(x)

]
.

The two equations (55) of problem (P )n,k, as well as the two equations (21) of problem (P̃ )n,k

can be rewritten under the form:

D(W n)

(
W k+1 −W n

∆t
+ ∂xF (W n)

)
− ∂x((4ηHn + δn)I ∂xW k+1)

10



= −βIW k+1 + S(W n)∂xσ
k, (24)

where

D(W n) =

(
1 0
0 Hn

)
, F (W n) =

 Hn V n

(V n)2

2
− fzHn

 , I =

(
0 0
0 1

)
,

S(W n) =

(
0 0
Hn 1

)
, σk =

(
fΩx+ fzb

ζk

)
.

The definition for δn and ζk depends on the duality method. Namely,

• for the AL method:
δn = rHn, ζk = Hn(µk − rqk);

• for the BM method:
δn = ωn, ζk = θk,

where ωn is defined by the optimal value in terms of Hn (see Subsections 3.1.2 and 3.1.3).

We denote by W k+1
i the approximation of the cell average of the exact solution provided by the

numerical scheme:

W k+1
i
∼=

1

∆x

∫ xi+1/2

xi−1/2

W k+1(x) dx. (25)

Furthermore, θ, µ and q are approximated at the center of the dual mesh: θki+1/2, µki+1/2 and

qki+1/2 are approximations of θk(xi+1/2), µk(xi+1/2) and qk(xi+1/2), respectively. Consequently, we
define

ζki+1/2 =

{
Hn
i+1/2(µki+1/2 − rqki+1/2) in the case of AL (a)

θki+1/2 in the case of BM (b)
(26)

and

δni+1/2 =

{
rHn

i+1/2 in the case of AL (a)

ωni+1/2 in the case of BM (b)
(27)

For the BM algorithm ωni+1/2 is defined in terms of ωopt, following (69) or (23). Concretely,
we can set

ωni+1/2 = ωopt

(
max
i

(Hn
i )

)
,

where ωopt(H) is defined by (69). Following (23) we can also set the following definition:

ωni+1/2 = $opt

(
max
i

(Hn
i )

)
Hn
i+1/2,

where $opt(H1, H2) is defined by (23) and

Hn
i+1/2 =

Hn
i +Hn

i+1

2
.

We also define λni+1/2 in terms of ωni+1/2:

λni+1/2 ω
n
i+1/2 =

1

2
.

11



As mentioned during the presentation of both duality methods, we can suppose that the
values W k

i , W 0
i = [Hn, V n] and ζki+1/2 are known for all i. Then, we proceed as follows.

System (24) is discretized as

D(W n
i )

(
W k+1
i −W n

i

∆t
+
φ(W n

i ,W
n
i+1, {ζkj+1/2}

j=i+1
j=i−1)− φ(W n

i−1,W
n
i , {ζkj+1/2}

j=i
j=i−2)

∆x

)

− 1

∆x2

(
(4ηHn

i+1/2 + δni+1/2)I (W k+1
i+1 −W k+1

i )− (4ηHn
i−1/2 + δni−1/2)I (W k+1

i −W k+1
i−1 )

)

= − βIW k+1
i + S(W n

i )
σki+1/2 − σ

n,k
i−1/2

∆x
. (28)

The definition of σki+1/2 is

σki+1/2 =

 fΩ xi+1/2 + fz
bi + bi+1

2

ζki+1/2

 . (29)

Finally, φ(W n
i ,W

n
i+1, {ζkj+1/2}

j=i+1
j=i−1) is a numerical flux function, approximation of F (W n) at

xi+1/2.

In order to complete the numerical scheme, we must precise the definition of φ. We consider a
family of numerical flux functions which define a well-balanced finite volume solver. System (24)
can be seen as a semi-discretization in time of a parabolic system, which for r = 0 degenerates
into an hyperbolic system with source terms. Following [12], in order to obtain a well-balanced
finite volume method, the numerical flux φ, approaching the flux function F (W ) at xi+1/2, must
depend on the definition of the source terms.
Namely, we consider the following class of numerical flux functions:

φ(W n
i ,W

n
i+1, {ζkj+1/2}

j=i+1
j=i−1) =

F (W n
i ) + F (W n

i+1)

2
− 1

2
Qn
i+1/2(W n

i+1 −W n
i + Gn({ζkj+1/2}

j=i+1
j=i−1))

(30)
where Qn

i+1/2 is the numerical viscosity matrix which particularizes the numerical solver and

G({ζkj+1/2}
j=i+1
j=i−1) is a term designed to obtain a well-balanced finite volume method.

The numerical viscosity matrix can be defined in terms of the eigenvalues of the Roe matrix
associated to the flux F (W ). Let us denote by Ani+1/2 the Roe matrix verifying,

F (W n
i+1)− F (W n

i ) = Ani+1/2(W n
i+1 −W n

i ).

This matrix can be diagonalized and its eigenvalues are

Λn
1,i+1/2 = Ṽ n

i+1/2 −
√
−fzHn

i+1/2, Λn
2,i+1/2 = Ṽ n

i+1/2 +
√
−fzHn

i+1/2,

where Ṽ n
i+1/2 = (

√
Hn
i V

n
i +

√
Hn
i+1V

n
i+1)/(

√
Hn
i +

√
Hn
i+1).

In this work we consider Rusanov’s method, defined by Qn
i+1/2 = α0,i+1/2I with α0,i+1/2 =

max(|Λn
1,i+1/2|, |Λn

2,i+1/2|). As discussed in [1], using a diagonal viscosity matrix allows us to
design an algorithm where at a first step we compute the flux associated to the velocity, at a
second step we perform a fixed point algorithm, and finally we compute the flux associated to
the height evolution. As a consequence, in the fixed point process of the duality method it is

12



not necessary to recompute the numerical fluxes at each step. See [1] for more details on this
discussion. Some other numerical solvers defined in terms of a diagonal viscosity matrix are
the Lax-Friedrichs method, corresponding to Qn

i+1/2 = ∆x
∆t
I, and the modified Lax-Friedrichs

method, corresponding to Qn
i+1/2 = γ∆x

∆t
I, where γ ∈ (0, 1] is the CFL number.

As we are considering explicit finite volume solvers, a CFL condition must be imposed to
compute the time step. If we consider some of these three methods then ∆t is computed by
imposing the following restriction:

∆t

∆x
max
i

(|Λn
j,i+1/2|, j = 1, 2) = γ, with γ ∈ (0, 1]. (31)

For all numerical tests presented in Section 5, we set γ = 0.9.

In the following points we propose:

i) the correction term G({ζkj+1/2}
j=i+1
j=i−1) associated to the well-balancing;

ii) and a numerical treatment that is applied in the case of wet/dry fronts.

i) Well-balanced correction

We must describe the term G({ζkj+1/2}
j=i+1
j=i−1) in order to complete the numerical flux function

(30). The definition of G is related to the well-balanced properties of the numerical scheme. We
propose the following definition:

Gn({ζkj+1/2}
j=i+1
j=i−1) =

1

fz

 fΩ ∆x+ fz (bi+1 − bi) +
∆(ζ + δn ∂xV )ki+1/2

Hi+1/2

0

 , (32)

where ∆(ζ + a ∂xV )ki+1/2/∆x is an approximation of ∂x(ζ + δ ∂xV )k at xi+1/2.

Remark that at convergence of the augmented Lagrangian loop, (ζ+δn ∂xV ) can be approximated
by Hnµ, since at this point q ≈ ∂xV .

We propose the following definition of ∆(ζ + δn ∂xV )ki+1/2, based on a convex combination,
by using a flux limiter function, of a second order approximation and a first order one:

∆(ζ + δn ∂xV )ki+1/2 = D(dl, dc, dr, s−1, s0, s1, s2), (33)

with

dl = ζki−1/2 + δni−1/2

V k
i − V k

i−1

∆x
, dc = ζki+1/2 + δni+1/2

V k
i+1 − V k

i

∆x
,

dr = ζki+3/2 + δni+3/2

V k
i+2 − V k

i+1

∆x
, sj = Hn

i+j + bi+j, j = −1, 0, 1, 2.

The functionD/∆x is defined by a combination of a second order approximation of ∂x(ζ+δn ∂xV )
at x = xi+1/2 with a first order one, by means of a flux limiter function. We propose the following
definition:

D(dl, dc, dr, s−1, s0, s1, s2) = χ
dr − dl

2
+ (1− χ)∆d1,

with

∆d1 =


dc − dl if s0 < s1,

dr − dc if s0 > s1,

(dr − dl)/2 if s0 = s1.

13



Remark that one of the difficulties of the 2D problem is the definition of the flux limiter χ and a
proper definition of D(dl, dc, dr, s−1, s0, s1, s2) allowing to recover the second order well-balanced
properties. These will be treated in a forthcoming paper.

The term χ = χ(v(s−1, s0, s1, s2)) is a flux limiter function with v(s−1, s0, s1, s2) ∈ [0, 1]. We
propose to define

v = max(0,min(1, ṽ)), ṽ =



3(s0 − s−1)

s2 − s−1

, if s1 > s0,

3(s2 − s1)

s2 − s−1

, if s1 < s0,

1 if s1 = s0 or s2 = s−1,

and the following definition of the flux limiter function:

χ(v) = 1− (1− v1/4)4.

The definition of this limiter is driven by the fact that we want to put a stronger weight of the
second order approximation (dr−dl

2
) compared to the first order one (∆d1). This comes from the

general idea which consists in using, when possible, second order approximation and activating
the first order one, in critical situations.

ii) Wet/dry fronts

All the previous description need to be adapted under the presence of wet/dry fronts. We will
now describe this adaptation inspired by the work [10] and here extended to the situation where
the material can be fluid or plastic.

From the numerical point of view, we said that Hi is null when Hi < Hε. For the numerical
tests we set Hε = 5 · 10−3.

In some of the cases described below we impose no numerical diffusion in the discretization
of the equation in H and a local equilibrium of the pressure term. In practice this corresponds
to set the following definitions of ∆(ζ + δn ∂xV )ki+1/2 and σki+1/2:

• If Hi−1 ≤ Hε, Hi ≤ Hε, Hi+1 ≤ Hε or Hi+2 ≤ Hε and the material is rigid enough in the
following sense:

– for the AL algorithm, if

∣∣∣∣µni+1/2 + r
vi+1 − vi

∆x

∣∣∣∣ < τy
√

2;

– for the BM algorithm, if

∣∣∣∣∣θni+1/2 +
1

λni+1/2

vi+1 − vi
∆x

∣∣∣∣∣ < Hn
i+1/2τy

√
2;

then we set the following definitions of ∆(ζ + δn ∂xV )ki+1/2 and σki+1/2:

∆(ζ + δn ∂xV )ki+1/2 = −fzHn
i+1/2(bi+1 − bi −Hi +

fΩ

fz
∆x),

σki+1/2 =

 fΩ xi + fzbi +
1

2
fzHi

ζki−1/2

 .
(34)

14



• If Hi ≤ Hε or Hi+1 ≤ Hε and if

– for the AL algorithm, if

∣∣∣∣µni+1/2 + r
vi+1 − vi

∆x

∣∣∣∣ ≥ τy
√

2;

– for the BM algorithm, if

∣∣∣∣∣θni+1/2 +
1

λni+1/2

vi+1 − vi
∆x

∣∣∣∣∣ ≥ Hn
i+1/2τy

√
2;

we proceed as follows. Let us suppose that Hi > Hε and Hi+1 ≤ Hε. Then, if

bi +Hi < bi+1 (35)

we set the definition (34). Moreover, if Vi+1 < 0, then we set Vi+1 = 0 in the computation
of the numerical flux for the evolution of the height of the material. If Hi ≤ Hε, Hi+1 > Hε,
then we apply the same treatment symmetrically.

Let us remark that in this approach, we test whether the material is fluid or rigid. For
example, let us consider the case τy = 0, i.e. the fluid regime. In this case, it is important
to check the relative position of the free surface at x = xi and x = xi+1, which coincides with
the wet/dry numerical treatment proposed in [10] for the shallow water equations. On the
contrary, when the material is rigid enough, it is not important to check the relative position of
the free surface. Because in this case, the rigidity naturally implies that the solution is at rest
independently of the relative position of the free surface.

4.1 The global coupled scheme

In this section, we present the global scheme obtained by gathering the aforementioned dis-
cretization procedures. It allows to solve the evolution problem (13)-(14). For sake of brevity,
we detail here the scheme in the case of the BM algorithm. For completeness, the case of the
AL is completely described in Appendix D. Of note, from the implementation viewpoint, both
methods share a lot in common and these similarities are embedded in a general framework (see
(38)-(42) in the following).

Global numerical scheme for (13)-(14) – Bermúdez-Moreno method

• Initialization at time t = 0 for n = 0: V n, Hn, θn are given by the initial conditions.

• Time loop: For n = 0, ..., nmax.

– Resolution of the problem on V k+1

{V n
i }i, {Hn

i }i and {θni+1/2}i are known.
Compute quantities which are invariant in the following loop:
Bermúdez-Moreno loop:

[Step 0] Initialize for k = 0: for all i, V k
i = V n

i and θki+1/2 = θni+1/2.

[Step 1] Update {V k+1
i }i by solving the linear system defined by the second com-

ponent of (28). See details in (38)-(42), with δni+1/2 and ζki+1/2 given by (27)-(b)

and (26)-(b).

[Step 2] Compute the auxiliary variable {ξk+1
i+1/2}i:

ξk+1
i+1/2 =

V k
i+1 − V k

i

∆x
+ λθki+1/2. (36)
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[Step 3] Update {θk+1
i+1/2}i via

θk+1
i+1/2 =



−ω ξk+1
i+1/2 + τy

√
2Hn

i+1/2

1− λω
if ξk+1

i+1/2 > λτy
√

2Hn
i+1/2,

ξk+1
i+1/2

λ
if ξk+1

i+1/2 ∈ [−λτy
√

2Hn
i+1/2, λ τy

√
2Hn

i+1/2],

−ω ξk+1
i+1/2 − τy

√
2Hn

i+1/2

1− λω
if ξk+1

i+1/2 < −λτy
√

2Hn
i+1/2.

(37)

[Step 4] Set: for all i, V k
i = V k+1

i , θki+1/2 = θk+1
i+1/2 and return to Step 1.

[Step 5] At convergence, when condition (20) is verified, set V n+1
i = V k+1

i and
θn+1
i+1/2 = θk+1

i+1/2 ∀i.

– Resolution of the problem on Hk+1

Compute Hn+1 = Hk+1 with the finite volume method defined by the first component
of (28), defined in terms of the most recent Lagrange multiplier {θn+1

i+1/2}i and taking

into account the wet/dry treatment presented before where needed.

It is worth giving some more details about [Step 1]. Remark that the second component of (28)
defines a linear system where the unknowns are {V k+1

i }i. If we denote V k+1 the vector whose
ith component is V k+1

i , the aforementioned linear system can be written as

AnV k+1 = bn,k, (38)

where An is a matrix defined in terms of {Hn
i }i; consequently, An does not change during the

duality loop (in k). As a matter of fact, An is a tridiagonal matrix, whose line i is defined by
the following entries:

An
i,i−1 =

−4η

∆x2
Hn
i−1/2 −

δni−1/2

∆x2
, An

i,i+1 =
−4η

∆x2
Hn
i+1/2 −

δni+1/2

∆x2
,

An
i,i =

Hn
i

∆t
+

4η

∆x2
(Hn

i−1/2 +Hn
i+1/2) +

1

∆x2
(δni−1/2 + δni+1/2) + β.

On the contrary, the right hand side of the linear system (38) changes for each iteration in k.
The ith component of bn,k is decomposed as

bn,ki = b
n,(1)
i + b

n,k,(2)
i + b

n,k,(3)
i , (39)

where

b
n,(1)
i = Hn

i

(
fΩ + fz

bi+1 − bi−1

2 ∆x

)
, (40)

b
n,k,(2)
i =

ζki+1/2 − ζki−1/2

∆x
, (41)

b
n,k,(3)
i = Hn

i

[φ(W n
i−1,W

n
i , {ζkj+1/2}

j=i+1
j=i−1)]2 − [φ(W n

i ,W
n
i+1, {ζkj+1/2}

j=i+1
j=i−1)]2

∆x
. (42)

Note that all of this is applied only where 1
2
(Hn

i−1/2 +Hn
i+1/2) ≥ Hε. Indeed, on the contrary,

we set An
i,i−1 = An

i,i+1 = 0, An
i,i = 1, bn,ki = 0.
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4.2 Well-balanced properties

In this section, we study the well-balanced properties of the proposed numerical scheme. Con-
cretely, we are interested in studying stationary solutions defined by a constant free surface or
by a free surface parallel to the reference slope with variable bottom, for rigid enough materials
(see Figure 2).

H(x)

b(x)

z

x
α

Figure 2: Stationary solution with free surface parallel to the reference plane.

The first type of stationary solution corresponds to a material at rest with zero velocity and
a constant free surface. It is a stationary solution of the system independently of the rigidity
of the material. For the second type, we consider a stationary solution with zero velocity and
verifying b(x) +H(x) = C, ∀x ∈ [0, L], where C is a constant value. Let us study the conditions
on such a solution. One should have∫ L

0

τy
√

2H|∂xψ|dx ≥
∫ L

0

(
H(fΩ + fz∂xb)ψ − fz

H2

2
∂xψ

)
dx, ∀ψ.

Taking into account that ∂xb = −∂xH and integrating by parts, this condition is equivalent to∫ L

0

τy
√

2H|∂xψ|dx ≥
∫ L

0

HfΩψdx =

∫ L

0

(
− fΩ

∫ x

0

H(s)ds+ c

)
∂xψ dx.

We can set c = fΩ

∫ L/2
0

H(x)dx. Then, this condition is verified if∣∣∣∣fΩ

∫ x

L/2

H(s)ds

∣∣∣∣ ≤ τy
√

2H(x) ∀x ∈ [0, L]. (43)

We can also obtain the analytic value to which (i) µ converges in the case of the augmented
Lagrangian method, and (ii) θ for the Bermúdez-Moreno method.

For the AL or the BM algorithms, in the case of a stationary solution with zero velocity, we
have the following equation:

∂x

(
fΩ

2
H2

)
= H(fΩ + fz∂xb) + ∂xζ,

with

ζ(x) =


H(x)µ(x) in the case of AL,

θ(x) in the case of BM.

(44)

Taking into account that the stationary solution that we consider in this test verifies b+H =
C, this equation simplifies to the following one:

−HfΩ = ∂x(ζ).
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Then,

ζ = −fΩ

∫ x

L/2

H(x)dx. (45)

We have the following result for the proposed algorithms:

Theorem 1 The AL and the BM algorithms preserve exactly the following two types of station-
ary solutions:

i) Material at rest with free surface parallel to the reference slope:

V = 0, b+H = constant,

for any given bottom function b(x), if the material is rigid enough, i.e. if τy is such that
the following discrete version of (43) holds:∣∣∣∣∣∣fΩ∆x

( i∑
j=1

H0
j −

[M/2]∑
j=1

H0
j

)∣∣∣∣∣∣ ≤ τy
√

2H0
i+1/2 ∀ i. (46)

ii) Material at rest with constant free surface:

V = 0, fΩ x+ fz(H + b) = constant,

if {ζi+1/2}Ni=1 is initialized as follows:

ζ1
i+1/2 = −∆x

( i∑
j=1

H0
j −

[M/2]∑
j=1

H0
j

)(
fΩ + fz

H0
i+1 + bi+1 − (H0

i + bi)

∆x

)
, (47)

where [M/2] is the integer part of M/2, being M the number of points of the mesh grid. �

The proof is given in Appendix E.

5 Numerical comparison of both approaches

In this section, we present numerical tests to illustrate the good properties of the schemes pre-
sented above.

A first natural test is to check the order of convergence in space on a non trivial stationary
problem, in order to test the accuracy of the duality methods for variational inequalities (thus
in absence of well-balancing and wet/dry front issues). It appears that the viscoplastic model
(16)–(17) degenerates to the well-known Poiseuille-Bingham flow for which an analytic solution
is known. All the details of this test are given in Appendix F. The conclusions are that both
the augmented Lagrangian and the Bermúdez-Moreno methods are at least of order two (in L2-
norm) in space for the velocity of this non-zero stationary solution. In terms of computational
cost, for this specific test and a fixed duality parameter (either r or ω), it is shown that the
Bermúdez-Moreno is approximately 20% cheaper than the augmented Lagrangian .

We then focus on the main novelty of this paper, i.e. the well-balanced properties of the
schemes.
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5.1 Well-balanced tests

Test 5.1.a: Analytical stationary solution

In this test we study the error and convergence of the numerical results for the stationary solution
studied in Subsection 4.2. Concretely, we consider a domain of length L = 10 and a solution
defined by

V = 0, H(x) = 2− b(x), b(x) = cos(πx),

0 1 2 3 4 5 6 7 8 9 10

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 
Free surface
Bottom
!−plane

Figure 3: Test 5.1.a. Free surface, bottom and Ω-plane.

as shown in Figure 3. This is a stationary solution of the system if the material is rigid enough.
For this definition of H(x) we can compute condition (43) exactly; we obtain that it is a sta-
tionary solution of the system if τy verifies

τy ≥ max
x∈[0,10]

∣∣∣∣g sinα

(
2(5− x)− sin(πx)

π

)∣∣∣∣
√

2(2− cos(πx))
.

For this test we set α = 10◦, so τy must be approximately greater than 17.03.
We compare the numerical results with the analytical ones corresponding to H(x) and the

multipliers µ and θ. By (44) and (45) we have that

µ(x) =
2(x− 5)− sin(πx)/π

2− cos(πx)
g sinα, θ(x) =

(
2(x− 5)− sin(πx)

π

)
g sinα.

Following Theorem 1, if we initialize the multipliers with (47) then the stationary solution is
exactly preserved, up to machine precision. Then, we initialize both multipliers to zero in order
to study their convergence to the analytical values.

In Figure 4, we present the convergence of µ and θ to the analytical solution when both
quantities are initialized to zero, for 100 computational cells. In Figure 5, we study the numerical
order of convergence in space, through a mesh refinement. For µ and θ first order is reached by
computing the error in the L∞ norm, and second order for the L2 error. For the BM algorithm
the parameter ω was set to ωopt (equation (69)), while for the AL method we have set r = 10.

In Figure 6, we present a comparison of the number of iterations kend necessary to converge in
the fixed point algorithm of the Augmented Lagrangian and the Bermúdez-Moreno methods, for
the first iteration in time. We also picture a vertical line corresponding to the optimal parameter
for the BM method.

For the BM method we have proposed two different ways to define the parameter ω, as a
constant value in space (but variable in time), or depending on the thickness of the material

19



! " # $ % & ' ( ) * "!
!#!

!"&

!"!

!&

!

&

"!

"&

#!

+

+

,-./0123./

4567823./

(a) µ(x)

! " # $ % & ' ( ) * "!
!#!

!"&

!"!

!&

!

&

"!

"&

#!

+

+

,-./0123./

4567823./

(b) θ(x)

Figure 4: Test 5.1.a. Convergence of µ and θ to the analytical values

layer: ω = Hn(x)$, being $ a constant value in space. Then, we denote by BM(ω) the
results corresponding to the choice of ω as a constant parameter, and by BM($) the results
corresponding to ω = Hn(x)$.

For BM(ω), the optimal parameter wopt is defined by (69), equals to 20.5 approximately
for this test. While for BM($) the optimal parameter $opt is defined by (23), equals to 10.3
approximately for this test. Note that both, ωopt and $opt are near to the optimal value obtained
numerically, which are respectively 26 and 21.

The results presented in Figure 6 correspond to ∆x = 0.1 and {ω, r, $} ∈ [1, 300], concretely
a partition with subintervals of length equals to 5. Let us remark that for ω = r = $ = 1 the
BM($) is the one that need a smaller number of iterations, after the BM(ω) and the one that
needs a greater number of iterations is the AL. This behavior is also observed for the values of
the parameters smaller than the optimal one. When they are greater than the optimal parameter
both versions of the BM algorithm present a similar number of iterations. Nevertheless, for the
augmented Lagrangian method we observe that the number of iterations decreases when the
value of r increases. This is a phenomena that has been yet observed in the case of augmented
Lagrangian method for other applications. Nevertheless, from a practical point of view, the
choice of bigger values of r, when applied to other numerical tests, can imply some problems of
stability and ill-conditioning problems in the linear system related to the fixed point algorithm
(see [18]).

Finally, we study the influence of the angle on the numerical solution. Again we initialize
the multipliers to zero and we compare the errors for V (x) and H(x) corresponding to α = 10◦

and α = 45◦ through a mesh refinement, see Tables 1 and 2. We observe that errors are almost
independent of the angle and the grid.

Test 5.1.b: Stationary solution on a random bottom

In this test, we consider a random bottom and wet/dry fronts. We also consider two initial
conditions to set the position of the free surface: horizontal or parallel to tan(α)x (See Figure
7). Concretely, we set the following two definitions of the height of the material layer:

H(x) = max(zref,1 − b(x), 0), or H(x) = max

(
zref,2

cos(α)
− b(x)− tan(α)x, 0

)
.

where the bottom function has been defined as b(x) = r1(x)(1+ r2(x))er3(x), where rj(x) ∈ [0, 1],
j = 1, 2, 3, are three random numbers for each value of x (See Figure 7). zref,1 corresponds to
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Figure 5: Test 5.1.a. Order of convergence of θ and µ for the BM and AL algorithms. Black
continuous lines show first and second order of convergence; blue line with + is the computed
error.
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Table 1: Test 5.1.a. Errors for V (x) and H(x) for BM.

α Cells V L∞ Error V L2 Error H L∞ Error H L2 Error

10◦ 20 2.703E-09 4.271E-10 6.471E-10 8.643E-11
40 1.948E-09 2.196E-10 5.950E-10 5.082E-11
80 9.234E-10 7.323E-11 4.465E-10 2.588E-11
160 1.704E-10 9.552E-12 2.482E-10 1.008E-11
320 3.103E-10 1.222E-11 1.254E-10 3.591E-12
640 5.229E-10 1.456E-11 1.857E-11 3.740E-13
1280 1.974E-10 3.884E-12 2.168E-11 3.106E-13
2560 2.449E-10 3.406E-12 4.742E-12 4.786E-14

45◦ 20 2.917E-09 4.554E-10 7.021E-10 9.259E-11
40 1.898E-09 2.131E-10 6.851E-10 5.823E-11
80 1.175E-09 9.311E-11 4.553E-10 2.637E-11
160 4.501E-10 2.516E-11 3.043E-10 1.236E-11
320 9.862E-11 3.877E-12 1.567E-10 4.487E-12
640 3.981E-10 1.108E-11 5.827E-11 1.178E-12
1280 3.564E-10 7.011E-12 8.732E-12 1.256E-13
2560 6.904E-11 9.600E-13 1.571E-11 1.589E-13

Table 2: Test 5.1.a. Errors for V (x) and H(x) for AL (r = 10).

α Cells V L∞ Error V L2 Error H L∞ Error H L2 Error

10◦ 20 3.593E-10 5.038E-11 3.300E-09 4.946E-10
40 4.887E-10 4.150E-11 2.184E-09 2.396E-10
80 4.106E-10 2.401E-11 1.268E-09 9.998E-11
160 2.997E-10 1.218E-11 7.103E-10 3.964E-11
320 1.813E-10 5.172E-12 1.792E-10 7.054E-12
640 8.896E-11 1.789E-12 1.815E-10 5.037E-12
1280 2.219E-11 3.147E-13 3.449E-10 6.764E-12
2560 1.273E-11 1.279E-13 2.105E-10 2.919E-12

45◦ 20 3.226E-10 4.666E-11 3.328E-09 4.975E-10
40 4.637E-10 3.997E-11 2.148E-09 2.352E-10
80 4.064E-10 2.371E-11 1.315E-09 1.032E-10
160 3.047E-10 1.238E-11 7.871E-10 4.389E-11
320 1.946E-10 5.549E-12 2.903E-10 1.142E-11
640 1.038E-10 2.087E-12 8.149E-11 2.259E-12
1280 3.619E-11 5.137E-13 2.924E-10 5.733E-12
2560 6.308E-12 6.349E-14 2.538E-10 3.518E-12

the height of the material on the Ω-plane, while zref,2 corresponds to the level of the horizontal
free surface. For example, Figure 7 is obtained with zref,1 = 2, zref,2 = 3. With the purpose
to consider the case with and without wet/dry fronts, we set two different values of zref,1 and
zref,2, concretely:

zref,1 = 2, zref,1 = 5 and zref,2 = 3, zref,2 = 5.8.
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The numerical results presented in this test correspond to α = 10◦. Analogously to the previous
tests, we obtain similar results if we increase the angle. For this test we set ∆x = 0.1.

The multipliers µ and θ are initialized to zero. In Figure 8 we present the convergence of
µ and θ to (47). This theoretical value has been used in Theorem 1 to prove that, with this
initialization of the multipliers, the proposed numerical scheme preserves exactly both types of
stationary solutions. In Tables 3 and 4 are presented the errors for V (x) and H(x), when µ and
θ are initialized to zero.
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Figure 7: Test 5.1.a. Free surface, bottom and Ω-plane.
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Figure 8: Test 5.1.b. Initial condition: H(x) = zref,1 − b(x) with zref,1 = 5. Convergence of µ
and θ to the theoretical value (47).

Table 3: Test 5.1.a. Initial condition: H(x) = max(zref,1 − b(x), 0). Errors for V (x) and H(x).

zref,1 {ζ1
i+1/2}i V L∞ Error V L2 Error H L∞ Error H L2 Error

2 BM(ωopt) 1.164E-11 1.536E-13 1.257E-08 1.772E-10
BM ($opt) 3.672E-09 5.301E-11 1.210E-08 2.780E-10

AL (r = 10) 4.978E-10 1.117E-11 8.800E-10 1.103E-11

5 BM(ωopt) 3.109E-10 2.191E-11 8.731E-10 2.780E-11
BM($opt) 3.414E-10 2.415E-11 8.733E-10 2.811E-11

AL(r = 10) 8.847E-10 6.203E-11 9.557E-10 2.962E-11
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Table 4: Test 5.1.a. Initial condition: H(x) = max
(
zref,2
cos(α)

− b(x)− tan(α)x, 0
)

. Errors for V (x)

and H(x).

zref,2 Method V L∞ Error V L2 Error H L∞ Error H L2 Error

3 BM(ωopt) 6.316E-17 1.078E-18 1.662E-11 3.325E-13
BM ($opt) 6.848E-17 1.695E-18 3.317E-10 6.634E-12

AL (r = 10) 3.933E-17 1.430E-18 2.220E-16 4.680E-18

5.8 BM(ωopt) 1.951E-16 1.094E-17 1.776E-15 4.721E-17
BM($opt) 1.700E-16 1.004E-17 1.332E-15 4.569E-17

AL(r = 10) 7.430E-17 3.760E-18 8.882E-16 3.320E-17

5.2 Avalanche with obstacle

For this test we consider the case of an avalanche on an inclined plane with an obstacle. Con-
cretely, we set α = 30◦ and

b(x) = 14e−x
2/1.2 + 2e−(x−5)4/0.1 + 4e−(x−10)2/0.8.

As initial condition, we set V = 0 and (see Figure 9),

H(x) =

{
4− b(x) if x ∈ [7, 9],

0 otherwise.

We study the influence of the rigidity coefficient on the evolution of the avalanche and the
final solution at rest. The length of the domain is L = 10.

In Figures 10, 11, 12 the evolution of the avalanche for τy ∈ {1, 4, 8, 12} is presented at times
t = 1, t = 1.5, and t = 2. In Figure 13, we plot the stationary solution reached for each value of
τy. In these figures, we only present the results obtained with the Bermúdez-Moreno method. Of
note, the results are exactly the same with augmented Lagrangian method, so we do not present
them for sake of brevity. We have considered 200 computational cells. On the left column of
these figures, we present the evolution of the free surface. Right column corresponds to the
velocity. We can remark zones with evidence of rigidity: we can distinguish clearly some zones
with constant velocity, that is, zones where the material moves as a block. We can remark two
difficulties of this test related with the wet/dry front. First, in the evolution of the avalanche,
the obstacle in the middle of the domain splits the avalanche in two parts. Second, the part
of the avalanche arriving at the far left of the domain goes up on a high bed which limits its
movement. This leads to a back and forth motion that eventually ends to a stationary state
when all the material becomes rigid. This back and forth motion goes faster to stationary state
when τy increases. But the associated free surface has a more complex shape, which is also due
to the complex, non linear, interaction of the material when it passes over the obstacle inducing
the splitting of the material in the two basins.

For τy = 1 we can observe in Figure 13(a) that the stationary solution is close to the one
of a fluid, that is, an horizontal free surface. The bump in the middle of the domain produces
that the solution is divided in two parts and two different levels of the free surface. In Figures
13(c)-13(g) we can observe the influence of the rigidity of the material on the final stationary
solution. Let us also remark that the computed velocity at the stationary solution are in all
cases of order 10−9.

In Figure 14 a comparison of the free surface at rest with a mesh refinement is presented.
The results correspond to 200, 400, 800 and 1600 computational cells. For all cases of τy we
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Figure 9: Test 5.2. Free surface: initial condition.

can remark that the position and form of both parts in which is divided the avalanche by the
obstacle in the middle of the domain agree with the mesh refinement. When τy increases we can
observe that it is more difficult to capture exactly the shape of the free surface, although the
averaged form is well captured in any case.

In Figure 15 we present the computational cost until t = 1 (sum of the number of iterations
in the duality loops at each time step) with respect to the duality parameter. We consider the
four cases, τy ∈ {1, 4, 8, 12}, and {ω, r, $} ∈ [0.1, 10]. Let us remark that for each value of
{ω, r, $} ∈ [0.1, 10], we set it invariant for all time steps. Nevertheless, the computation of
the theoretical optimal value of ω and $, ωopt and $opt, defined by (69) and (23), respectively,
are variable in time. In order to compare the computational cost of BM algorithms with this
optimal choice of the parameters, in Figure 15 we mark two horizontal lines at the level of the
sum of the number of iterations in the duality loops at each time step obtained with BM(ωopt)
and BM($opt).

Let us remark that BM(ωopt) is slightly better than BM($opt) for the case τy = 1, although
both are close. Nevertheless, for τy ∈ {4, 8, 12} there is a great difference of efficiency, being
BM($opt) close to the optimal computational cost in all situations. Finally, we remark that this
difference is produced by the effect of the wet/dry fronts. In the case of numerical tests without
wet/dry fronts, the behavior of both versions of BM method are very similar.

6 Conclusions

In this work, we proposed a discretization of a shallow Bingham model by a well-balanced
finite volume method which is combined with duality techniques. Augmented Lagrangian and
Bermúdez-Moreno algorithms have been considered to discretize the momentum equations. For
the mass conservation equation we proposed a well-balanced correction which depends on the
definition of the multiplier associated to the duality technique. This correction includes the
use of a limiter that has been specially designed to recover the well-balanced properties of the
numerical method. We prove that the proposed methods are able to preserve exactly two types
of stationary solutions. A treatment of wet/dry fronts has also been proposed. It takes into
account the rigidity of the material. For the case of the B.M. algorithm the definition of the
optimal value of the parameter ω has been deduced. We also present two different versions of
B.M. algorithm, by considering that ω can be variable in space. In the numerical tests section,
we have first compared the algorithms for an analytical solution for a simplified model. Second,
we have compared with the analytical solution of the multipliers for the case of a stationary
solution. For the case of a random bottom a comparison of the multiplier with the theoretical
one, which is proposed in Theorem 1, is also presented. Finally, we consider a test corresponding

25



−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

14

(a) τy = 1. Free surface.

0 1 2 3 4 5 6 7 8 9 10
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(b) τy = 1. Velocity.

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

14

(c) τy = 4. Free surface.

0 1 2 3 4 5 6 7 8 9 10
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(d) τy = 4. Velocity.

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

14

(e) τy = 8. Free surface.

0 1 2 3 4 5 6 7 8 9 10
−8

−7

−6

−5

−4

−3

−2

−1

0

(f) τy = 8. Velocity.

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

14

(g) τy = 12. Free surface.

0 1 2 3 4 5 6 7 8 9 10
−7

−6

−5

−4

−3

−2

−1

0

(h) τy = 12. Velocity.

Figure 10: Test 5.2. Free surface and velocity at t = 1 s. for τy ∈ {1, 4, 8, 12}.
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Figure 11: Test 5.2. Free surface and velocity at t = 1.5 s. for τy ∈ {1, 4, 8, 12}.
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Figure 12: Test 5.2. Free surface and velocity at t = 2 s. for τy ∈ {1, 4, 8, 12}.
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Figure 13: Test 5.2. Free surface and velocity at rest at t = 24 s. for τy ∈ {1, 4, 8, 12}.
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Figure 14: Test 5.2. Mesh refinement. Comparison of the free surface at rest (zooms) for 200,
400, 800 and 1600 computational cells.
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Figure 15: Test 5.2. Total number of iterations until t = 1 for τy ∈ {1, 4, 8, 12}, {ω, r, $} ∈
[0.1, 10]. Read dashed line: total number of iterations for BM($opt). Blue dashed-dot line: total
number of iteration for BM(ω).
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to an avalanche with an obstacle. This is a difficult test from a numerical point of view since
it involves a complex geometry and wet/dry fronts together with strong viscoplasticity effects.
In all these tests, we numerically show that computed velocities reach the stationary state. The
proposed B.M.($) algorithm, with ω variable in space, is in general the more efficient. The
results corresponding to the proposed optimal choice of its parameter present a good agreement
with the optimal computational cost.
As mentioned in the text, we will describe how to extend such schemes for 2D domains in a
forthcoming article.
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[5] A. Bermúdez and M. E. Vázquez Cendón. Upwind methods for hyperbolic conservation
laws with source terms. Comput. Fluids, 23(8):1049–1071, 1994.

[6] D. Boffi. Finite element approximation of eigenvalue problems. Acta Numer., 19:1–120,
2010.

[7] F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws
and well-balanced schemes for sources. Birkhäuser, 2004.
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[9] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert. North-Holland Publishing Co., 1973.

31
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Appendix

A Derivation of the AL approach

Let us describe an augmented Lagrangian method designed to solve problem (17) for V n+1,
supposing that (Hn, V n) are known. We refer to Glowinski and coworkers for details on this
duality method à la Uzawa: the book [21] and the article [22] for a recent review in the context
of Bingham flows.

The variational inequality (17) can be rewritten as a minimization problem:

J n(V n+1) = min
V ∈V

J n(V ), (48)

where J n(V ) = F n(B(V )) +Gn(V ), with V = H1
0 ([0, L]), H = L2([0, L]),

B : V → H, B(V ) = ∂xV, F n : H → R, F (λ) =

∫ L

0

τy
√

2Hn|λ|dx,

and Gn : V → R,

Gn(V ) =

∫ L

0

Hn

(
V 2/2− V nV

∆t
+

1

2
∂x((V

n)2)V

)
dx+

∫ L

0

β
V 2

2
dx

+

∫ L

0

4ηHn1

2
(∂xV )2dx−

∫ L

0

(fΩ + fz ∂xb) H
nV +

∫ L

0

fz
(Hn)2

2
∂xV dx.

As J n(V ) is a non-differentiable function, we consider the Lagrangian

Ln : V ×H×H → R,

Ln(V, q, µ) = F n(q) +Gn(V ) +

∫ L

0

Hnµ(B(V )− q)dx,

and the augmented Lagrangian function, for a given positive value r ∈ R:

Lnr (V, q, µ) = Ln(V, q, µ) +
r

2

∫ L

0

Hn(B(V )− q)2dx. (49)

Then, we search for the saddle point of Lnr (V, q, µ) over V × H × H. Indeed, if we denote by
(V ∗, q∗, µ∗) this saddle point, then V ∗ is the solution of the minimization problem (48) (cf. [21]).
To do so, we consider the algorithm proposed in [21], based on Uzawa’s algorithm, to approxi-
mate the saddle point of (49).

Augmented Lagrangian algorithm

• Initialization: Suppose that V n, Hn and µn are known. For k = 0, we set V k = V n and
µk = µn. Initialize r.

• Iterate:

– Find qk+1 ∈ H solution of

Lnr (V k, qk+1, µk) ≤ Lnr (V k, q, µk), ∀q ∈ H.
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In other words, qk+1 ∈ H is the solution of following minimization problem:

min
q∈H

(
Hnr

2
q2 +Hnτy

√
2 |q| −Hn(µk + rB(V k))q

)
. (50)

The solution of this problem is (denoting the sign function as “sgn”):

qk+1 =


0 if |µk + rB(V k)| < τy,

1

r

(
(µk + rB(V k))− τy

√
2 sgn(µk + rB(V k))

)
otherwise.

(51)

– Find V k+1 ∈ V solution of

Lnr (V k+1, qk+1, µk) ≤ Lnr (V, qk+1, µk), ∀V ∈ V .

Thus, V k+1 is the solution of a minimization problem, which can be characterized by
differentiating Lnr (V, q, µ) with respect to V . From (49), we deduce that V k+1 is the
solution of the following linear problem (whose resolution is detailed in Section 4):

Hn

(
V k+1 − V n

∆t

)
+ βV k+1 − ∂x

(
4ηHn∂x(V

k+1)
)
− ∂x

(
rHn∂x(V

k+1)
)

= (fΩ + fz ∂xb) H
n + ∂x

(
fz

(Hn)2

2

)
− Hn

2
∂x((V

n)2) + ∂x(H
n(µk − rqk+1)).(52)

– Update the Lagrange multiplier via

µk+1 = µk + r(∂xV
k+1 − qk+1). (53)

– Check convergence (see below) and update: V k = V k+1, µk = µk+1, k 7→ k + 1 and
go to the next iteration...

• ... until convergence is reached:

‖µk+1 − µk‖
‖µk‖

≤ tol. (54)

At convergence, we get the value of V n+1 by setting V n+1 = V k+1 (in the numerical tests pre-
sented in this paper, we set tol = 10−5). It is shown in [21] that this algorithm converges to the
saddle point of (49).

Of note, we did not describe the discretization in space yet. As we said previously, we want
to adopt a finite volume approach. Consequently, it is worth realizing that the underlying global
problem coupling (16) and (17) involves the following system (we use a slight change of notation
which will be useful in the following: Hn+1 is denoted as Hk+1; in spite of this choice, note again
that Hk+1 is not involved in the augmented Lagrangian algorithm and, so, does not change in
this loop):

(P )n,k



Hk+1 −Hn

∆t
+ ∂x(H

nV n) = 0,

Hn

(
V k+1 − V n

∆t

)
+ βV k+1 − ∂x

(
4ηHn∂x(V

k+1)
)
− ∂x

(
rHn∂x(V

k+1)
)

= (fΩ + fz ∂xb) H
n + ∂x

(
(Hn)2fz

2

)
− Hn

2
∂x((V

n)2) + ∂x(H
n(µk − rqk+1)).

(55)
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Consequently, even if there is a decoupling of both problems in terms of the time discretiza-
tion and the augmented Lagrangian algorithm, it appears that to obtain a global well-balanced
scheme, there must be a coupling between the mass and momentum equations induced by the
source terms (involving topography and the Lagrange multiplier). For shallow water type sys-
tems with source terms, this has been extensively studied in the literature. In Section 4, we
precisely describe the aforementioned coupling for the present problem.

The natural follow-up of this appendix is Section 3.1.

B Derivation of the BM method

In this section, the solution of the velocity problem (17) is approached by means of the duality
algorithm introduced in [4]. We shall focus on the application of the method to our particular
case and refer to [4], [30], [31] and [19] for further details.

Define V = H1
0 ([0, L]) and let 〈·, ·〉 be the duality pairing between V and its dual space

V ′ = H−1([0, L]). The variational inequality (17) can be rewritten as: Find V ∈ V such that

〈A(V ),Ψ− V 〉+ j(Ψ)− j(V ) ≥ 〈L,Ψ− V 〉 (56)

holds for every Ψ ∈ V . Here, A : V → V ′ denotes the linear operator

〈A(V ),Ψ〉 =

∫ L

0

[(
Hn

∆t
+ β

)
V − ∂x(4ηHn∂xV )

]
Ψdx, Ψ ∈ V .

Throughout this section it will be assumed that there exists a constant Hn
min such that Hn(x) ≥

Hn
min > 0. Then the operator A is coercive with constant

γ = min

(
Hn

min

∆t
+ β, 4ηHn

min

)
> 0. (57)

The functional j : V → R is defined by

j(V ) =

∫ L

0

Φ(x,B(V )(x))dx,

where Φ: [0, L] × R → R is given by Φ(x, z) = τy
√

2Hn(x)|z|, and B : V → H is the derivative
operator B(V ) = ∂xV , where H = L2([0, L]) with the usual scalar product (·, ·)L2 and norm
‖ · ‖L2 . Finally, L ∈ V ′ represents the functional

L = HnV
n

∆t
− Hn

2
∂x
(
(V n)2

)
+Hn(fΩ + fz∂xb) +

1

2
∂x((H

n)2fz).

Notice that j(V ) = T (B(V )), where T : H → R is given by

T (Z) =

∫ L

0

Φ(x, Z(x))dx.

Let ω > 0 be an arbitrary parameter and define Gω = ∂T −ωI, where the subdifferential ∂T
is the multivalued operator

∂T (Z) = {W ∈ H : T (Q)− T (Z) ≥ (W,Q− Z), ∀Q ∈ H}, Z ∈ H.
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As T is proper, convex and lower semicontinuous, its subdifferential turns out to be a maximal
monotone operator. Thus, if λ > 0 is such that λω < 1, the resolvent Jλ = (I + λGω)−1 is an
univalued operator defined on H. Moreover, if λω ≤ 1/2 the Yosida regularization of Gω,

Gω
λ =

I − Jωλ
λ

,

is a Lipschitz function with constant 1/λ (see [9]).
Observe that, due to the continuity of T , the subdifferentials of j and T are related as ([16])

∂j(V ) = B∗ (∂T (B(V ))) ,

where B∗ denotes the dual operator of B. Thus, problem (56) can be reformulated as follows:
Find V ∈ V and θ ∈ H such that{

A(V ) +B∗(ωB(V )) +B∗(θ) = L,

θ = Gω
λ(B(V ) + λθ).

(58)

As Gω
λ is a Lipschitz function, it makes then sense to define the fixed-point Bermúdez-Moreno

algorithm as follows: For k ≥ 0, θk being known, compute V k and θk+1 by solving{
A(V k) +B∗(ωB(V k)) +B∗(θk) = L,

θk+1 = Gω
λ(B(V k) + λθk).

(59)

As it was proved in [4], the sequence V k converges to the solution V due to the coerciveness of
the operator A. For questions regarding the convergence of the multipliers θk we refer the reader
to [30].

The key point in the definition of the BM algorithm (59) is the construction of the Yosida
regularization Gω

λ , that will be worked out in what follows. First of all, notice that ([16])

∂T (Z) = {W ∈ H : W (x) ∈ ∂Φ(x, Z(x)) a.e. x ∈ [0, L]}. (60)

Thus, a simple computation shows that ∂T (Z) is the set of elements W ∈ H that verify

W (x) ∈


{τy
√

2Hn(x)} if Z(x) > 0,

[−τy
√

2Hn(x), τy
√

2Hn(x)] if Z(x) = 0,

{−τy
√

2Hn(x)} if Z(x) < 0,

a.e. x ∈ [0, L]. After some algebra, we deduce the following expression, which is valid a.e.
x ∈ [0, L] for each Z ∈ H:

Gω
λ(Z)(x) =



−ωZ(x) + τy
√

2Hn(x)

1− λω
if Z(x) > λτy

√
2Hn(x),

Z(x)

λ
if Z(x) ∈ [−λτy

√
2Hn(x), λτy

√
2Hn(x)],

−ωZ(x)− τy
√

2Hn(x)

1− λω
if Z(x) < −λτy

√
2Hn(x).

(61)

The complete algorithm for solving (17) is then given in Section 3.1.1 of the main text.
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C Study of the BM optimal parameter

Given an uniform partition of [0, L] of size h, let Vh be the finite-dimensional subspace of V of
standard conforming P1 finite elements. Consider now the discrete versions of (58) and (59),
where the elements V and V k are assumed to belong to Vh instead of V (for the sake of clarity,
the dependence on h will not be explicitly stated). Combining both expressions, we get

〈A(V k − V ),Ψ〉+ ω (∂xV
k − ∂xV, ∂xΨ)L2 + (θk − θ, ∂xΨ)L2 = 0, ∀Ψ ∈ Vh, (62)

and also, using that Gω
λ is Lipschitz with constant 1/λ,

‖θk+1 − θ‖2
L2 = ‖Gω

λ(∂xV
k + λθk)−Gω

λ(∂xV + λθ)‖2
L2

≤ 1

λ2
‖∂xV k − ∂xV ‖2

L2 + ‖θk − θ‖2
L2 +

2

λ
(θk − θ, ∂xV k − ∂xV )L2 .

(63)

Taking Ψ = V k − V in (62), we deduce

〈A(V k − V ), V k − V 〉+ ω ‖∂xV k − ∂xV ‖2
L2 + (θk − θ, ∂xV k − ∂xV )L2 = 0,

so (63) can be written as

‖θk+1 − θ‖2
L2 ≤ ‖θk − θ‖2

L2 − 4ω〈A(V k − V ), V k − V 〉, (64)

taking into account that λω = 1/2.
Assume that γ1 and γ2 are positive constants (which may depend on h) verifying

γ1‖Ψ‖L2 ≤ ‖∂xΨ‖L2 ≤ γ2‖Ψ‖L2 , ∀Ψ ∈ Vh, (65)

and define Hn
max = ‖Hn‖∞. Then, from (62) and the definition of A, we have

(θk − θ, ∂xΨ)L2 = −〈A(V k − V ),Ψ〉 − ω (∂xV
k − ∂xV, ∂xΨ)L2

≤
(
Hn

max

∆t
+ β

)
‖V k − V ‖L2‖Ψ‖L2 + (4ηHn

max + ω)‖∂xV k − ∂xV ‖L2‖∂xΨ‖L2

≤
[(

Hn
max

∆t
+ β

)
γ−1

1 + (4ηHn
max + ω)γ2

]
‖V k − V ‖L2‖∂xΨ‖L2 , ∀Ψ ∈ Vh.

Taking now Ψ ∈ Vh such that ∂xΨ = θk − θ, we obtain from the above inequality

‖θk − θ‖L2 ≤
[(

Hn
max

∆t
+ β

)
γ−1

1 + (4ηHn
max + ω)γ2

]
‖V k − V ‖L2 . (66)

On the other hand, using the coerciveness of A, we have that

〈A(V k − V ), V k − V 〉 ≥ γ‖V k − V ‖2
V = γ(‖V k − V ‖2

L2 + ‖∂xV k − ∂xV ‖2
L2)

≥ γ(1 + γ2
1)‖V k − V ‖2

L2 ,
(67)

where the coercivity constant γ was given by (57).
Finally, combining (64), (66) and (67), we deduce the following inequality:

‖θk+1 − θ‖L2 ≤ L(ω)‖θk − θ‖L2 , (68)

where

L(ω) =

{
1− 4ωγ(1 + γ2

1)

[(
Hn

max

∆t
+ β

)
γ−1

1 + (4ηHn
max + ω)γ2

]−2}1/2

.

38



The optimal choice of the parameter ωopt will be that minimizing L(ω). An easy computation
shows that

ωopt =

(
Hn

max

∆t
+ β

)
1

γ1γ2

+ 4ηHn
max.

From a practical point of view, it is necessary to have good estimates of the constants γ1 and
γ2 appearing in (65). To this end, we consider the following spectral problem: Find 0 6= vh ∈ Vh
and µh ∈ R such that

(v′h, ϕ
′
h)L2 = µh(vh, ϕh)L2 , ∀ϕh ∈ Vh.

It is well-known ([6]) that, for uniform mesh size h, there exists an orthonormal basis of Vh
composed by eigenvectors {ϕ(1)

h , . . . , ϕ
(N)
h } associated to the eigenvalues 0 < µ

(1)
h ≤ · · · ≤ µ

(N)
h of

the spectral problem. Indeed, these eigenvalues have the following form:

µ
(j)
h =

6

h2

1− cos(jπh/L)

2 + cos(jπh/L)
, j = 1, . . . , N,

where N denotes the number of internal nodes. For arbitrary vh =
∑N

j=1 vjϕ
(j)
h we have

‖∂xvh‖2
L2 = (∂xvh, ∂xvh)L2 =

N∑
j=1

v2
j (∂xϕ

(j)
h , ∂xϕ

(j)
h )L2 =

N∑
j=1

v2
jµ

(j)
h (ϕ

(j)
h , ϕ

(j)
h )L2

{
≥ µ

(1)
h ‖vh‖2

L2 ,

≤ µ
(N)
h ‖vh‖2

L2 ,

so we deduce the inequalities√
µ

(1)
h ‖vh‖L2 ≤ ‖∂xvh‖L2 ≤

√
µ

(N)
h ‖vh‖L2 , ∀ vh ∈ Vh.

As noticed in [6], the following optimal estimate holds as h→ 0:

|µ(j) − µ(j)
h | = O(h2),

where µ(j) = (jπ/L)2. Therefore, we consider the approximations γ1 =
√
µ(1) = π/L and

γN =
√
µ(N) = Nπ/L.

Summarizing, a quasi-optimal choice of the parameter ω would be given by

ωopt(H
n
max) =

(
Hn

max

∆t
+ β

)
L2

Nπ2
+ 4ηHn

max. (69)

In the case of wet/dry fronts further adaptations can be made and are described in Section 3.1.3.

D The coupled scheme in the case of the AL

For this duality method the structure of the complete algorithm is very close to the BM one.
In particular, the linear problem verified by the speed in the duality loop ([Step 2] below) is
embedded in the general formulation (38)-(42).

Global numerical scheme for (13)-(14) – Augmented Lagrangian method

• Initialization at time t = 0 for n = 0: V n, Hn, µn are given by the initial conditions.

• Time loop: For n = 0, ..., nmax.

– Resolution of the problem on V k+1

{V n
i }i, {Hn

i }i and {µni+1/2}i are known.
Compute quantities which are invariant in the following loop:
Augmented Lagrangian loop:
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[Step 0] Initialize for k = 0: for all i, V k
i = V n

i and µki+1/2 = µni+1/2.

[Step 1] Update {qk+1
i+1/2}i by computing

qk+1
i+1/2 =

1

r

(
µki+1/2 + r

V k
i+1 − V k

i

∆x

)1− τy
√

2

|µki+1/2 + r
V k
i+1−V k

i

∆x
|


+

. (70)

In the case of a wet/dry front, if Hi ≥ Hε, Hi+1 < Hε and bi + Hi < bi+1 then
we set qk+1

i+1/2 = 0. Or if Hi < Hε, Hi+1 ≥ Hε and bi+1 + Hi+1 < bi, we also set

qk+1
i+1/2 = 0.

[Step 2] Update {V k+1
i }i by solving the linear system defined by the second com-

ponent of (28). See details at (38)-(42), with δni+1/2 and ζki+1/2 given by (27)-(a)

and (26)-(a).

[Step 3] Update {µk+1
i+1/2}i via

µk+1
i+1/2 = µki+1/2 + r

(
V k+1
i+1 − V k+1

i

∆x
− qk+1

i+1/2

)
. (71)

[Step 4] Set: for all i, V k
i = V k+1

i , µki+1/2 = µk+1
i+1/2 and return to Step 1.

[Step 5] At convergence, when condition (54) is verified, set V n+1
i = V k+1

i and
µn+1
i+1/2 = µk+1

i+1/2 ∀i.

– Resolution of the problem on Hk+1

Compute Hn+1 = Hk+1 with the finite volume method determined by the first com-
ponent of (28), defined in terms of the most recent Lagrange multiplier {µn+1

i+1/2}i and

taking into account the wet/dry treatment presented before where needed.

This can be compared to the Bermúdez-Moreno algorithm presented in Section 4.1.

E Proof of Theorem 1

Proof
It is enough to prove that if for a time t = tn we have Hn

i = H0
i and V n

i = 0, then Hn+1
i = Hn

i

and V n+1
i = 0, ∀ i = 1, . . . ,M .

i) First, let us prove that the numerical scheme preserves exactly the stationary solution defined
by V n

i = 0, bi +Hn
i = constant, where {Hn

i }i = {H0
i }i verifies (46).

i.a) First, let us prove that V n+1
i = 0, where V n+1

i = V kend
i , being kend the number of iterations

necessary to converge in the fixed point algorithm. If we prove that bn,1 = 0 (see equation (39)),
as {V 1

j }j is the solution of the linear system (38), it implies that V 1
i = 0. Moreover, if we prove

that ζ2
i+1/2 = ζ1

i+1/2 then we obtain that kend = 1 and V n+1
i = 0. Thus, let us prove that bn,1 = 0.

The components of the vector bn,1 = 0 are

bn,1i = b
n,(1)
i + b

n,1,(2)
i + b

n,1,(3)
i , i = 1, . . . ,M.

where b
n,(1)
i , b

n,1,(2)
i and b

n,1,(3)
i are defined by (40), (41) and (42), respectively.

Taking into account that ζ0
i+1/2 is defined by (47) and bi +H0

i = constant, we have that

b
n,1,(2)
i =

ζki+1/2 − ζki−1/2

∆x
= −H0

i fΩ.
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As V 0
i = 0 and b

n,1,(3)
i is defined in terms of the second component of numerical flux function

(30), we have

b
n,1,(3)
i = H0

i fz
H0
i+1 −H0

i−1

2 ∆x
.

Then, taking into account the definition of b
n,(1)
i (40) we obtain that

bn,1i =
H0
i fz

2∆x
(bi+1 +H0

i+1 − (bi−1 +H0
i−1)) = 0.

Thus, bn,1 = 0 and consequently V 1
i = 0, i = 1, . . . ,M . Let us now prove that ζ2

i+1/2 = ζ1
i+1/2.

ζ1
i+1/2 is defined by (47), and by (46) we have that |ζ1

i+1/2| ≤ τy
√

2H0
i+1/2. Then (see Subsection

4.1) for the AL algorithm we have that |µ1
j+1/2| ≤ τy

√
2. So, by (70) we have that q2

i+1/2 = 0 and

consequently, since V 1
j = 0 ∀j, by (71) we obtain that µ2

i+1/2 = µ1
i+1/2. For the BM algorithm

we have that θ1
i+1/2 ≤ τy

√
2H0

j+1/2; then, by (37) we have that θ2
j+1/2 = θ1

j+1/2. Therefore, we

deduce that ζ2
i+1/2 = ζ1

i+1/2.

Consequently, we obtain that V n+1
i = V n

i = 0.

i.b) Now, let us prove that Hn+1
i = Hn

i . From (28), and taking into account that V n
j = 0 for

j = i− 1, i, i+ 1, we have that

Hn+1
i = Hn

i +
1

2

∆t

∆x

(
α0,i+1/2(Hn

i+1 −Hn
i + [Gn({ζkj+1/2}

j=i+1
j=i−1]1)−

α0,i−1/2(Hn
i −Hn

i−1 + [Gn({ζkj−1/2}
j=i+1
j=i−1]1)

)
.

Then, it is enough to prove that

Hn
i+1 −Hn

i + [Gn({ζkj+1/2}
j=i+1
j=i−1]1 = 0, ∀i,

where

[Gn({ζkj+1/2}
j=i+1
j=i−1]1 =

1

fz

(
fΩ ∆x+ fz (bi+1 − bi) +

∆(ζ + δn ∂xV )ki+1/2

Hi+1/2

)
.

In this case, as bi +Hn
i is constant, the flux limiter used in the definition of ∆(ζ + δn ∂xV )ki+1/2

is equal to one. So, we obtain

∆(ζ + δn ∂xV )ki+1/2 =
1

2
(ζkendi+3/2 − ζ

kend
i−1/2).

By using that ζkendj+1/2 = ζ1
j+1/2 (see Section i.a) of the proof), for j = i − 1 and j = i + 1, and

(47), we obtain that
∆(ζ + δn ∂xV )ki+1/2 = −∆xHn

i+1/2fΩ.

As a consequence, [Gn({ζkj+1/2}
j=i+1
j=i−1]1 = bi+1 − bi and

Hn
i+1 −Hn

i + [Gn({ζkj+1/2}
j=i+1
j=i−1]1 = Hi+1 + bi+1 − (Hi + bi) = 0.

Then, Hn+1
i = Hn

i , what concludes the proof for case i).
ii) For the case of a the stationary solution with a constant free surface we suppose that

fΩ xi + fz(H
0
i + bi) = constant. (72)
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First, note that using (47) and (72) we have

ζ1
i+1/2 = −

( i∑
j=1

H0
j −

[M/2]∑
j=1

H0
j

)(
fΩxi+1 + fz(H

0
i+1 + bi+1)− (fΩxi + fz(H

0
i + bi))

)
= 0. (73)

As a consequence, we have that

bn,1i =
H0
i

2∆x

(
fΩxi+1 + fz(H

0
i+1 + bi+1)− (fΩxi + fz(H

0
i + bi))

)
= 0, (74)

and

Hn
i+1−Hn

i +[Gn({ζkj+1/2}
j=i+1
j=i−1]1 =

1

fz

(
fΩxi+1 +fz(H

0
i+1 +bi+1)−(fΩxi+fz(H

0
i +bi))

)
= 0. (75)

By (73), (74), (75) and following the steps of Section i) of the proof, we obtain that Hn+1
i = Hn

i

and V n+1
i = 0.

�
Then follows, in the main text, the numerical tests of Section 5.

F A duct flow case

This test is inspired by the classical (Newtonian) Poiseuille flow between two infinite parallel
plates (orthogonal to the x-axis). The flow thus depends only on the transverse variable x and is
defined by the velocity V = V (x) in the direction parallel to the plates. Here, instead of Navier-
Stokes, we consider a Bingham constitutive law. To recover the so-called Bingham-Poiseuille
flow from (14), we suppose that the height is constant (H = 1), the flow is stationary (no time
dependence) and “laminar” (no “convective” term), and that there is no friction (β = 0). Finally,
the force needs to be transformed to model this pressure driven flow: this is easily achieved by
taking α = π/2, which leads to a remaining force which is fΩ (simply denoted f in the following)
and has to be exactly thought as the pressure gradient which drives the flow. We use a relaxation
formulation of the aforementioned model by using the following degenerate version of (14):

∀Ψ,
∫ L

0

∂tV (Ψ− V ) + 4η∂x(V )∂x(Ψ− V ) + τy
√

2 (|∂xΨ| − |∂xV |) dx ≥
∫ L

0

f(Ψ− V )dx. (76)

Here t is not a physical time but a relaxation time; the solution of (76) converges, for t→ +∞,
to the solution of the aforementioned Bingham-Poiseuille flow which is known analytically:

VBP (χ) =
f

8η


(
L

2
− χy

)2

if 0 ≤ χ ≤ χy,(
L

2
− χy

)2

− (χ− χy)2 if χy < χ ≤ L

2
.

(77)

where χ =
∣∣x− L

2

∣∣, χy = τy
f

locates the yield zone and the domain is defined for x ∈ [0, L]. Note

that, L and τy being given, if f ≤ 2τy
L

, then VBP ≡ 0: if the pressure gradient is too small, the
driving force is not sufficient to overcome the yield stress and the material remains rigid.

The interest of this test is that, though rather simplified, the velocity is not null and the
resulting problem contains all the mathematical difficulties of the Bingham model. We want to
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check the ability of the numerical methods presented previously to converge to the stationary
solution (77) and proceed as follows. We take a null initial condition:

∀x ∈ [0, L], V (t = 0, x) = 0,

and homogeneous Dirichlet boundary conditions:

∀t ≥ 0, V (t, 0) = V (t, L) = 0.

We set a domain of length L = 1, discretized with 200 points. Moreover, η = 0.2, τy = 4/
√

2
and f = 25. We compute the evolution of the solution and consider that a numerical stationary
solution has been reached when the relative error between two iterations in time (with a time
step ∆t = 0.05) is smaller than 10−8, namely

‖V n+1 − V n‖1

‖V n+1‖1

< 10−8. (78)

The convergence of the velocity (resp. multiplier) to the stationary solution is shown in Figure
16 (resp. 17) for both augmented Lagrangian and Bermúdez-Moreno methods. Indeed, for this
test, we can easily compute the multipliers associated to VBP (they are known up to a constant);
for the augmented Lagrangian method we have

µ(x) = −fx− 4η∂xVBP + cst, (79)

whereas for the Bermúdez-Moreno method it reads

θ(x) = −fx− (4η + ω)∂xVBP + cst. (80)

In both cases, to have an enlightening graphical representation of the numerical multiplier and
the analytical one, we determine the constant in such a way the curves are superimposed at con-
vergence. A good qualitative convergence is observed on Figures 16 and 17 and this is confirmed
quantitatively in the following.
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Figure 16: Convergence of the computed velocity (dashed lines) to the analytical stationary
solution (continuous line): (a) augmented Lagrangian and (b) Bermúdez-Moreno methods. Note
that there is a time ∆t = 0.05 between two successive curves. (See also Figure 17.)

Indeed, we also determine the numerical order of convergence in space, through a mesh re-
finement study. This is done for the velocity and the associated multiplier for both duality
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Figure 17: Convergence of the computed multiplier (dashed lines) associated to the analytical
stationary solution (continuous line): (a) augmented Lagrangian and (b) Bermúdez-Moreno
methods. Note that there is a time ∆t = 0.05 between two successive curves. (See also Figure
16.)

methods. The results are given on Figures 18 and 19. We also give the associated figures in
Tables 5-6 and 7-8, respectively. Note that the figures are the same for V in Tables 5 and 7: this
is normal since the methods are different but the solution that has to be found is unique and it
was proven that they converge to this solution.
Essentially, the conclusions are that both the augmented Lagrangian and the Bermúdez-Moreno
methods are at least of order two (in L2-norm) in space for the velocity of this non-zero sta-
tionary solution. Concerning the multiplier, which is only an auxiliary ingredient to compute
the solution, we see more contrasted, but fairly good, results: on the one hand the augmented
Lagrangian method seems to be barely convergent but the error is very small (10−9–10−10 in
L2-norm); on the other hand, the Bermúdez-Moreno method exhibits a second order convergence
but the errors are much bigger than the augmented Lagrangian method (10−1–10−7 in L2-norm).
Overall, this test is a first positive step validating the numerical ability of both methods to han-
dle the variational inequality on V with at least L2-second order convergence in space.

Table 5: Test 1. Errors and order of convergence for augmented Lagrangian – V .

Cells L∞ Error Order L2 Error Order

10 1.869E−01 - 4.561E−02 -
20 4.558E−02 2.036 8.284E−03 2.460
40 1.277E−02 1.835 1.565E−03 2.404
80 2.915E−03 2.131 2.645E−04 2.566
160 8.029E−04 1.860 4.915E−05 2.428
320 1.825E−04 2.137 8.282E−06 2.569
640 5.024E−05 1.861 1.538E−06 2.429
1280 1.144E−05 2.134 2.596E−07 2.567
2560 3.176E−06 1.849 4.861E−08 2.417

We also study the computational cost of the two methods. To do so, for a given value of
the parameter, we store the sum of the number of iterations done in the duality loop, for each
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Figure 18: Order of convergence under mesh refinement: augmented Lagrangian method. Dotted
lines show first and second order of convergence, blue line with + is the computed error.

Table 6: Test 1. Errors and order of convergence for augmented Lagrangian – µ.

Cells L∞ Error Order L2 Error Order

10 3.903E−08 - 5.817E−09 -
20 4.059E−08 -0.056 3.396E−09 0.777
40 4.410E−08 -0.120 2.398E−09 0.502
80 4.761E−08 -0.111 1.822E−09 0.397
160 4.959E−08 -0.059 1.316E−09 0.469
320 5.104E−08 -0.042 9.399E−10 0.486
640 5.129E−08 -0.007 6.645E−10 0.500
1280 5.160E−08 -0.009 4.704E−10 0.498
2560 5.350E−08 -0.052 3.378E−10 0.478

iteration in time and up to the convergence to the stationary solution. This can be done, since
the computational costs for one iteration in the duality loop are of the same order for both
methods. (Recall also that for both methods, the number of iterations in time to reach the
stationary solution is the same (up to a given precision, see (78))). The results are shown on
Figure 20 : with 204 iterations, the Bermúdez-Moreno method is approximately 20% cheaper
than the augmented Lagrangian method (241 iterations).
In the case of the Bermúdez-Moreno method we can compare this numerical evaluation of ω
with the theoretical estimation which gives ωopt = 1.44; this is in very good agreement with the
numerical investigation.

We can then study the well-balanced properties of the scheme in Section 5.1.
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Figure 19: Order of convergence under mesh refinement: Bermúdez-Moreno method. Dotted
lines show first and second order of convergence, blue line with + is the computed error.

Table 7: Test 1. Errors and order of convergence for Bermúdez-Moreno – V .

Cells L∞ Error Order L2 Error Order

10 1.869E−01 - 4.561E−02 -
20 4.558E−02 2.036 8.284E−03 2.460
40 1.277E−02 1.835 1.565E−03 2.404
80 2.915E−03 2.131 2.645E−04 2.566
160 8.029E−04 1.860 4.915E−05 2.428
320 1.825E−04 2.137 8.282E−06 2.569
640 5.024E−05 1.861 1.538E−06 2.429
1280 1.144E−05 2.134 2.596E−07 2.567
2560 3.176E−06 1.849 4.860E−08 2.417
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Table 8: Test 1. Errors and order of convergence for Bermúdez-Moreno – θ.

Cells L∞ Error Order L2 Error Order

10 1.400E−00 - 2.530E−01 -
20 4.082E−01 1.779 5.128E−02 2.303
40 1.081E−01 1.917 9.529E−03 2.428
80 2.766E−02 1.966 1.719E−03 2.471
160 6.988E−03 1.985 3.065E−04 2.487
320 1.756E−03 1.993 5.440E−05 2.494
640 4.402E−04 1.996 9.640E−06 2.497
1280 1.104E−04 1.996 1.709E−06 2.496
2560 2.778E−05 1.990 3.042E−07 2.490
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Figure 20: Computational cost (number of iterations in the duality loops) with respect to the
duality parameter: augmented Lagrangian and Bermúdez-Moreno methods. Note that the value
of the parameter realizing the minimum of the cost is (a) r = 0.85 with nbiter = 242, (b) ω = 1.4
with nbiter = 204.
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