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Abstract. In this paper we show a more efficient algorithm than that
in [8] to compute subsets of points non-congruent by isometries. This
algorithm can be used to reconstruct the object from the digital image.
Both algorithms are compared, highlighting the improvements obtained
in terms of CPU time.
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1 Introduction

An n–dimensional digital image is a data structure typically representing a grid
made up by a finite set of n–dimensional color hypercubes. The n–dimensional
hypercubes of the grid are called n–xels for digital images of dimension n; par-
ticularly, pixels for n = 2 and voxels for n = 3.

By considering the central point of each n–dimensional hypercube of the grid,
we construct a dual grid made up by n–dimensional hypercubes whose vertices
are the central points of the hypercubes of the original grid.

In this way, the n–xels of an image are identified with vertices of n–dimensional
hypercubes of the dual grid.

In Figure 1 we show more details about this construction for 2–dimensional
binary digital images.

Fig. 1. From left to right: a binary digital image in a grid of size 10× 9; central points
of the image pixels; dual grid whose vertices are the central points of the squares of
the original grid

In this sense, to represent images by using computational techniques it is
necessary to fix a grid and the relations between the points.
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Binary images are derived from a subdivision of the n–dimensional space
into unit hypercubes of dimension n which intersect two by two in a hypercube
of dimension n − 1. This subdivided space is equivalent to use as grid the n–
dimensional discrete space Z

n. The elements (i1, ..., in) ∈ Z
n are the lattice

points. Once the grid has been established, it is necessary to fix the neighborhood
relations between the lattice points.

For a given lattice point, a neighborhood is defined typically by using a distance
metric (see [3]). More concretely, two lattice points in Z

n are neighboring points
if they are less than epsilon distance away. Depending on the values of epsilon,
different types of neighborhoods can be defined.

For instance, Kong and Roscoe [7] defined three standard types of neighbor-
hood in the three-dimensional space Z3: the 6–neighborhood, the 18–neighborhood
and the 26–neighborhood. These definitions are essentially equivalent to the
corresponding definitions in Rosenfeld [12]. In Figure 2 these three types of
neighborhood in Z

3 are shown.

Fig. 2. A point P ∈ Z
3 with each one of its: (a) six neighboring points satisfies

d1(P,Q) = 1; (b) eighteen neighboring points satisfies d1(P,Q) = 1 or d1(P,Q) =
2; and (c) twenty-six neighboring points satisfies d1(P,Q) = 1, d1(P,Q) = 2 or
d1(P,Q) = 3

For instance, a point P ∈ Z
4 with each one of its: (a) eight neighboring points

satisfies d1(P,Q) = 1; (b) thirty-two neighboring points satisfies d1(P,Q) = 1 or
d1(P,Q) = 2; (c) sixty-four neighboring points satisfies d1(P,Q) = 1, d1(P,Q) =
2 or d1(P,Q) = 3; and (d) eighty neighboring points satisfies d1(P,Q) = 1,
d1(P,Q) = 2, d1(P,Q) = 3 or d1(P,Q) = 4. See [5] for more details.

2 Preliminaries

In this section, we recall some basic notions about algebraic-topology, geometry,
graph theory and digital images in order to do more understandable the paper.

Given a set S, an order relation on S is a relation � such that, for every
a, b, c ∈ S is held: (1) either a � b, or b � a; (2) if a � b and b � c, then a � c;
(3) if a � b and b � a, then a = b. Moreover, S is called ordered set. The reverse
order relation � is the relation given by a � b if b � a. Given two ordered sets
S1 and S2, the lexicographic order on the Cartesian product S1 × S2 is defined
as (a, b) � (a′, b′) if and only if a ≺ a′, or a = a′ and b � b′.
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A distance is a function d : Rn × R
n → R satisfying the following properties:

(a) d(x, y) ≥ 0; (b) d(x, y) = 0 if and only if x = y; (c) d(x, y) = d(y, x) and (d)
d(x, z) ≤ d(x, y) + d(y, z).

Some well-known distances are: (1) d1(x, y) =
∑n

i=1 |xi − yi|; (2) d2(x, y) =√∑n
i=1(xi − yi)2; and d∞(x, y) = maxn

i=1{|xi − yi|}.
An n–polytope is the closure of an n–cell with flat faces. Particularly, a polygon

is a 2–polytope and a polyhedron is a 3–polytope.
An n–dimensional hypercube (or hypercube of dimension n) is an n–polytope of

2n vertices which satisfy certain distance conditions. Particularly, 2–dimensional
and 3–dimensional hypercubes are called squares and cubes, respectively.

A map f : X → Y is called isometry if for any a, b ∈ X is satisfied d(f(a),
f(b)) = d(a, b). Two objects O,O′ are called isometric (or congruent by isome-
tries) if there exists a bijective isometry from O to O′.

The group of isometries of a cube are the rigid motions which leave the cube
invariant. This group has 48 elements.

The group of isometries of a 4–dimensional hypercube are the rigid motions
which leave the hypercube invariant. This group has 384 elements (see [10]).

A graph G = (V (G), E(G)) consists of two finite sets: V (G), the vertex set of
the graph, which is a nonempty set of elements called vertices. E(G), the edge
set of the graph, which is a possibly empty set of elements called edges, such that
every edge e ∈ E(G) is assigned an unordered pair of vertices {u, v}, (u 	= v)
called the end-vertices of e, and e is said to join u and v. If there exists more
than one edge between each pair of vertices, the graph is called multi-graph.

A subgraph of a graph G is a graph having all its vertices and edges in G.
Two graphs G and G′ are called isomorphic graphs if there exists an isomor-

phism (bijective morphism) between them.
Let G be a multi-graph of vertices v1, v2, . . . , vn. The adjacency matrix of G

is a n× n matrix M(G) = (mij) where the element mij is given by the number
of edges which join the vertex vi to the vertex vj .

A n–dimensional digital image is a representation of an image of dimension
n as a finite set of digital values, called picture elements or n–xels. Particularly,
these elements are called pixels and voxels for digital images of dimension 2 and
3, respectively. Moreover, if the set of digital values is {0, 1} then the image is
called binary digital image.

3 Computing Subsets of Points in Z
n

The first stage of this section consists in constructing subsets of points starting
from the vertices of an n–dimensional unit hypercube. Then, the congruent ones
by isometries of the n–dimensional space are ignored.

We assume that all the points in Z
n are assigned binary values, one or

zero. The points whose value is 1 (resp. 0) are called 1–points (resp. 0–points).
Given a finite subset of points, V , constructed starting from the vertices of an
n–dimensional unit hypercube, we also assume that the points in V have a value
of 1 while the points in the complement of V have a value of 0.
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These subsets of points are determined as follows: the n–dimensional unit
hypercube has 2n vertices and each one of them can be a 1–point or a 0–point,
so there exist 22

n

subsets of points which can be constructed starting from
the vertices of the n–dimensional unit hypercube. More concretely, there exist
C(2n, c) subsets with 0 ≤ c ≤ 2n 1–points. By using properties of combinatorial
numbers, C(2n, 2n − c) = C(2n, c) is also the number of subsets with 2n − c
1–points. In this way, the number of subsets with c 1–points is the same as the
number of subsets with 2n − c 1–points.

Below, we show the extension of the method shown in [8] to ignore congru-
ent subsets that differ by isometries of the n–dimensional space. This method
consisted in associating each subset with a multi-graph. The vertices of the multi-
graph were the points of the subset and the number of edges between each pair
of vertices u, v was determined by the square of Euclidean distance between u, v.

By considering the previous association between multi-graphs and subsets of
points of the n–dimensional unit hypercube, it was natural to identify subsets
with their respective associated multi-graphs.

A similar proof of Theorem 1 in [8] shows that two isomorphic subsets with
at least 2n−1 points are isometric. The converse implication is obvious, taking
into account that isometry is a stronger concept than isomorphism.

By considering previous results, Algorithm 1 in [8] (whose pseudocode is
extended in Algorithm 3.1 for any dimension) was implemented.

Algorithm 3.1

Input: set of vertices of the n–dimensional unit hypercube with an order relation ≺.
// V : empty list to save the vertices of the non-isomorphic multi-graphs.
Output: non-congruent subsets by isometries of the n–dimensional space.
begin

for c = 2n−1, ..., 2n do
Construct an ordered set (Vc,≺) containing to the C(2n, c) subsets with c 1–points

for (Vc)i ⊂ Vc do
Determine the multi-graph associated with (Vc)i, (Gc)i, whose adjacency ma-
trix is M(Gc)i = ((m(Gc)i)pq) where (m(Gc)i)pq = apq, being apq the square
Euclidean distance between vp, vq
while (Vc)i1 ⊂ Vc & (Vc)i2 ⊂ Vc & (Vc)i1 ≺ (Vc)i2 do

if (Gc)i1 and (Gc)i2 are isomorphic then
(Vc)i1 and (Vc)i2 are congruent by isometries
Vc = Vc − {(Vc)i2}

end if
end while

end for
V = V

⋃
Vc

end for
return V

end
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By using as input the set of vertices of the n–dimensional unit hypercube
arranged on an order relation≺, for 2n−1 ≤ c ≤ 2n, this algorithm: (a) constructs
an ordered set, (Vc,≺), containing to the C(2n, c) subsets with c 1–points; (b)
associates each subset (Vc)i ⊂ Vc with a multi-graph (Gc)i. The vertices of (Gc)i
are the points of (Vc)i and the element apq of the adjacency matrix of (Gc)i
corresponds with the square of Euclidean distance between vp, vq; and (c) checks
if there exists an isomorphism between each pair of multi-graphs (Gc)i1 , (Gc)i2 ,
associated with two subsets (Vc)i1 , (Vc)i2 ⊂ Vc which satisfy (Vc)i1 ≺ (Vc)i2 .

Algorithm 3.1 allows us to ignore the subsets with 2n−1 ≤ c ≤ 2n points
obtained by isometries of the n–dimensional space. The subsets with 0 ≤ c <
2n−1 points are determined by complementation.

Remark 1. Algorithm 3.1 only constructs subsets of vertices of the n–dimensional
unit hypercube with at least 2n−1 points.

Remark 2. Given an order relation, ≺, on the vertices of the n–dimensional unit
hypercube, Algorithm 3.1 determines the smallest non-congruent subsets with
respect to ≺. Moreover, by changing the order relation, subsets congruent with
these ones are obtained.

By using Algorithm 3.1, the following results can be proved.

Theorem 1. In Z
3, there exist (up to isometry): (a) six subsets with four ver-

tices; (b) three subsets with five vertices; (c) three subsets with six vertices; (d)
one subset with seven vertices; and (e) one subset with eight vertices.

Taking into account the complementation, we can formulate Corollary 1.

Corollary 1. In Z
3, there exist (up to isometry): (b’) three subsets with three

vertices; (c’) three subsets with two vertices; (d’) one subset with one vertex; and
(e’) one subset with zero vertices.

Remark 3. Let us observe that the twenty-two subsets obtained by using Algo-
rithm 3.1 for n = 3 coincide (up to rotations of the 3–dimensional space) with
the twenty-two types of unit cell presented by Kong and Roscoe in Figure 1
in [6].

Theorem 2. In Z
4, there exist (up to isometry): (a) seventy-four subsets with

eight vertices; (b) fifty-six subsets with nine vertices; (c) fifty subsets with ten
vertices; (d) twenty-seven subsets with eleven vertices; (e) nineteen subsets with
twelve vertices; (f) six subsets with thirteen vertices; (g) four subsets with four-
teen vertices; (h) one subset with fifteen vertices; and (i) one subset with sixteen
vertices.

Taking into account the complementation, we can formulate Corollary 2.
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Corollary 2. In Z
4, there exist (up to isometry): (b’) fifty-six subsets with seven

vertices; (c’) fifty subsets with six vertices; (d’) twenty-seven subsets with five ver-
tices; (e’) nineteen subsets with four vertices; (f ’) six subsets with three vertices;
(g’) four subsets with two vertices; (h’) one subset with one vertex; and (i’) one
subset with zero vertices.

Remark 4. The results shown in Theorem 2 and Corollary 2 confirm Pólya’s
count in 1940 (see Table II in [9]), whose main difficulty to count the different
2–colorings of the 4–dimensional hypercube was the derivation of the appropriate
cycle indices (see [2] for more details).

Algorithm 3.1 is based on graph isomorphisms, which is a problem in NP (see
[1,4] for more details). For this reason, a more efficient algorithm to ignore the
subsets of points that differ by isometries of the n–dimensional space has been
implemented. This new algorithm computes the group of isometries of the n–
dimensional unit hypercube in R

n and uses it to ignore the subsets of points of it
that differ by isometries of the n–dimensional space. Proposition 7 in [13] proves
that an algorithm of this type returns the subsets of points non-congruent that
differ by isometries of the n–dimensional space. A scheme of this algorithm is
shown in Figure 3.

Fig. 3. Scheme of a more efficient algorithm than Algorithm 3.1 to ignore the sub-
sets of vertices of the n–dimensional unit hypercube that differ by isometries of the
n–dimensional space

Algorithm 3.2 ignores the subsets of points that differ by isometries from the
group iso ncube of isometries of the n–dimensional unit hypercube.
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Algorithm 3.2

Input: (V,≺) set of vertices of the n–dimensional unit hypercube arranged on the
order relation ≺.

iso ncube: group of isometries of the n–dimensional unit hypercube.
// NIS: empty list to save the non-isometric subsets with 0 ≤ c ≤ 2n points.
Output: non-isometric with 0 ≤ c ≤ 2n points.
begin

for c = 0, ..., 2n do
Construct an ordered set (Vc,≺) containing to the C(2n, c) subsets with c points
for (Vc)i ⊂ Vc do

iso vci = ∅
{Empty list to save the subsets isometric to (Vc)i.}
for σ ∈ iso ncube do

iso vci = iso vci
⋃

σ((Vc)i)
end for
for all (Vc)j ⊂ Vc satisfying (Vc)j ∈ iso vci do

(Vc)i and (Vc)j are isometric
Vc = Vc − {(Vc)j}

end for
end for
NIS = NIS

⋃
Vc

end for
return NIS

end

Firstly, Algorithm 3.2 constructs an ordered set (Vc,≺) containing to the
C(2n, c) subsets with 0 ≤ c ≤ 2n vertices of the n–dimensional unit hypercube.
Next, for (Vc)i ⊂ Vc, it computes all the subsets isometric to (Vc)i by applying
the group of isometries of the n–dimensional unit hypercube. If there exists a
subset (Vc)j ⊂ Vc which coincides with any of the subsets isometric to (Vc)i,
then the algorithm removes (Vc)j from (Vc). In this way, Algorithm 3.2 allows
us to obtain a representative subset of each isometry class.

Remark 5. This alternative algorithm not only improves the computational time
of Algorithm 3.1 (see Table 1 for results in n = 3 and Table 2 for n = 4) but it can
be used for constructing non-isometric subsets of vertices of the n–dimensional
unit hypercube, regardless of its cardinality.

Remark 6. In the same way as Algorithm 3.1, the new algorithm determines the
smallest non-congruent subsets with respect to the order relation given on the
set of vertices of the n–dimensional unit hypercube; so that, by changing the
order relation, subsets congruent with these ones are obtained.

Remark 7. Theorems 1 and 2, and Corollaries 1 and 2 are held by using the
algorithm whose scheme is shown in Figure 3.
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Table 1. Algorithm 3.1 constructs and checks C(8, 4) = 70, C(8, 5) = 56, C(8, 6) =
28 and C(8, 7) = 8 multi-graphs in 3.12, 3.83, 2.8 and 1.58 seconds of CPU time;
respectively. These results are improved to 0.12, (practically) 0, (practically) 0 and
(practically) 0 seconds of CPU time; respectively.

Table 2. Algorithm 3.1 constructs and checks C(16, 8) = 12870, C(16, 9) = 11440,
C(16, 10) = 8008, C(16, 11) = 4368, C(16, 12) = 1820, C(16, 13) = 560, C(16, 14) =
120 and C(16, 15) = 16 multi-graphs in 11092.3, 9482.27, 11652.5, 8382.22, 2384.01,
734.34, 175.04 and 25.786 seconds of CPU time; respectively. These results are improved
to 18.8, 18.56, 14.63, 10.23, 5.43, 2.76, 1.55 and 1.73 seconds of CPU time; respectively.

4 Conclusion and Examples

In this paper, we have shown an algorithm more efficient than the extension
of that in [8] to compute subsets of points non-congruent by isometries of the
n–dimensional space. By using this algorithm for n = 3 and n = 4, 22 and 402
non-isometric subsets (see Figures 4 and 5 for some examples of these subsets),
respectively, have been computed by using a low CPU time. This algorithm
allows us to reconstruct objects from the n–xels of n–dimensional binary digital
images (see Figure 6 for 2 and 3–dimensional examples).

Fig. 4. Non-isometric subsets with five points of Z3 computed by using Algorithm 3.1
and its alternative using 3.83 and 0 seconds of CPU time, respectively
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Fig. 5. Non-isometric subsets with thirteen points of Z
4 computed by using Algo-

rithm 3.1 and its alternative using 734.34 and 2.76 seconds of CPU time, respectively

Fig. 6. Reconstruction of an object from (a) the 172 pixels (points) of the digital
image localized on a grid of size 20×20, (b) the 495 voxels (points) of the digital image
localized on a grid of size 8× 8× 8

Remark 8. Let us note that the pictures in Figure 6 represent a 2–dimensional
(resp. 3–dimensional) object by extracting the boundary of the cell complex
whose cells are constructed from the convex hull of the black vertices of each
square (resp. cube). Moreover, this technique to represent objects from the
boundary of cell complexes can be extended to higher dimensions.
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