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Abstract. Triangle three-dimensional meshes have been widely used to
represent 3D objects in several applications. These meshes are usually
surfaces that require a huge amount of resources when they are stored,
processed or transmitted. Therefore, many algorithms proposing an ef-
ficient compression of these meshes have been developed since the early
1990s. In this paper we propose a lossless method that compresses the
connectivity of the mesh by using a valence-driven approach. Our algo-
rithm introduces an improvement over the currently available valence-
driven methods, being able to deal with triangular surfaces of arbitrary
topology and encoding, at the same time, the topological information of
the mesh by using Homological Spanning Forests. We plan to develop
in the future (geo-topological) image analysis and processing algorithms,
that directly work with the compressed data.

Keywords: Triangle Mesh Compression, Homological Spanning Forest,
Computational algebraic topology.

1 Introduction

Polygon three-dimensional meshes have been widely used on many different ap-
plications to represent 3D objects. In fact, since triangles are the basic geometric
primitives for standard graphics hardware and for many simulation algorithms,
triangle meshes are the most commonly used. This is the reason why most of the
effort in the field of static 3D model compression has been devoted to triangle
meshes.

We focus here in triangle meshes that often require a huge amount of data for
their storage, processing and transmission in the raw data format. Therefore, to
find an efficient method for compressing these meshes is one of the aims of the
work we present here.

Besides that, the ability of computing and storing topological information of
these meshes is also an issue of interest for many problems dealing with them.
This is the case of medical image processing, where topological information is
crucial in order, for instance, to make a meaningful automatic classification of
the images.
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The method we propose here provides a lossless compression of the connec-
tivity of the mesh, allowing the inclusion of its topological information in the
coded file and/or its automatic computation in the decompression process.

In order to compress the connectivity of the mesh, a valence-driven approach
started by Touma and Gotsman [2] is used. This valence-driven approach codifies
the neighborhood of each vertex as a number following a certain order. Using
this “valence”information the mesh can be reconstructed without loosing infor-
mation. Our variation introduces an improvement over the currently available
valence-driven algorithms, being able to deal with triangular orientable meshes
of arbitrary topology (not necessary 2-manifold), keeping all the benefits of the
valence-driven approach.

In the compression method we propose here, the data structures defined by
Molina-Abril and Real [4] (called Homological Spanning Forest) can be easily
computed without increasing the computational time of the algorithm. Let us
notice that by using this structure, we encode not only basic topological in-
formation like Betti numbers, genus or Euler characteristic, but also advanced
topological information (reconstruction of the boundary, homological classifica-
tion of cycles, etc.). The inclusion of this structure in the compressed data pro-
vides a suitable framework for a geo-topological processing in the compressed
domain (contractibility testing and transformability of cycles, topological anal-
ysis of ROIs, shortest path problems, etc.). The possibility of directly working
with the compressed data, is an important advantage when dealing with large
meshes and images.

The resulting algorithm uses less than 1.5 bits per vertex (bpv) on average to
encode mesh connectivity. This compression ratio coincides with the state-of-the-
art ratio that has not been seriously challenged till now. As other valence-driven
algorithms, the proposed method can be used in progressive transmission, which
means that the mesh can be decompressed, processed and rendered during the
transmission process.

In particular the investigation about connectivity compression has been de-
veloped under the project VirSSPA’10, in the Hospital Universitario Virgen del
Roćıo, Seville (Spain), and financed by the Consejeŕıa de Salud de la Junta de
Andalućıa and FEDER founds.

In order to complete the goals of the project, an application developed in C++
implementing the introduced technique has been developed. A database of more
than six hundred medical images of real patients from the Hospital Universitario
Virgen del Roćıo has been used to corroborate the theoretical results.

2 Connectivity Compression Method

For compressing the connectivity of an orientable triangle mesh, a valence-driven
algorithm has been developed. This approach was presented in 1998 by Touma
and Gotsman [2], compressing the connectivity in terms of the neighborhood of
each vertex. In the algorithm we propose here, a random triangle of the mesh is
selected to be the origin of three implosions (one for each of its three vertices).
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Also the triangle face is defined as the imploded region, being its border defined
as the three edges plus the three vertices.

The implosion of vertex v is defined as the process in which v and its neighbor-
hood faces are destroyed by collapsing (or being squeezed in) on v. An implosion
is always produced by a vertex in the border of the imploded region, growing
it. The number of new vertices that have been added to the implosion region
border due to the implosion is registered in order to be able to reconstruct the
implosion in the decompression process.

Fig. 1. An implosion (colored in yellow) from a vertex that belongs to a hole in the
mesh (in green), and the growing of the imploded region (in black) surrounding the
hole

This process also produces sorted list of vertices as they pass through the regular
region of the mesh to the imploded region border. This distribution, based on the
mesh topology, is very useful for the next step of a triangle mesh compression, that
is the geometry compression (it will not be treated in this paper).

Two special cases of implosions can be distinguished when dealing with 3D
triangle surfaces. Using the terminology coined by Touma and Gotsman, we call
these two cases split and merge. Although these special cases are not exactly
the same as those defined by Touma and Gotsman (as our method is developed
from an implosion point of view), they both are produced by the same topological
principles, so the notation has still sense in our case.

– SPLIT
A split is produced when an implosion touches its own region border. This
produces a split of the border into two, so if the imploded region has only
one border, after the split it will have two.

– MERGE
A merge occurs when an implosion touches another border that is different
from the border where the vertex that produced the implosions belongs. In
this case, a merge of the two borders needs to be done. If the imploded region
has two borders, after the merge it will have only one.
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3 Homological Spanning Forest Representation

Roughly speaking, topology in a discrete context helps to understand the de-
gree of connectivity of subdivided geometric structures. For subdivided objects,
homology is topology measured in terms of linear combinations (called chains)
of unit elements or bricks (also called cells), and in terms of “boundary rela-
tions” describes the connectivity dependencies among these bricks. Homology
depends on the ring of coefficient, and gives an algebraic answer in terms of
formal sums of bricks that have no boundary (for example, closed subdivided
curves or surfaces). These sums are called cycles and homology determines a rep-
resentative cycle for each n-dimensional hole or homology generator the object
has (connected components, tunnels, cavities, etc). In this way, homology can
be considered as a specification of the contribution of each brick to the creation
of the homology representative cycles.

In order to codify these connectivity information in an efficient way, we use
here a graph representation called Homological Spanning Forest (or HSF for
short). These hierarchical tree-like structure gives a positive and efficient answer
to the problem of codifying and computing classical algebraic topological infor-
mation (Euler characteristic, Betti numbers, classification and relations between
cycles, etc.). A detailed explanation about the topological information that the
HSF codifies, and its formal definition can be found in [5]. Relations between
the HSF and Morse Theory, in [4].

We will not go here into details about the Homological Spanning Forest rep-
resentation. An elementary example of a subdivided object is shown in Figure
2 for the understanding of this idea. Given a geometric graph G, its homology
information can be directly captured by means of a spanning tree T of G. In
fact, we transform T into a directed tree T d by adding arrows to every edge in
T , in such a way that at most one arrow comes out from each vertex. Therefore,
there will be only one vertex s of G, called sink, from which no arrow comes out.
In Figure 2 we interpret an arrow (e, f) in T d from the vertex f to the vertex
e as an elementary “deformation” operation, “contracting” in a continuous way
the vertex f onto e through the edge (e, f) inside the object. The result of apply-
ing (no matter the order we choose) the set of homology-preserving operations
represented by a red arrow in Figure 2, is a reduced structure consisting of only
three bricks: the vertex e, and two loops or “edges” starting and ending at the
same common vertex e (in fact, they represent the cycles {(c, e), (d, e), (c, d)}
and {(c, e), (c, f), (e, f)} coming from (c, e) and (c, f), respectively).

The directed spanning tree T d can be interpreted in dynamical terms, as the
way in which the set of vertices of the graph is “collapsed” to a representative
vertex of the connected component (in this case, the vertex e in black). These
three representative cycles of homology generators (in this case, no matter of the
ground ring we use but heavily dependent on the spanning tree T ) are determined
by the following bricks of G (called critical): the edges (c, f), (c, e) that belong
to G \ T , and the sink vertex e that belongs T . Their integer homology groups
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are one copy of Z in dimension 0 and two copies in dimension 1. A Homological
Spanning Forest representation F(G) for the subdivided geometric structure G
is the set of trees F(G) = {T d, T1, T2}, where T1 and T2 are trees composed by
only one “vertex”: the original edges (c, e) and (c, f) respectively.

a) b) c)

Fig. 2. a) A geometric graph G drawn on R
2, b) a directed spanning tree (in red)

showing a homological “deformation” process, and c) the minimal homological object
(in black)

If we now add two triangles to the previous graph obtaining a new object
O, we can now construct a tree T d2 codifying the “collapsing” of (c, f) and
(c, e) to the triangles (c, e, f) and (c, d, e) respectively (see Figure 3). Then,
the HSF representation F(O) for the subdivided object O is the set of trees
F(O) = {T d, T d2}.

a) b) c)

Fig. 3. a) A geometric object O, b) a directed spanning tree (in red) showing a
homological “deformation” process, and c) the minimal homological object (in black)

This graph-based representation, suitably encodes advanced topological fea-
tures of the object, due to the fact that the HSF forest can be automatically
rewritten in algebraic terms (with coefficients in a field) as a chain homotopy
operator, that determines a strong relationship at chain level (formal sums of
bricks) between the geometric object and its minimal homological expression;
that is a chain homotopy equivalence. The chain homotopy operator can be di-
rectly extracted from the forest as sums of cells following the paths of the trees
(see [5] for more details). By advanced topological information we mean not only
Euler characteristic and Betti numbers, but also classification of cycles, relations
between cycles, etc.
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4 Connectivity Compression Algorithm

The compression algorithm is presented in algorithm 1. The decompression
method works similarly, but reading the implosions information from the
compressed file and then creating the mesh.

Algorithm 1. Compression

Require: List of triangles and vertex information (coordinates, normals and color) of
an orientable triangle mesh.

Ensure: Triangle mesh compressed.
Ensure: HSF of the mesh.
1: while there are no imploded vertices do
2: Select a no imploded triangle.
3: Define the triangle as imploded region.
4: Build the HSF for that triangle.
5: Define the triangle border as the imploded region border, and make it the active

border.
6: while there is an active border do
7: if all vertices of the border have been imploded then
8: Delete the border.
9: if there is no inactive border then
10: End loop.
11: else
12: Select an inactive border as active.
13: end if
14: else
15: Select a not imploded vertex of the active border.
16: Implode the vertex.
17: Register valence, splits and merges.
18: Build the HSF on the implosion, connecting them with the imploded region.
19: end if
20: end while
21: end while
22: return Homological Spanning Forest
23: return Compressed mesh

The Touma and Gotsman algorithm [2] has an average compression ratio of 1.5
bits per vertex. This ratio has not been seriously challenged till now. However,
these results are purely empirical, and a theoretical study is not available.

Alliez and Desbrun [1] proposed a method to further improve the performance
of Touma and Gotsman algorithm. They observed that the code produced by
splits consumes a non-trivial portion of coding bits, and proposed some simple
techniques to reduce it, especially for irregular meshes where this special code
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can be huge. Alliez and Desbrun proved that if the amount of the splits is
negligible, the performance of their algorithm is upper-bounded by 3.24 bpv,
which is exactly the same as the theoretical bits per vertex value computed by
enumerating all possible planar graphs [6].

In the algorithm we present here, our results are close to the ones by Touma
and Gostman. In the near future we plan to adapt the ideas presented by Alliez
and Desbrun to our algorithm in order to reduce the compression ratio. This
will give us an algorithm that is able to reach not only reach the theoretical
minimal compression ratio, but also to include in the compressed file (by using
the implosion technique) the topological information of the mesh (by computing
the so called HSF data structures).

4.1 HSF Data Structures Generation

In [3], the HSF computation algorithm has quadratic time complexity. The ad-
vantage of including the HSF representation computation in the proposed com-
pression method, is that the computational time is not increased. The forest
can be directly computed at the same time the implosions are generated. On
the same way, in case the compressed data do not contain the encoded HSF
structure, they can also be computed during the decompression process or even
directly from the compress domain.

The computation of the HSF is performed following a “star-shape” strategy
(see Fig. 4). In this way when a vertex “v” implodes, the arrows going from its
neighbors vertices to the vertex “v” are added to the HSF structure (colored
in red in Figure 4). The first imploding vertex of the whole process is the sink
vertex “s”. The arrows corresponding to the neighbor triangles are also added
considering the star flow (colored in blue in Figure 4). Following this strategy,
the trees.

a) b) c)

Fig. 4. a) The initial triangle mesh, b) The first implosion and HSF generation, and
c) Next steps of the compression method and HSF generation
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a) b) c)

Fig. 5. a) Two imploded areas needing to be merged, b) The first step of the HSF
representation computation in the merge operation, and c) The next steps of the HSF
representation computation in the merge operation producing a bifurcation in the tree
(marked within a circle in the picture)

Problems may occur when a merge or split takes place (see Figure 5). In this
case, the HSF structure is constructed by making a bifurcation in the T d2 tree.

5 Conclusions

In this paper we propose a lossless compression method based on a valence-
driven approach. The main advantage of the method, is that it compresses tri-
angle meshes of arbitrary topology and encodes, at the same time, the topolog-
ical information of the mesh by using Homological Spanning Forests, without
increasing the computational time.

The topological information encoded in the HSF structure can be later used
for processing geometrical and topological information in the compressed domain
(automatic cycle classification, how to transform -if it is possible- a cycle into
another inside the object, recognition of 3D objects based on geometrical and
topological features, etc). The algorithm allows progressive transmission, in the
sense that the mesh can be decompressed, processed and rendered while its data
is being received.
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