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Abstract

We propose a finite element discretization of the Navier–Stokes equations
that relies on the variational multi-scale approach together with the addition of
a Smagorinsky type viscosity, in order to take into account possible subgrid
turbulence. We recall that the discrete problem admits a solution and prove a priori
error estimates. Next we perform the a posteriori analysis of the discretization.
Some numerical experiments justify the interest of this approach.

1 Introduction

This paper deals with the numerical approximation of incompressible flows in turbulent
regime by means of grid adaptation techniques.

Grid adaptation techniques are currently used to solve fluid flow problems,
providing large savings of computational complexity. The numerical analysis of this
technique is largely based upon a well-sound mathematical analysis of the problem
considered. However, the mathematical analysis of many standard turbulence models is
not well developed up-to-date. Even more, some commonly used models, in particular
the k-ε one, do not seem to be well posed from the mathematical point of view.

An emerging class of turbulence models that is increasingly used due to its accuracy
and simplicity is provided by the Variational Multi-Scale (VMS) setting (see [16] for
a general description of VMS models). This is a fully discrete model, that does not
require a continuous modeling step. The VMS procedure yields a discrete equation for
a finite element approximation of the flow, where the eddy viscosity only acts on the
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small resolved scales of the flow. A simple modeling of the eddy viscosity acting on
these scales (the Smagorinsky model) is used. This kind of combination of variational
multi-scale and Smagorinsky models for small scales yields numerical results similar
to those provided by up-to-date Large Eddy Simulation (LES) models (see [17], [18],
[19]).

We consider in this paper a VMS-Smagorinsky turbulence model for which we
perform a numerical analysis that extends the usual one for standard discretizations of
Navier–Stokes equations.

Let Ω be a bounded connected domain in Rd, d = 2 or 3, with a Lipschitz-
continuous boundary ∂Ω. We are interested in the finite element discretization of the
Navier–Stokes equations in this domain relying on the variational multi-scale method,
in cases where turbulence phenomena may occur. More precisely,

(i) For both the velocity and the pressure, we introduce two spaces of discretization,
one called coarse and the other one called fine: Indeed, the fine space either is
defined from a mesh which is refined from the mesh used for the coarse space or
involves higher degree polynomials.

(ii) A further nonlinear viscosity term is added. In standard turbulence models, this
viscosity can depend on other unknowns which are the solution of convection-
diffusion equations, e.g. the turbulent kinetic energy (see [2] for instance), or
the temperature (see [3] for instance). Here, we have chosen to work with the
well-known nonlinear Smagorinsky viscosity, introduced in [22].

We refer to [8] (Chap. 2) for a complete description of this discretization which
brings to light its interest for the approximation of turbulent flows.

We thus consider a variational multi-scale approximation of Navier–Stokes
equations in turbulent regime for which the Smagorinsky eddy viscosity acts only on
the small resolved scales of the flow. In a rather general finite element framework,
relying on standard arguments for nonlinear problems, we perform the a priori and a
posteriori analysis of the discrete problem. This leads to optimal error estimates. A
few numerical experiments are in good coherence with the theoretical results.

An outline of the paper is as follows:

• In Section 2, we present the continuous and discrete problems we work with and
recall their main properties.

• Section 3 and 4 are devoted to the a priori and a posteriori analysis of the
discretization, respectively.

• Numerical experiments are presented in Section 5.

• The final section states the main conclusions of the paper.
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2 The continuous and discrete problems

We have decided for simplicity to work with homogeneous no-slip boundary
conditions. In this case, the Navier–Stokes equations in Ω read −ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,
u = 0 on ∂Ω.

(1)

The unknowns are the velocity u and the pressure p of the fluid. The data are only the
distribution f which represents a density of body forces, while the viscosity ν of the
fluid is a positive constant.

2.1 Variational formulation of the continuous problem

We consider the full scale of Sobolev spaces Hs(Ω), s ∈ R, and Wm,p(Ω), m ∈ N,
1 ≤ p ≤ ∞, equipped with the standard norms and seminorms. In order to write a
variational formulation of problem (1), we also introduce the spaceH1

0 (Ω) of functions
in H1(Ω) vanishing on ∂Ω and its dual space H−1(Ω). We finally need the space

L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q(x) dx = 0

}
.

Standard density results yield that system (1) (where the first two lines are satisfied in
the distribution sense) is fully equivalent to the following variational problem:

Find (u, p) in H1
0 (Ω)

d × L2
0(Ω) such that{

a(u,v) + c(u,u,v) + b(v, p) = ⟨f ,v⟩, ∀v ∈ H1
0 (Ω)

d,
b(u, q) = 0, ∀q ∈ L2

0(Ω),
(2)

where ⟨·, ·⟩ stands for the duality pairing between H−1(Ω)d and H1
0 (Ω)

d. The bilinear
forms a(·, ·) and b(·, ·) are defined by

a(u,v) = ν

∫
Ω

(∇u)(x) : (∇v)(x) dx, b(v, q) = −
∫
Ω

(∇ · v)(x) q(x) dx,

while the trilinear form c(·, ·, ·) is given by

c(w,u,v) =

∫
Ω

((w · ∇)u) (x) · v(x) dx.

We now recall the main properties of this problem from [13](Chap. IV, Sect. 2.1) and
[23](Chap. 2, Sect. 1), and also the regularity results on its solution from [14](Section
7.3.3) and [9].

The form a(·, ·) is continuous on H1(Ω)d × H1(Ω)d and elliptic on H1
0 (Ω)

d.
The form b(·, ·) is continuous on H1(Ω)d × L2(Ω) and satisfies the following inf-sup
condition, for a constant β0 > 0,

∀q ∈ L2
0(Ω), sup

v∈H1
0 (Ω)d

b(v, q)

∥v∥H1(Ω)d
≥ β0∥q∥L2(Ω). (3)
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The form c(·, ·, ·) is continuous on H1(Ω)d × H1(Ω)d × H1(Ω)d owing to
Sobolev imbeddings and satisfies the following anti-symmetry property, valid for any
divergence-free function w in H1(Ω)d,

∀v ∈ H1
0 (Ω)

d, c(w,v,v) = 0. (4)

By combining all these properties with Brouwer’s fixed-point theorem, the following
results can be derived.

Proposition 1 (i) For any datum f in H−1(Ω)d, problem (2) admits at least a
solution. Moreover this solution satisfies

∥u∥H1(Ω)d + ∥p∥L2(Ω) ≤ C∥f∥H−1(Ω)d

where the constant C only depends on Ω, ν and β0.

(ii) If the datum f and the viscosity ν satisfy

N
ν2

∥f∥H−1(Ω)d < 1,

where N is the norm of c(·, ·, ·), this solution is unique.

(iii) If the datum f belongs to L2(Ω)d, the solution (u, p) belongs to Hs+1(Ω)d ×
Hs(Ω) for all s ≤ s0, with 1

2 ≤ s0 ≤ 1 in the general case, 1
2 < s0 ≤ 1 when Ω

is a polygon or a polyhedron, and s0 = 1 when Ω is convex.

2.2 The discrete problem

From now on, we assume that Ω is a polygon (d = 2) or a polyhedron (d = 3). We
introduce a regular family (Th)h of triangulations of Ω by triangles or tetrahedra, in
the sense that, for each h:

• Ω is the union of all elements of Th;

• The intersection of two different elements of Th, if not empty, is a vertex or a
whole edge or a whole face of both of them;

• The ratio of the diameter hK of any element K of Th to the diameter of its
inscribed circle or sphere is smaller than a constant σ independent of h.

As usual, h stands for the maximum of the diameters hK , K ∈ Th.
For each h, we introduce a pair of finite element spaces Xh and Mh associated with

the triangulation Th on which we make the following assumption, in order to work with
a conforming discretization

Xh ⊂ H1
0 (Ω)

d and Mh ⊂ L2
0(Ω).

In view of a variational multi-scale discretization, we also consider another pair
of finite element spaces Xh′ and Mh′ which will be finer than the previous ones, in a
sense which is made precise later on. There also, we assume that

Xh′ ⊂ H1
0 (Ω)

d and Mh′ ⊂ L2
0(Ω).
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We make the further assumption that both intersections Xh ∩ Xh′ and Mh ∩ Mh′ are
reduced to {0} and set

Xh = Xh ⊕ Xh′ and Mh = Mh ⊕Mh′ . (5)

Remark 1 Most often, the spaces Xh and Mh are constructed from Xh and Mh in one
of the following ways:

(i) They are built with polynomials of the same degree as Xh and Mh but associated
with a triangulation Th′ constructed from Th by a refinement;

(ii) They are still associated with the triangulation Th but higher degrees of
polynomials are used on each K in Th,

In both cases, there is not a unique way to build the spaces Xh′ and Mh′ to have (5).
Space Xh′ , for instance, may be constructed by means of a surjective linear operator of
restriction or interpolation Πh : Xh → Xh, by

Xh′ = (Id−Πh)Xh,

where Id is the identity operator. Space Mh′ is built from Mh similarly. In this way
Xh′ and Mh′ do not need to be explicitly constructed.

We model the eddy viscosity by means of the Smagorinsky model: We associate
with each function v in H1

0 (Ω)
d its eddy viscosity νS(v) defined by

∀K ∈ Th, νS(v)|K = (CShK)2|∇v|,

where | · | here denotes the Euclidean norm on Rd×d. The quantity CS is called
Smagorinsky constant, and several values of it have been proposed. It is typically
equal to 0.18 (see Germano [11], [12]) although it can be dynamically adapted in a
time-dependent computation (see Lilly [20]). It can also be adjusted close to solid
walls, in order to avoid over-diffusion (see Van Driest [24]).

In the sequel we shall assume that the interpolation operator Πh is defined from
H1

0 (Ω)
d onto Xh and satisfies the following stability property:

∀v ∈ H1
0 (Ω)

d, ∥Πhv∥H1(Ω)d ≤ C∥v∥H1(Ω)d . (6)

We are thus in a position to write the discrete problem. It reads:

Find (uh, ph) in Xh ×Mh such that{
a(uh,vh) + c(uh,uh,vh) + b(vh, ph) + aS(uh,vh) = ⟨f ,vh⟩, ∀vh ∈ Xh,
b(uh, qh) = 0, ∀qh ∈ Mh,

(7)
where the “Smagorinsky” eddy viscosity form aS(·, ·) is now defined by

aS(u,v) =

∫
Ω

νS(uh′)(x) (∇uh′)(x) : (∇vh′)(x) dx
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with
uh′ = (Id−Πh)u, vh′ = (Id−Πh)v.

It can be noted that, up to the eddy viscosity term aS(uh,vh), this problem is
constructed from (2) by the Galerkin method. This term models the sub-grid eddy
viscosity effects, that are taken into account by means of the Smagorinsky term with
a projection term (Id − Πh) that filters out the action of eddy viscosity on the large
resolved scales.

Remark 2 The standard Smagorinsky model models the eddy viscosity effects by the
form ãS defined by

ãS(u,v) =

∫
Ω

νS(u)(x) (∇u)(x) : (∇v)(x) dx.

This form ãS does not include the projection term, so the eddy viscosity acts on
both large and small resolved scales. This produces an over-diffusive effect, that the
projection term intends to correct.

Remark 3 Let us define the residual of the Navier–Stokes equations by duality: For
any triplet (v;v, q) in H1(Ω)d ×H1(Ω)d ×L2(Ω), the quantity R(v;v, q) belongs to
H−1(Ω)d and satisfies

⟨R(v;v, q),w⟩ = a(v,w) + c(v,v,w) + b(w, q)− ⟨f ,w⟩, ∀w ∈ H1
0 (Ω)

d.

Then, problem (7) is equivalent to the following variational multi-scale method
Find (uh, ph) satisfying

uh = uh + uh′ , ph = ph + ph′ , (8)

where the pair (uh, ph) is a solution of the problem
Find (uh, ph) in Xh ×Mh such that{
a(uh,vh) + c(uh,uh,vh) + b(vh, ph) = −⟨R(uh;uh′ , ph′),vh⟩, ∀vh ∈ Xh,
b(uh, qh) = −b(uh′ , qh), ∀qh ∈ Mh,

(9)
and the pair (uh′ , ph′) is a solution of the problem

Find (uh′ , ph′) in Xh′ ×Mh′ such that
a(uh′ ,vh′) + c(uh,uh′ ,vh′) + b(vh′ , ph′) + aS(uh′ ,vh′) =

− ⟨R(uh;uh, ph),vh′⟩,
∀vh′ ∈ Xh′ ,

b(uh′ , qh′) = −b(uh, qh′), ∀qh′ ∈ Mh′ .
(10)

Indeed, observe that, when taking vh equal to vh (in Xh) in (7), the term aS(uh,vh)
vanishes. It follows that if (uh, ph) satisfies (7), then (uh, ph) satisfies (9). Also,
(10) follows from (7) by taking vh = vh′ and ph = ph′ as test functions. Finally
(7) follows from (9)-(10) by summing up these equations, and using that from (8),
uh′ = (Id−Πh)uh′ .
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This new formulation brings to light the fact that the Smagorinsky eddy viscosity
term only acts on the small scales of the discretization. Moreover, the method (7) is a
method with two grids, but it only needs a grid and an interpolation operator on a virtual
coarser grid to be programmed. In fact, method (7) includes three grid levels: Large
resolved scales (those of Xh), small resolved scales (those of Xh′) and un-resolved
scales (the remaining scales, that are taken into account by means of the eddy diffusion
term).

There also, the existence of a solution to problem (7) can be derived by using
Brouwer’s fixed point theorem. However we prefer to postpone this proof to the next
section where a more precise result is established.

3 A priori analysis

As now standard for nonlinear problems, the a priori analysis of the discrete problem
(7) is performed thanks to the discrete implicit function theorem due to Brezzi, Rappaz
and Raviart [7]. This requires some further notation that we now introduce.

We are led to make two further hypotheses:

(i) There exists a constant β independent of h such that

∀qh ∈ Mh, sup
vh∈Xh

b(vh, qh)

∥vh∥H1(Ω)d
≥ β ∥qh∥L2(Ω). (11)

(ii) For each nonnegative integer k, let Pk(K) denote the space of restrictions to K of
polynomials with d variables and total degree ≤ k. Then, Xh contains the space

X1
h =

{
vh ∈ H1

0 (Ω)
d; ∀K ∈ Th,vh|K ∈ P1(K)d

}
, (12)

and Mh contains either the space

M1
h =

{
qh ∈ H1(Ω) ∩ L2

0(Ω); ∀K ∈ Th, qh|K ∈ P1(K)
}
, (13)

or the space

M0
h =

{
qh ∈ L2

0(Ω); ∀K ∈ Th, qh|K ∈ P0(K)
}
.

This last assumption is satisfied by all the finite element spaces we work with.

In what follows, C, C ′, . . . stand for generic constants that may vary from line to
line, but are always independent of h.

3.1 Some notation

Let S denote the Stokes operator, more precisely the operator which associates with
any datum f in H−1(Ω)d the part u of the solution (u, p) of the problem

Find (u, p) in H1
0 (Ω)

d × L2
0(Ω) such that{

a(u,v) + b(v, p) = ⟨f ,v⟩, ∀v ∈ H1
0 (Ω)

d,
b(u, q) = 0, ∀q ∈ L2

0(Ω).
(14)
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It follows from the properties of the forms a(·, ·) and b(·, ·) stated in Section 2.1 that
this problem is well-posed. So, the operator S is well defined and continuous from
H−1(Ω)d into H1

0 (Ω)
d. Owing to the inf-sup condition (3), it is readily checked that

problem (2) can equivalently be written as a fixed-point equation

F(u) = u− SG(u) = 0, with G(u) = f − (u · ∇)u. (15)

Similarly, let Sh be the discrete Stokes operator, i.e., the operator which associates
with any datum f in H−1(Ω)d the part uh of the solution (uh, ph) of the problem Find

(uh, ph) in Xh ×Mh such that{
a(uh,vh) + b(vh, ph) = ⟨f ,vh⟩, ∀vh ∈ Xh,
b(uh, qh) = 0, ∀qh ∈ Mh.

(16)

There also, owing to (11) this operator is well-defined.
Let us now introduce the mapping associated with the Smagorinsky form: It is

defined from H1
0 (Ω)

d into H−1(Ω)d by

⟨AS(u),v⟩ = aS(u,v), ∀u ∈ H1
0 (Ω)

d,∀v ∈ H1
0 (Ω)

d

Thus, problem (7) can equivalently be written

Fh(uh) = uh − ShGh(uh) = 0, with Gh(u) = G(u)−AS(u). (17)

To go further, we need some properties of the operator Sh.

3.2 Basic properties of the discrete Stokes operator

The stability property of the operator Sh is immediately derived by taking vh equal to
uh in problem (16).

Lemma 2 The operator Sh satisfies the following stability property: For all f in
H−1(Ω)d,

∥Shf∥H1(Ω)d ≤ C sup
vh∈Xh

⟨f ,vh⟩
∥vh∥H1(Ω)d

. (18)

We refer to [6](§IV.2) and [13](Chap. II) among others for the following
convergence properties which require the assumptions on Xh and Mh made in the
beginning of the section.

Lemma 3 The operator Sh satisfies the following convergence property: For all f in
L2(Ω)d,

∥
(
S − Sh

)
f∥H1(Ω)d ≤ C hs0 ∥f∥L2(Ω)d ,

where the real number s0 is introduced in Proposition 1.

From Lemmas 2 and 3, we easily derive that, for all f in H−1(Ω)d,

lim
h→0

∥
(
S − Sh

)
f∥H1(Ω)d = 0, (19)

which will be of great use in what follows.
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3.3 Preliminary lemmas

From now on, we assume that f belongs to L2(Ω)d and that (u, p) is a nonsingular
solution of problem (2), in the sense made precise in [7], see also [13](Chap. IV,
Sect. 3.1): The operator DF(u) = Id − SDG(u) is an isomorphism of H1

0 (Ω)
d

(where D denotes the differential operator with respect to u). It can be noted that this
assumption is much less restrictive than the global uniqueness of the solution (see part
(ii) of Proposition 1) since it only ensures its local uniqueness.

We denote by L(E,F ) the space of linear continuous mappings from a normed
spaceE on another normed space F and by E the space of endomorphisms ofH1

0 (Ω)
d:

E = L(H1
0 (Ω)

d,H1
0 (Ω)

d).

Lemma 4 If property (6) holds, there exists an h0 > 0 such that, for all h ≤ h0,
the operator DFh(u) is an isomorphism of H1

0 (Ω)
d and the norm µ of its inverse is

bounded independently of h.

Proof: We have

DFh(u) = DF(u) +
(
S − Sh

)
DG(u) + Sh

(
DG(u)−DGh(u)

)
.

SinceDF(u) is an isomorphism ofH1
0 (Ω)

d, the desired property will be established if
the last two terms in the previous expansion tend to zero. We study successively these
two terms.

1) We have
DG(u) ·w = −(u · ∇)w − (w · ∇)u. (20)

Since s0 > 1
2 , see Proposition 1, the mapping: w 7→ DG(u) ·w sends the unit

sphere of H1
0 (Ω)

d into a compact subset of H−1(Ω)d. Thus, since for all ε > 0,
a compact subset admits an overlap by a finite number of balls with centre fi and
radius ε, applying (19) to all these fi yields that

lim
h→0

∥
(
S − Sh

)
DG(u)∥E = 0.

2) Since DG(u) − DGh(u) is equal to DAS(u) and thanks to (18), we have to
evaluate the quantity, for w running through the unit ball of H1

0 (Ω)
d and zh

running through the unit ball of Xh,

BS(u;w, zh) = C2
S

∑
K∈Th

h2K

(∫
K

|∇u∗|(x)(∇w∗)(x) : (∇z∗h)(x) dx

+

∫
K

(∇u∗ : ∇w∗

|∇u∗|
)
(x) (∇u∗)(x) : (∇z∗h)(x) dx

)
,

where for brevity, for any function v, we denote by v∗ the function (Id−Πh)v.
By using Cauchy–Schwarz inequalities and also property (6), we obtain

|BS(u;w, zh)| ≤ C2
S

∑
K∈Th

h2K ∥∇u∥L2(K)d×d∥∇w∥L2(K)d×d∥∇zh∥L∞(K)d×d .
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We recall from [4](Chap. VII, Prop. 4.2) the local inverse inequality, valid for
any polynomial φ of fixed degree,

∥φ∥L∞(K) ≤ c h
− d

2

K ∥φ∥L2(K). (21)

Applying it to each component of ∇ zh yields

|BS(u;w, zh)| ≤ C h2−
d
2 ∥u∥H1(Ω)d ∥w∥H1(Ω)d ∥zh∥H1(Ω)d ,

whence

∥DG(u)−DGh(u)∥L(H1
0 (Ω)d,H−1(Ω)d) ≤ C h2−

d
2 ∥u∥H1(Ω)d ,

and
lim
h→0

∥Sh

(
DG(u)−DGh(u)

)
∥E = 0.

This concludes the proof of the lemma.

Lemma 5 If property (6) holds, there exists a neighbourhood of u and a constant
λ > 0 independent of h such that the operator DFh satisfies the following Lipschitz
property for any v in this neighbourhood

∥DFh(u)−DFh(v)∥E ≤ λ ∥u− v∥H1(Ω)d .

Proof: We write

DFh(u)−DFh(v) = −Sh

(
DG(u)−DG(v)

)
− Sh

(
DAS(u)−DAS(v)

)
.

Bounding the first term readily follows from Lemma 2 and (20). To estimate the second
one, thanks to Lemma 2 and with the same notation as in the previous proof, we have
to bound the quantities, for w running through the unit ball of H1

0 (Ω)
d and zh running

through the unit ball of Xh,

BS(u;w, zh)− BS(v;w, zh)

= C2
S

∑
K∈Th

h2K

(∫
K

(
|∇u∗| − |∇v∗|

)
|(x)(∇w∗)(x) : (∇z∗h)(x) dx

+

∫
K

(∇u∗ : ∇w∗

|∇u∗|
)
(x) (∇u∗)(x) : (∇z∗h)(x) dx

−
∫
K

(∇v∗ : ∇w∗

|∇v∗|
)
(x) (∇v∗)(x) : (∇z∗h)(x) dx

)
.

The inverse inequatity (21) yields the estimate for the first term. To handle the
remainder, that we denote by DS for brevity, we first use a triangle inequality, next add
and subtract a further term.

DS = C2
S

∑
K∈Th

h2K

(∫
K

(∇u∗ : ∇w∗

|∇u∗|
)
(x)
(
∇(u∗ − v∗)

)
(x) : (∇z∗h)(x) dx

+

∫
K

((|∇v∗| − |∇u∗|
)
∇u∗ : ∇w∗

|∇u∗||∇v∗|
)
(x) (∇v∗)(x) : (∇z∗h)(x) dx

+

∫
K

( |∇u∗|∇(u∗ − v∗) : ∇w∗

|∇u∗||∇v∗|
)
(x) (∇v∗)(x) : (∇z∗h)(x) dx

)
.
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There also, we use Cauchy–Schwarz inequalities, note that∣∣|∇v∗| − |∇u∗|
∣∣ ≤ |∇(u∗ − v∗)|,

and conclude by using (21).

Lemma 6 If property (6) is satisfied, the following estimate holds for the quantity
εh = ∥Fh(u)∥H1(Ω)d :

εh ≤ c(f)hmin{s0,2− d
2 },

where the real number s0 is introduced in Proposition 1 and c(f) only depends on
∥f∥L2(Ω)d .

Proof: We observe that

∥Fh(u)∥H1(Ω)d = ∥F(u)−Fh(u)∥H1(Ω)d ≤ ∥
(
S−Sh

)
G(u)∥H1(Ω)d+∥Sh AS(u)∥H1(Ω)d .

The first term is bounded by c(f)hs0 owing to Lemma 3. To estimate the second one,
we observe that, for zh running through the unit ball of Xh,

aS(u, zh) = C2
S

∑
K∈Th

h2K

∫
K

|∇uh′ |(x) (∇uh′)(x) : (∇zh′)(x) dx,

with uh′ = (Id − Πh)u, zh′ = (Id − Πh)zh. We use once (21) to bound
∥∇zh∥L∞(Ω)d×d , which yields a bound by a constant times h2−

2
d . All this leads to

the desired result.

3.4 A priori error estimates for the discrete problem

Thanks to the previous technical lemmas, we are in a position to prove the main result
of this section owing to the key Theorem in [7].

Theorem 7 Assume that the datum f belongs to L2(Ω)d and that (u, p) is a
nonsingular solution of problem (2), together with condition (6). There exists a
neighbourhood of u and a real number h∗0 such that, for all h ≤ h∗0, problem (7) has
a unique solution (uh, ph) with uh in this neighbourhood. Moreover, the following a
priori error estimate holds

∥u− uh∥H1(Ω)d + ∥p− ph∥L2(Ω) ≤ c(f)hmin{s0,2− d
2 }, (22)

where the real number s0 is introduced in Proposition 1 and c(f) only depends on
∥f∥L2(Ω)d .

Proof: Since the quantity εh tends to zero when h tends to zero, when taking h∗0 such
that 4λµ2 εh∗

0
< 1, the existence of a uh solution of problem (17) in the ball with centre

u and radius < 1
2λµ and the estimate for ∥u− uh∥H1(Ω)d are a direct consequence of

[7](Thm 1) (see also [13](Chap. IV, Thm 3.1)). Then the existence of a ph such that
(uh, ph) is a solution of problem (7) and the estimate for ∥p − ph∥L2(Ω) are easily
derived from the inf-sup condition (11).

Of course, higher order estimates can be derived when the solution (u, p) is
smoother. From now on, dm(v, E) stands for the distance of a function v to a Banach
space E in the norm of Hm(Ω).
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Corollary 8 Assume that the operator Πh satisfies for all s, 0 ≤ s ≤ 2, and for all v
in Hs+1(Ω)d,

∥(Id−Πh)v∥H1(Ω)d ≤ C hs ∥v∥Hs+1(Ω)d .

If the assumptions of Theorem 7 hold and moreover the solution (u, p) belongs to the
space Hs+1(Ω)d×Hs(Ω) for some s > d

2 , the following a priori error estimate holds

∥u− uh∥H1(Ω)d + ∥p− ph∥L2(Ω) ≤ C(u, p)
(
h2 + d1(u,Xh) + d0(p,Mh)

)
(23)

where the constant C(u, p) now depends on the norms of u and p in these new spaces.

It can be noted that in any case the convergence order is limited to 2 due to the
addition of the subgrid eddy viscosity term. So it is useless to work with very high
degree polynomials. In any case, a convergence of order 2 for smooth solutions of
Navier–Stokes equations is a good result, we do not intend to go further.

4 A posteriori analysis

We now introduce the error indicators we work with. We successively prove an
upper bound for the error (as a function of the indicators), next upper bounds for the
indicators.

4.1 The error indicators

We agree to denote by T h the triangulation Th if the spaces Xh′ and Mh′ are associated
with this same triangulation or the triangulation Th′ if the spaces Xh′ and Mh′ are
associated with a refined triangulation Th′ . For each K in T h, we denote by EK the
set of edges (d = 2) or faces (d = 3) of K which are not contained in ∂Ω. For each e
in EK , he stands for the length (d = 2) or diameter (d = 3) of e and the jump through
e is denoted by [·]e (we do not make its sign precise since it is not necessary).

From now on, we assume that the datum f belongs to L2(Ω)d and we consider an
approximation fh of f which is polynomial on each element K of T h.

We prefer to introduce two families of error indicators, in order to treat separately
the subgrid eddy viscosity term:

(i) for each K in T h, the error indicator linked to the variational multi-scale
discretization is defined by

ηK = hK ∥fh + ν∆uh − (uh · ∇)uh −∇ph∥L2(K)d

+
∑
e∈EK

h
1
2
e ∥[ν ∂nuh − ph n]e∥L2(e)d + ∥∇ · uh∥L2(K). (24)

(ii) for each K in T h, the error indicator linked to the eddy viscosity term is defined
by

ηSK = (CS hK)2 ∥∇uh′∥2L4(K)d×d .

It can be noted that all these indicators are easy to compute once the discrete solution
is kwown.
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4.2 Upper bounds for the error

We now compute the residuals of the discrete equation, namely the quantity R defined
for any v in H1

0 (Ω)
d by

⟨R,v⟩ = ⟨f ,v⟩ − a(uh,v)− c(uh,uh,v)− b(v, ph), (25)

and its analogue R∗ defined for any q in L2(Ω) by∫
Ω

R∗(x)q(x) dx =

∫
Ω

(∇ · uh)(x)q(x) dx. (26)

By substracting the discrete problem (7), we obtain, for all vh in Xh,

⟨R,v⟩ = ⟨f ,v−vh⟩−a(uh,v−vh)−c(uh,uh,v−vh)−b(v−vh, ph)−aS(uh,vh).
(27)

We assume that the operator Πh is locally stable: There exists a constant C
independent of h such that for all v ∈ H1(Ω)d, and for each K ∈ T h,

∥Πhv∥H1(K)d ≤ C ∥v∥H1(δK)d ,

where δK is a finite set of elements of T h, whose cardinal is uniformly bounded in h.
This property is verified by interpolation operators that are defined locally. The set

δK is typically formed by elements of T h located in a neighbourhood of K of radius
of order h (Cf. [4]).

This leads to the following lemma.

Lemma 9 Assume that the space Xh contains the space X1
h introduced in (12), that

the operator Πh is locally stable and that property (6) holds. Then the residual R
satisfies the following estimate

∥R∥H−1(Ω)d ≤ c
( ∑
K∈T h

(η2K + η2SK + h2K ∥f − fh∥2L2(K)d)
) 1

2

. (28)

Proof: This estimate relies on fully standard arguments, more precisely, starting from
equation (27):
1) We add and subtract the term ⟨fh,v − vh⟩;
2) We integrate by parts the terms a(uh,v − vh) and b(vh, ph) on each K;
3) Using the fact that Xh contains the space X1

h introduced in (12), we take vh equal
to the image of v by a Clément type regularization operator (see [4](Chap. IX, Section
3) for instance), so that for each K in T h and each e in EK ,

∥v − vh∥H1(K)d + h
− 1

2
e ∥v − vh∥L2(e)d + h−1

K ∥v − vh∥L2(K)d ≤ c ∥v∥H1(∆K)d ,

where ∆K is the union of elements of T h which intersect K;
4) Finally, we bound aS(uh,vh) by

aS(uh,vh) ≤
∑

K∈T h

(CS hK)2 ∥∇uh′∥2L4(K)d×d ∥∇vh′∥L2(K)d×d .
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Using the local stability of Πh, since vh′ is equal to (Id−Πh)vh,

∥vh′∥H1(K)d ≤ C ∥vh∥H1(δK)d ≤ C ′ ∥v∥H1(∆′
K)d ,

where ∆′
K is the union of the ∆K′ for K ′ running through δK . Then,

aS(uh,vh) ≤
∑

K∈T h

ηSK ∥v∥H1(∆′
K)d .

Now standard arguments yield (28).
Thanks to the theorem of Pousin and Rappaz [21], we are now in a position to state

an upper bound for the error.

Proposition 10 If property (6) is satisfied, the following a posteriori error estimates
hold between a nonsingular solution (u, p) of problem (2) and the solution (uh, ph) of
problem (7) associated with it in Theorem 7

∥u− uh∥H1(Ω)d + ∥p− ph∥L2(Ω) ≤ C
( ∑
K∈T h

(η2K + η2SK + h2K ∥f − fh∥2L2(K)d)
) 1

2

.

(29)

Proof: We proceed in two steps.
1) We introduce the following operator S as an extension of S: With any datum f in
H−1(Ω)d and g in L2

0(Ω), it associates the part u of the solution (u, p) of the problem

Find (u, p) in H1
0 (Ω)

d × L2
0(Ω) such that a(u,v) + b(v, p) = ⟨f ,v⟩, ∀v ∈ H1

0 (Ω)
d,

b(u, q) =

∫
Ω

g(x)q(x)dx, ∀q ∈ L2
0(Ω).

Let F be the mapping given by: F(u) = u− S(G(u), 0) (this is just an extension
of (15)). This function is continuous from H1

0 (Ω)
d into itself; moreover the mapping:

v 7→ DF(v) is Lipschitz continuous in a bounded neighbourhood of u and DF(u)
is an isomorphism of H1

0 (Ω)
d. Thus, applying [21](Thm 3) (see also [25](Prop. 2.1))

yields

∥u− uh∥H1(Ω)d ≤ C ∥F(uh)∥H1(Ω)d = C∥F(u)−F(uh)∥H1(Ω)d .

By using the continuity of S, we obtain from (25) and (26)

∥u− uh∥H1(Ω)d ≤ C
(
∥R∥H−1(Ω)d + ∥R∗∥L2(Ω)

)
. (30)

Thanks to Lemma 9 and the definition (26) of R∗, we obtain the desired estimate for
∥u− uh∥H1(Ω)d .
2) From definition (25), we have

b(v, p− ph) = ⟨R,v⟩ − a(u− uh,v)− c(u,u,v) + c(uh,uh,v).
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Thus, owing to the previous estimate and Lemma 9, we easily derive the estimate for
∥p− ph∥L2(Ω) from the inf-sup condition (3).

However a simpler estimate can be derived with a further non restrictive hypothesis
(but without condition (6)).

Corollary 11 If the space Xh contains the space X1
h defined in (12), the following a

posteriori error estimate holds between a nonsingular solution (u, p) of problem (2)
and the solution (uh, ph) of the problem (7) associated with it in Theorem 7

∥u− uh∥H1(Ω)d + ∥p− ph∥L2(Ω) ≤ C
( ∑
K∈T h

(η2K + h2K ∥f − fh∥2L2(K)d)
) 1

2

. (31)

Proof: We start once again from (30). In part 3) of the proof of Lemma 9, due to
the new assumption, the function vh can be taken in Xh, so that vh′ = (Id − Πh)vh

is equal to zero and thus the term aS(uh,vh) vanishes. All this gives the simplified
estimate for ∥u−uh∥H1(Ω)d , and the estimate for ∥p−ph∥L2(Ω) follows from exactly
the same arguments as previously.

Remark 4 The hypothesis that Xh contains the space X1
h, that yields Lemma 9, is

lighter than the hypothesis that Xh contains the space X1
h, that yields to Corollary 11.

In the last case the error indicators ηSK are not needed, and we recover the same error
indicator as for Navier–Stokes equations.

4.3 Upper bounds for the indicators

In an obvious way, we can write equation (25) as∑
K∈T h

(∫
K

(fh + ν∆uh − (uh · ∇)uh −∇ph) · v(x)dx

+
1

2

∑
e∈EK

∫
e

[ν ∂nuh − ph n]e(τ) · v(τ)dτ
)

= a(u− uh,v) + c(u,u,v)− c(uh,uh,v) + b(v, p− ph)− ⟨f − fh,v⟩,
(32)

for a given unit normal vector n to e and the appropriate sign for [·]e. Similarly we
have for all q in L2

0(Ω) ∫
Ω

(∇ · uh)(x)q(x) dx = b(u− uh, q) (33)

Thus bounding the three terms in the indicators ηK follows from standard arguments
that we briefly recall.

Proposition 12 Each indicator ηK defined in (24), K ∈ T h, satisfies

ηK ≤ C
(
∥u− uh∥H1(ωK)d + ∥p− ph∥L2(ωK) +

∑
κ⊂ωK

hκ ∥f − fh∥L2(κ)d
)
, (34)

where ωK stands for the union of elements of T h that share at least an edge (d = 2)
or a face (d = 3) with K.
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Proof: We bound successively the three terms in ηK .
1) If ψK denotes the bubble function on K (equal to the product of the Lagrange
coordinates associated with the vertices of K), we set:

vK =

{ (
fh + ν∆uh − (uh · ∇)uh −∇ph

)
ψK on K,

0 elsewhere.

Taking v equal to vK (which belongs to H1
0 (Ω)

d) in (32) gives

∥
(
fh + ν∆uh − (uh · ∇)uh −∇ph

)
ψ

1
2

K∥2L2(K)

≤
(
∥u− uh∥H1(K)d + ∥p− ph∥L2(K)

)
∥vK∥H1(K)d + ∥f − fh∥L2(K)d∥v∥L2(K)d .

(35)
Using standard inverse inequalities, see [25] (Lemma 3.3) for instance, and multiplying
by hK thus yield

hK ∥fh + ν∆uh − (uh · ∇)uh −∇ph∥L2(K)d

≤ C
(
∥u− uh∥H1(K)d + ∥p− ph∥L2(K) + hK ∥f − fh∥L2(K)d

)
.

(36)

2) To bound the terms on the edges or faces and, for each e in EK , we introduce a fixed
lifting operator Le,K

• that maps functions on e vanishing on ∂e into functions on K vanishing on
∂K \ e,

• and is constructed from a fixed lifting operator on the reference triangle or
tetrahedron.

Next, for each edge e in EK shared by the two elements K and K ′ of T h, we set:

ve =

{
Le,κ

(
[ν ∂nuh − ph n]e ψe

)
on κ ∈ {K,K ′}

0 elsewhere,

where ψe is now the bubble function on e. By taking v equal to ve in (32) and using
the same inverse inequalities as previously and other ones, see once more [25](Lemma
3.3), together with estimate (36), we derive

h
1
2
e ∥[ν ∂nuh − ph n]e∥L2(e)d

≤ C
∑

κ∈{K,K′}

(
∥u− uh∥H1(κ)d + ∥p− ph∥L2(κ) + hκ ∥f − fh∥L2(κ)d

)
.

(37)
3) Finally, we set:

qK = (∇ · uh)χK ,

where χK is now the characteristic function of K. Taking q equal to qK in (33)
immediately yields

∥∇ · uh∥L2(K) ≤ ∥u− uh∥H1(K)d . (38)

The proposition is now a direct consequence of (36), (37) and (38).
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Estimate (34) is fully local. But a direct consequence of it is that( ∑
K∈T h

η2K
) 1

2 ≤ C
(
∥u−uh∥H1(Ω)d+∥p−ph∥L2(Ω)+

( ∑
K∈T h

h2K ∥f−fh∥2L2(K)d

) 1
2

)
.

When compared with (31), this last estimate proves the optimality of the family of
indicators (ηK)K∈T h

. Moreover, since estimate (34) is local, it can be hoped that
these indicators are an efficient tool for adapting the mesh.

Remark 5 If the space Xh contains the space X1
h defined in (12), the following upper

bound can be proved for the indicators ηSK , K ∈ T h,∑
K∈T h

η
3
2

SK ≤ C
( h

hmin

)1− d
4
∑

K∈T h

(ηK + hK ∥f − fh∥L2(K))
3
2 , (39)

where hmin stands for the minimum of the hK , K ∈ Th. Even if the family of
triangulations is uniformy regular (which means that hmin ≥ c h), estimate (39) is
not fully optimal with respect to (29) since it involves a bad power of the indicators.
Proving local estimates seems rather difficult for general finite elements.

4.4 A look at the standard subgrid eddy viscosity discretization

For a while, we consider the simple mono-scale discrete problem

Find (uh, ph) in Xh ×Mh such that{
a(uh,vh) + c(uh,uh,vh) + b(vh, ph) + ãS(uh,vh) = ⟨f ,vh⟩, ∀vh ∈ Xh,
b(uh, qh) = 0, ∀qh ∈ Mh,

where the new Smagorinsky eddy viscosity form ãS(·, ·) is now defined by

ãS(u,v) =

∫
Ω

νS(u)(x) (∇u)(x) : (∇v)(x) dx.

By the same arguments as in Section 3, it is readily checked that this problem has a
unique solution (uh, ph) in a neighbourhood of a nonsingular solution of problem (2)
which still satisfies the a priori error estimates (22) and (23).

On the other hand, for each K in T h, we introduce the modified error indicator
linked to the new Smagorinsky term

η̃SK = (CS hK)2 ∥∇uh∥2L4(K)d×d .

The same arguments as for Proposition 10 lead to the estimate

∥u−uh∥H1(Ω)d + ∥p− ph∥L2(Ω) ≤ C
( ∑
K∈T h

(η2K + η̃SK
2
+h2K ∥f − fh∥2L2(K)d)

) 1
2

,

and the upper bound (34) still holds for the indicators ηK . However, concerning the
indicators η̃SK , we can only prove the analogue of (39), which is not optimal. This
lack of optimality brings to light the interest of using a multi-scale discretization.
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5 Numerical experiments

The computations are performed with the code FreeFem++ due to Hecht and Pironneau
[15]. We have decided here to work with the final spaces associated with Taylor–
Hood finite elements, see [6](Chap. VI, Example 3.5) or [13](Chap. II, Sect. 4.2) for
instance. More precisely, these spaces are defined by

Xh =
{
vh ∈ H1

0 (Ω)
d; ∀K ∈ Th, vh|K ∈ P2(K)d

}
,

Mh =
{
qh ∈ H1(Ω) ∩ L2

0(Ω); ∀K ∈ Th, qh|K ∈ P1(K)
}
.

Note that the space Mh coincides with the space M1
h defined in (13). Moreover it

is well-known that the inf-sup condition (11) holds for these spaces. We take the space
Xh equal to the space X1

h introduced in (12), namely

Xh =
{
vh ∈ H1

0 (Ω)
d; ∀K ∈ Th, vh|K ∈ P1(K)d

}
,

and finally the operator Πh equal to the Lagrange interpolation operator at all vertices
of elements of Th which are not on the boundary ∂Ω with values in Xh. Nothing more
is needed to implement the discrete problem (7).

As Xh contains (in fact, is equal to) the space X1
h, owing to the error estimate (4.10)

we only use the estimators ηK to perform the grid adaptations.
We have decided to present two numerical experiments. The first one deals with a

flow with known smooth solution in order to test the efficiency of the error estimators
ηK and the ability of the grid adaptation process to obtain accurate solutions with
reduced computational time. The second one involves a more realistic case (the step
flow) to check the ability of the grid adaptation process to accurately solve a flow with
low smoothness at large Reynolds number. In both cases we consider laminar flows,
the application to fully turbulent flows is in progress.

5.1 Case of a given solution

This test analyzes the efficiency of the error indicators ηK defined by (24). We check
whether the error ∥u−uh∥H1(Ω)d is proportional to the Hilbertian sum of the indicators( ∑

K∈Th

η2K

)1/2

asymptotically as h→ 0 for small values of the laminar diffusion ν.

We consider the square domain Ω =]0, π[×]0, π[, and the pair (velocity, pressure)
given by

u(x, y) =
(
ey sin(x),−ey cos(x)

)
, p(x, y) = ex+y + x2 + c,

where the constant c is set to have a zero-mean pressure. The pair (u, p) is solution
of the Navier–Stokes equations (1) with an appropriate r.h.s. f and non-homogeneous
Dirichlet boundary conditions.

The solution of the discrete problem (7) has been computed through a single
fixed point iteration based upon linearization of this problem. This simple procedure
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converges without difficulty for all values of ν tested, ν = 10−1, ν = 10−2, ν = 10−3

and ν = 2 × 10−4. The initialization is the solution of the Stokes problem with the
same ν. The procedure is assumed to have converged when the relative error between
the L2(Ω)-norm of two consecutive iterates is smaller than 10−8. We have used non-
structured meshes to avoid possible super-convergence effects.

We first check the efficiency of the error indicator by computing the efficiency
index, i.e., the ratio of the relative error to the Hilbertian sum of the indicators. Tables
1 to 4 display these results corresponding to the four values of the Reynolds numbers
here equal to 1

ν , respectively, for increasing numbers of degrees of freedom.

Degrees of freedom CPU Time Relative Error Sum Indicators Efficiency
1192 18.44 0.076481 19.4276 0.003937
4460 68.05 0.031235 4.04622 0.007720
9897 125.05 0.016780 1.931050 0.008690
17728 195.66 0.010158 1.030970 0.009853
27305 325.99 0.006380 0.641225 0.009950
39159 440.47 0.005159 0.479480 0.010761
52534 573.74 0.004103 0.368128 0.011147
68708 685.35 0.003551 0.293501 0.012100
85665 768.25 0.002753 0.241493 0.011398
108184 967.91 0.002078 0.183102 0.011347

Table 1: Efficiency for Re = 10

Degrees of freedom CPU Time Relative Error Sum Indicators Efficiency
1192 25.62 0.137147 23.2329 0.005903
4460 105.19 0.076050 5.269140 0.014433
9897 185.15 0.047807 2.853680 0.016753
17728 350.90 0.035531 1.781520 0.019944
27305 517.89 0.025477 1.169900 0.021777
39159 696.21 0.020265 0.893653 0.022676
52534 879.45 0.015772 0.700153 0.022526
68708 1123.80 0.014649 0.620200 0.023620
85665 1500.64 0.011526 0.491341 0.023458
108184 1790.11 0.009919 0.423223 0.023437

Table 2: Efficiency for Re = 100

In all cases the efficiency index tends to a constant as the number of degrees of
freedom increases. This is made apparent in Figure 1, that displays the efficiency
index for all cases considered.

We also have compared the CPU time required to achieve an error below a certain
tolerance for all considered Reynolds numbers, between the direct calculation in a
fixed grid and the adaptive calculation. The results are displayed in Table 5. The CPU
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Degrees of freedom CPU Time Relative Error Sum Indicators Efficiency
1192 26.65 0.151984 23.9895 0.006335
4460 113.71 0.100590 5.990380 0.016792
9897 210.73 0.070909 3.692480 0.019204
17728 396.32 0.060863 2.759200 0.022058
27305 588.75 0.052434 2.190070 0.023942
39159 853.88 0.044483 1.791170 0.024835
52534 1086.01 0.036521 1.454960 0.025101
68708 1389.95 0.034326 1.351890 0.025391
85665 1864.85 0.028890 1.184070 0.024399
108184 2168.61 0.026960 1.063480 0.025350

Table 3: Efficiency for Re = 1000

Degrees of freedom CPU Time Relative Error Sum Indicators Efficiency
1192 27.23 0.153598 24.0634 0.006383
4460 121.41 0.104726 6.089710 0.017197
9897 225.29 0.076238 3.858290 0.019759
17728 430.01 0.066984 2.968460 0.022565
27305 684.72 0.061366 2.504370 0.024504
39159 965.48 0.053840 2.197200 0.024504
52534 1366.51 0.046629 1.805160 0.025831
68708 1611.31 0.044679 1.716120 0.026035
85665 2248.91 0.040041 1.520500 0.026334
108184 2962.29 0.039491 1.580815 0.024981

Table 4: Efficiency for Re = 5000

Re ν Relative Error CPU Time Relative Error CPU Time Gain
direct direct with with

adaptation adaptation
10 1.e-1 0.002078 967.91 0.001785 248.68 3.9
100 1.e-2 0.020265 696.21 0.020538 311.16 2.2
100 1.e-2 0.009919 1790.11 0.008803 469.35 3.8
1000 1.e-3 0.036521 1086.01 0.037762 370.63 2.9
1000 1.e-3 0.026960 2168.61 0.017130 1104 2.0
5000 2.e-4 0.046629 1366.51 0.04766 431.62 3.2
5000 2.e-4 0.039491 2962.29 0.028350 1548.02 1.9

Table 5: Comparison of CPU times, direct versus adaptive solution
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Figure 1: Efficiency of the indicators

time gain ranges from 2 to 4, essentially depending on the number of grid adaptations
required to achieve the prescribed tolerance.

5.2 A more realistic case

In this test we analyze the performance of our adaptive strategy to solve a well known,
but rather hard to solve, problem. This is the backward-facing step flow. This flow
takes place in a non-convex domain, and consequently the velocity and pressure have
a low accuracy. In this flow the challenge is to accurately compute the reattachment
length, here denoted by x1, which is the length of the main recirculating region behind
the step. We refer to [1] and [10] for a more detailed description of the difficulties
linked to this problem.

The characteristics of the backward-facing step flow considered in this study are
shown in Figure 2, where hl=5.2, H=10.1, h=4.9.

The Reynolds number is defined as Re = UD
ν , where U is the inlet mean velocity

or in other words two thirds of the maximum inlet velocity and D is the hydraulic
diameter of the inlet channel D = 2hl. To change the Reynolds number, we set the
value of the laminar viscosity to ν = 15, and we re-scale the inlet velocity profile.

The single fixed point iteration used in Section 5.1 fails here, even for moderate
Reynolds numbers. Instead, we have used a Newton method with a continuation
strategy with respect to the Reynolds number: The initialization to compute Re = 100
is the solution for Re = 10, and so on for all values considered: Re = 100, Re = 300,
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Figure 2: Geometric characteristics of backward-facing step problem

Re Our x1 Our x1 Ref. [1]
(without adapt.) (with adapt.) (experimental)

100 3.01114 3.00439 2.98
300 6.38367 6.66069 6.66
500 9.68886 9.91935 10.10
1000 17.55904 17.70518 17.86

Table 6: Comparison of reattachment points

Re = 500 and Re = 1000. For larger values the flow becomes unsteady, up to
Re ≃ 8.000, where the flow becomes fully turbulent.

The computation for non-adapted grids also uses a continuation strategy with
respect to the Reynolds number, where the initialization for the current Reynolds
number is the solution obtained with the adapted grid with the preceding Reynolds
number. If instead of this initialization we use the solution with the non-adapted grid
for the preceding Reynolds number, the Newton’s method does not converge. Then,
the comparison of CPU times is not meaningful. Let us say, anyhow, that these times
are similar, but the precision obtained with the adaptive procedure is better than the
one obtained with the direct solution (see Table 6).

6 Conclusions

In this paper we have developed the a posteriori error analysis of a sub-grid eddy
viscosity - VMS method. This is a method formally with two grids that only needs a

Figure 3: Streamlines of the adaptive solution for Re = 1000
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grid and an interpolation operator on a virtual coarser grid to be programmed. The sub-
grid eddy viscosity effects are taken into account by means of the Smagorinsky model
with a projection term that filters the action of eddy viscosity on the large resolved
scales.

We have proved that the standard a posteriori error analysis for Navier–Stokes
equations may be extended to the VMS model considered. This mainly arises because
the eddy viscosity term is locally Lipschitz in H1 norm. We obtain the same family of
error indicators as for the Navier–Stokes equations, due to the projection structure of
the eddy viscosity term. This error estimator is optimal. A more general error estimator
is needed for the standard Smagorinsky turbulence model, that does not seem to be
optimal.

Our numerical tests yield quite satisfying results for analytic and step flow
problems in laminar regime. We obtain a remarkable computing time saving with a
very good accuracy. The application to fully turbulent flows is in progress.
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