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Abstract

This paper focuses on the generalization of the HLLC Riemann solver
for nonconservative problems. First, the general ideas of the extension of the
HLLC solvers for nonconservative systems are discussed. Then, two particular
HLLC solvers are described for a turbidity current model with sediment trans-
port. Some results concerning the positivity of the corresponding schemes are
presented. Several numerical tests are performed to compare the two HLLC
solvers among them and with a Roe method.

keywords: Well-balanced, Finite Volume Method, path-conservative, simple Rie-
mann solver, HLLC.

1 Introduction

The goal of this paper is to extend to nonconservative hyperbolic systems HLLC
Riemann solver. HLL solver was introduced by Harten, Lax, and van Leer in [11]
in the framework of systems of conservation laws. The main idea of this solver
is to approximate exact solutions of Riemann problems by a simplified solution
consisting in two waves speeds which separate three constant states. This incomplete
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Riemann solver is the basis of many efficient and robust Godunov-type schemes.
Nevertheless, for systems with three or more equations, the assumption of a two-
wave configuration may lead to inaccurate resolution of some physical features such
as contact discontinuities, shear waves, etc. This motivated the introduction of
HLLC Riemann solver (where C stands for Contact) by Toro, Spruce, and Speares
in [26]. HLLC solver introduces one or more intermediate waves to the structure of
the approximate solutions of the Riemann problem, improving thus the accuracy of
the scheme.

In [21], the concept of approximate Riemann solvers was generalized to noncon-
servative systems and provides a suitable framework to extend incomplete Riemann
solvers and in particular HLLC scheme. This framework is based on the definition
of weak solutions by Dalmaso, LeFloch and Murat in [8] and will allows us to define
a HLLC scheme for the particular P.D.E. system that models turbidity currents.
Besides its practical interest, this model may be considered as a prototype of hyper-
bolic systems with nonconservative products and source terms and the main ideas
can be easily extended.

The system for turbidity currents presented here was introduced in [18] where
a path-conservative Roe scheme was proposed for numerical simulations. It is well
known that Roe solvers define an approximate solution of Riemann problems com-
posed by a number of waves equals to the number of equations. Roe scheme is what
we call a complete Riemann solver as all the intermediate waves are taken into ac-
count and it needs an explicit knowledge of the eigenstructure of the system. This
makes Roe scheme to be an expensive scheme from the computational point of view
and a less expensive and accurate scheme is desired.

The major difficulty in numerical discretization of nonconservative systems is
that the formal consistency with a particular definition of weak solutions does not
imply that the limits of the numerical approximations are weak solutions according
to the prescribed definition: this difficulty, that also appears when nonconservative
numerical schemes are applied to systems of conservation laws (see [12]), has been
studied in [5]. Another example of this phenomenon has been shown in [1]. In
practice, this difficulty, which is related to numerical viscosity of the scheme, may
be observed in the presence of shocks in numerical solutions that do not satisfy the
prescribed jump conditions for the definition of weak solutions (see [23] for further
details). Nevertheless, the error committed in shocks may be small compared to
discretization or modeling errors and is only relevant in presence of large shocks.

This paper is organized as follows: in Section 2 we present the general equations
of the turbidity currents model. In Section 3, some preliminary definitions are
introduced with focus in approximate Riemann solvers.

In Section 4 HLLC solvers are introduced in a general framework which will be
used to derive a HLLC solver for turbidity currents in Section 5. Two types of
HLLC solvers will be presented. The first one, to which is devoted most of Section
5, will be called essentially three wave HLLC solver (E3W-HLLC). The second one,
which is only briefly described here, will be called a four wave HLLC solver (4W-
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HLLC). While the second one is more complex and general than the first one, we
will see that numerical simulations obtained with it are only slightly improved. The
positivity-preserving properties of the corresponding numerical schemes as well as
their relationship with the Suliciu relaxation method for the shallow water system
studied in [3] will be analyzed.

Finally, some numerical tests are presented in Section 6 to validate the numerical
schemes, and comparison with Roe’s method introduced in [18] are provided. A
study of above mentioned difficulties on convergence for discontinuous solutions will
also be made.

2 Turbidity current model

When a river that flows into the sea carries a high concentration of suspended
sediment, to the extent that the density of the river is greater than that of the
receiving ambient water, the river plunges into the ocean creating what we call a
turbidity current or hyperpycnal plume. This plume can travel significant distances
until it loses its identity by entraining surrounding ambient water and dropping its
sediment load. In [18] a new model for the simulation of turbidity currents was
introduced. This model can be described as follows: let us consider ns ≥ 1 species
of sediments with constant density ρj, for j = 1, . . . , ns transported by a river with
freshwater of constant density ρ0. The river flows in an ambient fluid (in general
the sea) of density ρw.

The governing equations for the dilute turbidity current are as follows:





∂th+∇x · (h~u) = φη + φb,

∂t(h~u) +∇x · (h~u⊗ ~u) +∇x

(
g (R0 +Rc)

h2

2

)
= −g (R0 +Rc)h∇x(zb −H)+

+~uφη +
~u

2
φb,

∂t(hcj) +∇x · (hcj~u) = φjb, for j = 1, . . . , ns,

∂tzb +∇xqb = −ξφb,
(2.1)

where h is the thickness of the plume; ~u is the depth-averaged horizontal velocity;
cj for j = 1, . . . , ns represents the vertically averaged volume concentration of the
jth sediment specie; c =

∑ns

i=1 cj, is the total sediment concentration; and

Rj =
ρj − ρ0

ρ0

, for j = 1, . . . , ns; R0 =
ρ0 − ρw
ρ0

; and Rc =
ns∑

j=1

Rjcj. (2.2)

We will denote by ~q = h~u the water discharge.

3



H(x)

h(t, x)

zb(t, x)

Free Surface

H(x) − h(t, x)− zb(t, x)

Hyperpycnal fluid

ρ =
∑ns

j=0 ρjcj

Erodible bed

Bedrock

Water entrainement

Erosion and
deposition

ρw

u(t, x)

Figure 1: Sketch of a turbidity current.

Remark 2.1 When the ambient fluid is the sea the approximation ρ0 ≈ ρw may be
considered and thus R0 = 0. When the ambient fluid is the air, the approximation
ρw ≈ 0 may be taken and thus R0 = 1.

zb−H is the interface between the bottom and the fluid. zb is the thickness of the
sediment layer which may be modified by the fluid by erosion, deposition or bedload
transport. H is the depth from the surface where the non-erodible bottom is located
(see Fig. 1). Finally, qb = qb(h, ~u, c, zb) represents the solid transport discharge,
which is usually given by an empirical formula. Many different expressions of this
formula have been proposed in the literature. Among the simplest ones we find the
formula proposed by Grass [10]:

qb(~u) = ξA|~u|m−1~u, (2.3)

where A is the constant of interaction between the fluid and the sediment layer, ξ is
related to the porosity p ∈ [0, 1] by ξ = 1

1−p , and m is a parameter which is usually

set to m = 3. We refer to [6] and [18] and the references therein for details about
some other possible expressions for qb.

Fowler proposes in [9] (see also [17]) a new expression of qb that depends not
only on the flow variables, as it is the case in (2.3) but also on the thickness of the
sediment layer. This dependence is in agreement with the physics of the problem: if
zb = 0, the sediment transport flux has to be 0, which is not the case for the Grass
model. Therefore, we will consider here the following modified Grass solid transport
discharge:

qb = ξ
zb
z̄
A|~u|m−1~u,

where z̄ is a mean value of the thickness of the sediment layer.
In what follows, we shall consider this modification for solid transport discharge

and denote by
qb = zbq̃b(h, ~u, c) (2.4)
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where

q̃b(h, u, c) = ξ
A

z̄
|~u|m−1~u. (2.5)

Nevertheless, everything that will be said and in particular Section 5 remains valid
if we use any of the well-known classical formulae for q̃b.

The source terms φη and φjb represent respectively the amount of sea water
entrained and mixed by turbulence to the plume, and the deposition/erosion flux
of the jth sediment specie. These source terms are given by different empirical
laws which depend on the physical properties of the sediment. In general, water
entrainment is described as

φη = Ew|~u|, (2.6)

where Ew is some function which depends on the Richardson number Ri =
Rcgh

|~u|2 .
The sediment flux at the bed of the jth specie is determined from the rates of

deposition (F j
d ) and erosion (F j

e ),

φb =
ns∑

j=1

φjb, φjb = F j
e − F j

d , F j
d = vsj

cbj , F j
e = vsj

pjEsj
, (2.7)

where vsj
is the settling velocity, cbj is the near bed concentration of sediment which

may be described in terms of cj, pj is the volumetric concentration of sediment j in
the bed and Esj

is a function that usually depends on the velocity ~u. We remark
that there are some discrepancies in the mathematical expression of the source terms
φη and φjb. The expressions proposed in [24], [15], [13] and [18] are among the most
used, but some variants may be found in [2], [4] and [14]. We refer to those works
for further details.

Remark that system (2.1) is invariant under rotation. This rotational invariance
allows us to easily define a numerical scheme for (2.1) from any given numerical
scheme defined for the one-dimensional case as it is done in [???]. For the sake of
simplicity and without loss of generality we shall consider the one-dimensional case
with one sediment specie whose concentration is denoted by c. We also consider
R0 = 1 (see Remark 2.1). The PDE system reduces to:





∂th+ ∂x(hu) = φη + φb,

∂t(hu) + ∂x

(
hu2 + g (1 +Rc)

h2

2

)
= −g (1 +Rc)h∂x(zb −H) + uφη +

u

2
φb,

∂t(hc) + ∂x(hu c) = φb,

∂tzb + ∂xqb = −ξφb,
(2.8)

where R = (ρ1 − ρ0)/ρ0. This system can be rewritten as follows:

∂tW + ∂xF (W ) +B(W )∂xW − S(W )∂xH = G(W ) (2.9)
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where W = (h, uh, hc, zb), F (W ) = FC(W ) + FP (W ) being

FC(W ) =




hu
hu2

huc
qb


 , FP (W ) =




0
1
2
g(1 +Rc)h2

0
0


 , (2.10)

B(W ) =




0 0 0 0
0 0 0 g(1 +Rc)h
0 0 0 0
0 0 0 0


 , S(W ) =




0
g(1 +Rc)h

0
0


 , (2.11)

and

G(W ) =




φη + φb

uφη +
u

2
φb

φb

−ξφb


 . (2.12)

Finally, system (2.9) can also be rewritten in a more compact form as follows:

∂t

(
W
H

)(
A(W ) −S(W )

0 0

)
∂x

(
W
H

)
=

(
G(W )

0

)
, (2.13)

with A(W ) = J(W ) + B(W ), where J(W ) = ∂WF (W ) represents the Jacobian
matrix of the flux function F (W ).

In [18] it was shown that system (2.8) is hyperbolic under some hypothesis on the
solid flux qb. Although it is not strictly hyperbolic one can always find a complete set
of eigenvectors for the system. Moreover, it can be shown that the eigenvalues of the
system are u with multiplicity equal to the number of sediment species plus three
eigenvalues: two external eigenvalues SL, SR, that may be approximated by u −√
g(1 +Rc)h, u+

√
g(1 +Rc)h plus a small eigenvalue SM ≈ 0. The eigenvalue SM

is usually associated with the propagation of disturbances of the bed, while SL and
SR are identified with the surface-wave celerities for a fixed-bed flow. Nevertheless,
this is a rather simplified point of view only valid for small interactions between the
fluid and the bed as well as small Froude number. In general, surface waves move
in tandem with the bed waves, so that bed and surface waves interact strongly and
SL, SR describe the propagation of both surface waves and bed waves and each of
the celerities can not be identified solely with a surface wave or solely with a bed
wave (see [19], [16], [7]).

As in [18], a splitting technique for erosion/deposition source terms will be used
to approximate the solutions of system (2.8). At every time stage, first a finite
volume method will be applied to the homogeneous system:

∂t

(
W
H

)(
A(W ) −S(W )

0 0

)
∂x

(
W
H

)
= 0, (2.14)
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and then the corresponding obtained approximations on the cells will be updated
by solving the ODE:

∂tW = G(W ). (2.15)

Here we are interested in the numerical solution of (2.14) and we will neglect
erosion and deposition effects because they do not add anything relevant to our
purpose. These terms could be included by applying a forward Euler scheme for
(2.15) as it is done in [18] and the references cited therein. For the sake of simplicity,
we shall consider the case H = constant so that system (2.14) may be written in
the form

∂tW + A(W )∂xW = 0. (2.16)

Everything that will be said and in particular Section 5 can be easily adapted for
the general case where H is not constant. Further comments on this fact will be
made when needed.

As it is usual for shallow water models, the numerical scheme will be required
to be exactly well-balanced for the water-at-rest solutions of (2.16). If it is assumed
that q = 0 implies qb = 0 (what is the case for the Grass formula (2.3)), these
stationary solutions are given by:

q = 0, c = constant, h+ zb = constant. (2.17)

3 Approximate Riemann solvers

Let us consider a general nonconservative system

∂tW + A(W )∂xW = 0, x ∈ R, t > 0, (3.1)

where W (x, t) belongs to Ω, an open convex subset of RN , and W ∈ Ω 7→ A(W ) ∈
MN(R) is a smooth locally bounded map. We suppose that system (3.1) is strictly
hyperbolic, that is, for each W ∈ Ω matrix A(W ) has N real distinct eigenvalues
λ1(W ) < . . . < λN(W ), with associated eigenvectors R1(W ), . . . , RN(W ). We also
suppose that for each i = 1, . . . , N , the characteristic field Ri(W ) is either genuinely
nonlinear or linearly degenerate.

In general, the nonconservative product A(W )∂xW does not make sense within
the framework of classical distributions. The theory developed by Dal Maso, LeFloch,
and Murat in [8] allows to give a sense to this nonconservative product as a Borel
measure and thus a rigorous definition of weak solution for (3.1) can be given. Ac-
cording to this theory, the definition of weak solutions is based on the choice of a
family of paths, i.e a family of Lipschitz continuous paths, Φ(s;WL,WR), s ∈ [0, 1],
which must satisfy certain regularity and compatibility conditions, and in particular

Φ(0;WL,WR) = WL, Φ(1;WL,WR) = WR, ∀WL,WR ∈ Ω, (3.2)

and
Φ(s;W,W ) = W, ∀s ∈ [0, 1],W ∈ Ω. (3.3)
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We shall not include here all the details of this theory and refer to [8] for further
details. Let us only remark that weak solutions correspond to classical solutions
where they are smooth, while across a discontinuity the following generalized gen-
eralized Rankine-Hugoniot condition should be satisfied:

λ[W ] =

∫ 1

0

A(Φ(s;W−,W+))
∂Φ

∂s
(s;W−,W+) ds = 0, (3.4)

where λ is the speed of propagation of the discontinuity, and [W ] = W+ − W−

represents the jump of the solution at the discontinuity.

Remark 3.1 For the particular case of system (2.16), jump conditions (3.4) can be
written as follows:





λ[h] = [q];

λ[q] =

[
q2

h
+
g

2
(1 +Rc)h2

]

+

∫ 1

0

g(Φh(s,WL,WR) +RΦhc(s,WL,WR)) (∂sΦzb
(s,WL,WR)) ds;

λ[hc] = [qc];

λ[zb] = [qb];

(3.5)

where Φh, Φhc, Φzb
, and ΦH represent the components of the chosen family of paths

Φ for variables h, hc, zb, and H respectively.

Based on a family of paths Φ, Φ-approximate Riemann Solver for (3.1) were
introduced in [21] as a generalization of the definition of approximate Riemann
solver for system of conservation laws defined in [11].

A particular case of Φ-approximate Riemann solver is given by the so-called
Φ-simple Riemann solver.

Definition 3.1 A Φ-approximate Riemann solver Ṽ : R× Ω× Ω 7→ Ω for (3.1) is
said to be simple if there exists a finite number m ≥ 1 of speeds

σ0 = −∞ < σ1 < . . . < σm < σm+1 = +∞, (3.6)

and intermediate states

W0 = WL,W1, . . . ,Wm−1,Wm = WR (3.7)

such that
Ṽ (v,WL,WR) = Wj if σj < v < σj+1. (3.8)
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Remark 3.2 Notice that any Φ-approximate Riemann solver should satisfy

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds

+

∫ ∞

0

(
Ṽ (v;WL,WR)−WR

)
dv +

∫ 0

−∞

(
Ṽ (v;WL,WR)−WL

)
dv = 0. (3.9)

for every WL,WR ∈ Ω
In the particular case of a Φ-simple Riemann solver, (3.9) reduces to

m−1∑

j=0

σj+1(Wj+1 −Wj) =

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds (3.10)

Remark 3.3 In the particular case of the system (2.16), we have

∫ 1

0

A(Φ(s,WL,WR)∂sΦ(s,WL,WR) ds = F (WR)− F (WL) + B(WL,WR),

where

B(WL,WR) =




0∫ 1

0

g(Φh(s;WL,WR) +RΦhc(s;WL,WR))∂sΦzb
(s;WL,WR)ds

0
0



,

(3.11)
being Φh, Φhc and Φzb

the first, third and fourth components of Φ respectively. For
the particular choice of the family of segments

Φ(s;WL,WR) = WL + s(WR −WL), (3.12)

we get

B(WL,WR) =




0

g

(
hL + hR

2
+R

(hc)L + (hc)R
2

)
(zbR − zb L)

0
0



. (3.13)

Given a Φ-simple Riemann Solver for (3.1) one can define a Godunov-type nu-
merical scheme which is is path-conservative in the sense introduced in [21]:

W n+1
i = W n

i −
∆t

∆x
(D+

i−1/2 +D−i+1/2), (3.14)

where
D±i+1/2 = D±(W n

i ,W
n
i+1), (3.15)
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with

D−(WL,WR) =





∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds if σm < 0,

∑

σj+1<0

σj+1(Wj+1 −Wj) if σ1 < 0 < σm,

0 if σ1 > 0.
(3.16)

D+(WL,WR) =





0 if σm < 0,

∑

σj+1>0

σj+1(Wj+1 −Wj) if σ1 < 0 < σm,

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds if σ1 > 0.

(3.17)
In order to discuss the well-balanced property of Φ-simple Riemann solvers,

following [21] and [22], let us introduce the set Γ of all the integral curves γ of a
linearly degenerate field of A(W ) such that the corresponding eigenvalue vanishes
on Γ. Recall the following definition:

Definition 3.2 Given a curve γ ∈ Γ, a numerical scheme for solving (3.1) is said
to be exactly well-balanced for γ if it preserves any stationary solution satisfying

W (x) ∈ γ, ∀ x. (3.18)

It can be easily shown that a numerical scheme based on a Φ-approximated
Riemann solver Ṽ is exactly well-balanced for a curve γ ∈ Γ if, and only if, given
two states WL,WR ∈ Γ, the following equality hold:

∫ 0

−∞

(
Ṽ (v;WL,WR)−WL

)
dv = 0, (3.19)

∫ ∞

0

(
Ṽ (v;WL,WR)−WR

)
dv = 0. (3.20)

In particular, these equalities are trivially satisfied if

Ṽ (v;WL,WR) =

{
WL if v < 0,
WR if v > 0.

(3.21)

Before concluding this section, let us discuss two important issues. The first one
is related to the choice of the family of paths. Observe that the jump conditions (3.4)
depend on the chosen family of paths. Therefore, the family of paths has to be chosen
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so that the speed of propagation of discontinuities are in good agreement with the
physics of the problem The key point is that, in general, first order hyperbolic models
are obtained by neglecting some higher order terms whose effects are supposed to
be small. Therefore, the admissible discontinuities should be the limits of traveling
waves of the system including the neglected high order terms as they tend to 0. While
in systems of conservation laws the jump conditions given by this passage to the
limit are the classical Rankine-Hugoniot conditions independently of the particular
form of the vanishing high order terms, this is not the case for nonconservative
systems. Therefore, the family of paths to be chosen has to be such that the jump
conditions (3.4) coincide with the ones given by the traveling waves of the regularized
problems when passing to the limit. But the calculation of viscous profiles may be
very difficult in practice. Moreover, in some models, as the one described in Section
2, some of the equations are given by empirical laws so that it is not clear what is
the good regularized system to be considered.

On the other hand, its calculation requires the explicit knowledge of the Riemann
invariants and the solutions of Riemann problems. But if such a family is considered,
the use of approximate Riemann solvers is pointless, as the exact solutions of the
Riemann problems are needed to compute the paths. Therefore we propose here to
use simple family of paths as the one composed by the straight segments (3.12).

Remark 3.4 In the particular case of (2.16), the numerical schemes will be required
to be well-balanced for the subset of Γ given by the water-at-rest curves (2.17). Notice
that these curves are straight lines in the space h, q, hc, zb. Therefore, the family of
segments (3.12) satisfies the property of being a parametrization of the arc linking two
water-at-rest states and thus is a priori a good choice to design numerical schemes
which are well-balanced for water-at-rest solutions (see [21]).

For this choice of paths, the jump conditions (3.4) reduce to:





λ[h] = [q];

λ[q] =

[
q2

h
+
g

2
(1 +Rc)h2

]
+ g

(
h− + h+

2
+R

(hc)− + (hc)+

2

)(
z+
b − z−b

)
;

λ[hc] = [qc];

λ[zb] = [qb].
(3.22)

The second main difficulty is related to the convergence of the numerical so-
lutions: even if the correct family of paths is chosen, the limits of the numerical
solutions may be weak solutions corresponding to a definition different from the one
given by the prescribed family. In fact, whenever a numerical scheme having some
numerical viscosity is applied to a nonconservative system, the shocks appearing
at the limits of the numerical solutions are consistent with the viscous profiles of
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Figure 2: Control volume [xL, xR]× [0, T ] in the x− t plane

the modified equation whose viscous terms are different in general to the physical
one and may lead thus to different jump conditions. Therefore, a method based
on approximate or exact Riemann solvers cannot be expected to produce numeri-
cal solutions whose limits are the correct weak solutions. Nevertheless, what can
be expected is to obtain stable, robust, easy-to-implement numerical methods such
that:

• For system of balance laws, the limits of the numerical solutions satisfy the
physical jump conditions: see [20].

• For nonconservative systems in which the nonconservative products vanish
across shocks and only act in contact discontinuities, the limits of the numerical
solutions also satisfy the physical jump conditions.

• For general nonconservative systems, the numerical solutions will not converge
to the physical solution in general, but the convergence error is expected to be
small at least for small amplitude shocks: the numerical Hugoniot curves of
the states that can be linked by an entropy shock to a given state are expected
to be first order approximations of the exact Hugoniot curves: see [5].

4 HLLC solver

The easiest example of Φ-simple Riemann solver for system (3.1) is HLL solver. It
is a simple Riemann solver consisting of two finite-speed waves SL, SR linking three
constant states WL, W ∗, WR (see Fig. 2):

Ṽ HLL (v;WL,WR) =





WL if v ≤ SL,
W ∗ if SL ≤ v ≤ SR,
WR if v ≥ SR.

(4.1)
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Let us suppose that a family of paths Φ has been chosen. The formal consistency
condition (3.10) reduces to:

SL(W ∗ −WL) + SR(WR −W ∗) =

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds,

what determines the intermediate state:

W ∗ =

SRWR − SLWL −
∫ 1

0

A(Φ(s;WL,WR))∂sΦ(s;WL,WR)ds

SR − SL
. (4.2)

Therefore, the HLL solver is determined once the two wave speeds SL and SR
have been estimated. The corresponding numerical scheme is given by (3.14) -
(3.17). But this solver does not satisfy the well-balanced property.

A HLLC Riemann solver is an extension of the HLL solver in which, besides the
two external waves of speed (σ1 = SL, σm+1 = SR), m−1 internal waves of speed σ2,
. . . , σm connecting m intermediate states W1, . . . , Wm are considered (see Figure
3). Therefore, it is a Φ-simple Riemann solver whose speeds and intermediate states
are:

σ0 = −∞ < SL = σ1 < σ2 < . . . σm = Sm−1 < σm+1 = SR < σm+2 =∞, (4.3)

W0 = WL,W1, . . . ,Wm,Wm+1 = WR. (4.4)

Figure 3: Sketch of a HLLC solver

If we assume that SL and SR are given by some estimates, then it is necessary
to fix (N + 1)m− 1 scalars to determine the simple solver: m− 1 speeds and N m
components of the intermediate states. Notice that the N conditions given by (3.10)
are enough to determine the solver only if m = 1, i.e. in the HLL case. For m > 1
some more conditions have to be taken into account in order to have the same
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Figure 4: Waves configuration. Left: S∗ < SM . Right: SM < S∗.

number of unknowns and equations so that the solver is determined. To do this, the
jump conditions (3.4) at every intermediate wave are considered:

σj+1(Wj+1−Wj) =

∫ 1

0

A(Φ(s;Wj,Wj+1)∂sΦ(s;Wj,Wj+1) ds, j = 0, . . . ,m. (4.5)

These jump conditions give us (m + 1)N more equations. In practice, at most
(N+1)m−1 equations are chosen from the consistency condition (3.10) and the jump
conditions (4.5). Let us remark that in order to have a Φ-simple solver, if some of the
components of the consistency condition (3.10) are not explicitly chosen, then they
should be recovered from the selected jump conditions. If the number of selected
equations is lower than (N + 1)m− 1, some of the unknowns can be considered as
free parameters and a family of HLLC solvers is thus obtained.

Once the intermediate speeds and states have been calculated, the corresponding
numerical scheme is given by (3.14)-(3.17).

5 HLLC solver for Turbidity currents

We consider system (2.8) for turbidity currents. As we have said and for the sake
of simplicity, we shall assume that H = constant. We do not include here ero-
sion/deposition or water entrainment source terms, as they will be treated separately
by a splitting technique.

We consider here two different HLLC solvers for the turbidity currents model us-
ing four waves of speed SL, SM , S∗, SR, linking five states:

(
WL,W

M
L ,W ∗

L,W
∗
R,WR

)

if SM < S∗ or
(
WL,W

∗
L,W

∗
R,W

M
R ,WR

)
if SM > S∗ (see Fig. 4).

Due to the expression of the D± functions given by (3.16)-(3.17), it is enough to
define the simple Riemann solver when SL < 0 < SR. Two possible configurations
are then possible: S∗ < SM and S∗ > SM . We shall denote by W ∗

L, W ∗
R the

intermediate states to the left and to the right of the wave of speed S∗ respectively.
The remaining intermediate state will be denoted by WM

R in the case S∗ < SM and
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WM
L in the case S∗ > SM (see Fig. 4). Remark that it is sufficient to study the case

S∗ > SM , the other case being analogous. In order to define the solver, 14 scalars
have to be fixed: the wave speeds S∗, SM and the components of the intermediate
states W ∗

L, W ∗
R, WM

L . In what follows, we shall use the same indexes for each of the
components of the intermediate states W = (h, hu, hc, zb).

5.1 An essentially three-wave HLLC solver

We consider the system defined by the jump conditions related to the continuity
equations for the four waves speeds, and the consistency condition related to the
momentum equation:





(a)





SL(hML − hL) = hML u
M
L − hLuL,

SM(h∗L − hML ) = h∗Lu
∗
L − hML uML ,

S∗(h∗R − h∗L) = h∗Ru
∗
R − h∗Lu∗L,

SR(hR − h∗R) = hRuR − h∗Ru∗R,
SL(hML c

M
L − hLcL) = hML u

M
L c

M
L − hLuLcL,

SM(h∗Lc
∗
L − hML cML ) = h∗Lu

∗
Lc
∗
L − hML uML cML ,

S∗(h∗Rc
∗
R − h∗Lc∗L) = h∗Ru

∗
Rc
∗
R − h∗Lu∗Lc∗L,

SR(hRcR − h∗Rc∗R) = hRuRcR − h∗Ru∗Rc∗R,
SL(hML u

M
L − hLuL) + SM(h∗Lu

∗
L − hML uML )

+ S∗(h∗Ru
∗
R − h∗Lu∗L) + SR(hRuR − h∗Ru∗R)

= F (WR)[2] − F (WL)[2] + B(WL,WR)[2],

(b)





SL(zb
M
L − zbL) = zb

M
L q̃b

M
L − zbLq̃bL,

SM(zb
∗
L − zbML ) = zb

∗
Lq̃b
∗
L − zbML q̃bML ,

S∗(zb
∗
R − zb∗L) = zb

∗
Rq̃b
∗
R − zb∗Lq̃b∗L,

SR(zbR − zb∗R) = zbRq̃bR − zb∗Rq̃b∗R,

(5.1)

where q̃bL, q̃b
∗
L, q̃b

∗
R, q̃bR stand for the solid transport flux q̃b evaluated in the cor-

responding state, the subscript [j] denotes the j-th component of a vector, and
B(WL,WR) is defined by (3.11). It can be easily checked that the first component
of the consistency condition (3.10) is recovered by adding the first four equations,
the third component is recovered by adding equations 5th to 9th, and the fourth
component by adding the four last ones.

We have thus 13 equations for 14 unknowns: let us consider hML as a free param-
eter. If the value of this parameter is fixed by:

hML = h∗L,

then a solution of system (5.1)-(a) can be found by setting uML = u∗L, c
M
L = c∗L and
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solving then the system:





SL(h∗L − hL) = h∗Lu
∗
L − hLuL,

S∗(h∗R − h∗L) = h∗Ru
∗
R − h∗Lu∗L,

SR(hR − h∗R) = hRuR − h∗Ru∗R,
SL(h∗Lc

∗
L − hLcL) = h∗Lu

∗
Lc
∗
L − hLuLcL,

S∗(h∗Rc
∗
R − h∗Lc∗L) = h∗Ru

∗
Rc
∗
R − h∗Lu∗Lc∗L,

SR(hRcR − h∗Rc∗R) = hRuRcR − h∗Ru∗Rc∗R,
SL(h∗Lu

∗
L − hLuL) + S∗(h∗Ru

∗
R − h∗Lu∗L) + SR(hRuR − h∗Ru∗R) =

= F (WR)[2] − F (WL)[2] + B(WL,WR)[2],

(5.2)

whose solution is given by:

h∗L =
hL(SL − uL)

SL − S∗
,

h∗R =
hR(SR − uR)

SR − S∗
,

S∗ =
hLuL(SL − uL)− hRuR(SR − uR) + PLR

hL(SL − uL)− hR(SR − uR)
,

u∗L = S∗,
u∗R = S∗,
c∗L = cL,
c∗R = cR,

(5.3)

where
PLR = FP (WR)[2] − FP (WL)[2] + B(WL,WR)[2].

If we consider some positive values kL and kR and define

SL = uL −
kL
hL
,

SR = uR +
kR
hR
,

(5.4)

the solution can be written as follows:

S∗ = u∗L = u∗R =
kLuL + kRuR − PLR

kL + kR
,

1

h∗L
=

1

hL
+
kR(uR − uL)− PLR

kL(kL + kR)
,

1

h∗R
=

1

hR
+
kL(uR − uL) + PLR

kR(kL + kR)
.

(5.5)

The subsystem (5.1)-(b) has still to be solved. Two different situations are
considered:
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• Steady bottom: If q̃b = 0, the solution is given by

SM = 0, zb
M
L = zbL, zb

∗
L = zb

∗
R = zbR. (5.6)

• Moving bottom: In this case, the solution is given by

zb
M
L =

uL −
kL
hL
− q̃bL

uL −
kL
hL
− q̃b∗L

zbL,

zb
∗
R =

uR +
kR
hR
− q̃bR

uR +
kR
hR
− q̃b∗R

zbR,

zb
∗
L =

S∗ − q̃b∗R
S∗ − q̃b∗L

zb
∗
R,

SM = q̃b
∗
L.

(5.7)

Remark 5.1 Observe that:

1. The hydrodynamical variables are constant across the wave associated to SM .
Therefore, we have obtained a three-wave HLLC solver for the hydrodynamical
variables.

2. In the case of non-moving bottom, the topography only jumps across the wave
of speed SM = 0, and nonconservative contribution is added for this wave only.

3. In the case of a moving bottom, SL and SR correspond to the external waves
while SM is the third eigenvalue that is usually associated to the motion of
the bed. Remark that zb jumps at each of the waves which is in connection
to what has been said in Section 2 regarding the interaction between fluid an
topography. Remark that when q̃b is small when compared to the external wave
speeds SL, SR, we have zb

∗
L ≈ zbL and zb

∗
R ≈ zbR which agrees with the inter-

pretation that SM corresponds to the motion of the sedimentary layer for small
interaction between the fluid and the bed layer.

4. The variation of the sediment concentration c is associated to the wave S∗.

5. The velocities coincide at the intermediate region, u∗L = u∗R, and are equal to
the intermediate wave speed S∗.

Remark 5.2 Note that if R = 0, system (2.8) coincides with the shallow-water
equations with pollutant concentration.

a) The difference between the HLLC solver proposed here and the one introduced in
[25] is that in the latter the equality h∗L = h∗R is assumed, what is not the case
here.
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b) If the bottom is steady and flat, the HLLC solver coincides with the Suliciu re-
laxation method presented in [3].

Let us introduce the following notation:

p(h, c) =
g

2
(1 +Rc)h2, α = 3/2. (5.8)

Following the techniques introduced in [3] the following result can be proved (see
Appendix A):

Theorem 5.1 The numerical scheme based on the HLLC solver based on the defi-
nitions (5.4) - (5.5) - (5.6) - (5.7) with kL and kR given by:

if PLR ≥ 0,





kL
hL

=

√
∂p

∂h
(hL, cL) + α




PLR

hR

√
∂p

∂h
(hR, cR)

+ uL − uR




+

,

kR
hR

=

√
∂p

∂h
(hR, cR) + α

(−PLR

kL
+ uL − uR

)

+

,

(5.9)

if PLR ≤ 0,





kR
hR

=

√
∂p

∂h
(hR, cR) + α




−PLR

hL

√
∂p

∂h
(hL, cL)

+ uL − uR




+

,

kL
hL

=

√
∂p

∂h
(hL, cL) + α

(
PLR

kR
+ uL − uR

)

+

,

(5.10)
preserves the non-negativity of h.

Remark 5.3 In the case of a moving bottom, the preservation of the non-negativity
of zb is not an easy task, especially for complex expressions of q̃b. Nevertheless,
Proposition 5.2 shows that this is possible in some simple cases, for instance for
Grass model, by taking large enough values of kL, kR. Remark that this is not in-
compatible with Theorem 5.1 as from the proof in Appendix A it follows that one
could choose kL, kR arbitrarily large.

Proposition 5.2 Suppose that q̃b only depends on the variable u that is, there exists
some continuous function φ such that q̃b(h, u, c) = φ(u). Then if zbL and zbR are non-
negatives, and for kL, kR > 0 large enough the values zb

M
L , zb

∗
L, zb

∗
R defined by (5.7)

are nonnegative.

Proof: First remark that

q̃b
∗
L = φ(u∗L) = φ(u∗R) = q̃b

∗
R, (5.11)
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which gives zb
∗
L = zb

∗
R.

Now, from (5.7), we have

zb
M
L =

1− q̃bL
uL − kL/hL

1− q̃b
∗
L

uL − kL/hL

zbL. (5.12)

For kL, kR sufficiently large, we remark that since q̃bL is bounded, we have

q̃bL
uL − kL/hL

< 1. (5.13)

We may rewrite
q̃b
∗
L

uL − kL/hL
=

φ(u∗L)

uL − kL/hL
(5.14)

where u∗L =
kL

kL + kR
uL +

kR
kL + kR

uR −
PLR

kL + kR
. Since PLR does not depend on kL

and kR, for kL and kR large enough, u∗L remains bounded, and then φ(u∗L) does too.
Thus, we also obtain that

q̃b
∗
L

uL − kL/hL
< 1, (5.15)

so finally zb
M
L ≥ 0.

A similar approach shows that zb
∗
R ≥ 0.

�

Let us check finally that HLLC solver is well-balanced for water at rest solutions.
Given two states WL = [hL, 0, cLhL, zb L]T , WR = [hR, 0, cRhR, zbR]T such that:

cL = cR = c̄, hL + zb L = hR + zbR,

the following equalities can be easily checked:

SM = S∗ = 0, WM
L = WL, W ∗

R = WR, W ∗
L = [hL, 0, c̄ hL, zR]T ,

but notice that the region in which the approximate solution takes the value W ∗
L

disappears. Therefore, the approximate Riemann solver reduces to (3.21) so that
the numerical scheme is well-balanced.

In practice:

• the family of segments (3.12) will be used here (remember that, for this par-
ticular case, this grants well-balancing for the water-at-rest solutions (2.17));

• the speed of the fastest waves are given by (5.4) and Theorem 5.1;

19



• the stability requirement is CFL ∈ (0, 1], where the CFL parameter is given
by:

CFL = max
i

{
max(

∣∣SL,i+1/2

∣∣ ,
∣∣SR,i+1/2

∣∣)
} ∆t

∆x
, (5.16)

where ∆x is the space step (which is assumed to be constant), ∆t it the time
step, and SL,i+1/2, SR,i+1/2 are the fastest waves considered in the approximate
Riemann solver at the intercell xi+1/2.

Remark 5.4 If the bedrock layer is non-flat, that is H 6= constant, a slight mod-
ification is needed for the HLLC solver defined before. A new wave of speed 0 has
to be added where variables h, hu, hc, zb do not jump and variable H takes the value
HL and HR for x < 0 and x > 0 respectively. System (5.1) remains unchanged but
for the 9th equation that reads now

SL(hML u
M
L − hLuL) + SM(h∗Lu

∗
L − hML uML )

+ S∗(h∗Ru
∗
R − h∗Lu∗L) + SR(hRuR − h∗Ru∗R)

= F (WR)[2] − F (WL)[2] + B(W̃L, W̃R)[2], (5.17)

where we denote by W̃ = (W,H), and

B(W̃L, W̃R) =




0∫ 1

0

g ((Φh +RΦhc) (∂sΦzb
− ∂sΦH)) (s; W̃L, W̃R)ds

0
0



, (5.18)

being Φh, Φhc, Φzb
, and ΦH the components of the path Φ corresponding to vari-

ables h, hc, zb, and H, respectively. This ensures that consistency condition (3.10)
is satisfied.

For the particular choice of the family of segments (3.12) we get:

B(W̃L, W̃R) =




0

g

(
hL + hR

2
+R

(hc)L + (hc)R
2

)
(zbR − zb L − (HR −HL))

0
0



.

(5.19)
The definition of the intermediate states (5.3) as well as the rest of the section

remains the same but writing now

PLR = FP (WR)[2] − FP (WL)[2] + B(W̃L, W̃R)[2].
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5.2 A four-wave HLLC solver

In previous section we have defined a HLLC solver for system (2.8) based on four
intermediate waves that has the property of reducing to three waves for the hydrody-
namical variables. One could think on other possibilities, for instance by considering
the system given by (5.1)-(a) and proposing other alternatives for (5.1)-(b). This is
done in Appendix B where a four-wave HLLC solver is proposed. But as we will see
in Section 6, the resulting scheme is more complex than the one proposed previously
while the results obtained are only marginally better.

6 Numerical tests

We show here some test problems to compare the numerical solutions provided by
the two HLLC solvers here introduced and with those provided by the Roe scheme
introduced in [18]. The HLLC solvers introduced in Subsections 5.1 and 5.2 will be
named hereafter as E3W-HLLC and 4W-HLLC, respectively. The family of paths
considered in the definition of the three numerical schemes is the family of straight
segments (3.12). If the source terms were present, a two-stage procedure would be
used to update the numerical solution: once the approximations of the cell averages
at the nth time level, W n

i , have been calculated, first the HLLC or the Roe schemes
are applied to the homogeneous system (2.16) to obtain the new approximations

W
n+1/2
i . Then, the solutions at the (n+ 1)th time level are given by:

W n+1
i = W

n+1/2
i + ∆tG(W

n+1/2
i ).

where G(W ) represents the source term defined by (2.12). But we focus here in the
case without erosion/deposition source terms. The CFL parameter is set to 0.9.

6.1 Well-balance property

From the definitions of E3W-HLLC and 4W-HLLC it follows that both schemes are
well-balanced for steady-state solutions such that





h+ zb = Cst,
q = qb = 0,
c = Cst.

(6.1)

Let us test this property numerically by considering the following initial condition

zb(x, 0) = 0.1e−(x−5.0)2 , h+ zb = 1, c(x, 0) = 0.05, q = 0. (6.2)

The numerical solution at t = 1 is computed with 100 points in the interval [0, 5].
The L∞ error for both schemes is shown in Table 1.
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E3W-HLLC 4W-HLLC
h 1.514011e-12 1.513789e-12
q 1.954471e-13 1.965307e-13
z 3.246500e-13 3.246153e-13

Table 1: L∞ error at t = 1 for E3W-HLLC and 4W-HLLC
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Figure 5: Simulation over flat topography

6.2 Flow over a flat bottom

We consider qb = 0 and zb = constant. The computational domain is the interval
[0, 10] and the initial conditions are given by:

h(x, 0) =

{
1 if x < 5,

0.5 if x ≥ 5,
, c(x, 0) =

{
0.05 if x < 5,

0.01 if x ≥ 5,
(6.3)

and q(x, 0) = 0 for all x ∈ [0, 10]. Free boundary conditions at both extremes of the
interval are imposed by using a ghost-cell technique. In this case E3W-HLLC and
4W-HLLC coincide (see Remark B.1). The results are shown in Fig. 5.

Let us remark that E3W-HLLC and 4W-HLLC do not produce non-physical
shocks so that no entropy fix is needed as it is the case for Roe scheme. For instance,
consider the same test described above but now define

h(x, 0) =

{
2 if x < 5,

0.1 if x ≥ 5.
(6.4)

In this case, Roe produces a stationary shock unless an entropy fix is used as we see
in Fig. 6.
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Figure 6: Entropy fix is needed for Roe scheme but not for HLLC

6.3 Transcritical flow

We consider next a transcritical flow over a bump. The equations are solved in the
interval [0, 25] with initial condition:

h(x, 0) = 0.33, q(x, 0) = 0.18, c(x, 0) = 0. (6.5)

Again, qb = 0 and the bottom is given by:

zb(x) =

{
0.25− 0.05(x− 10)2 if 8 < x < 12,

0.05 otherwise.
(6.6)

The boundary conditions are q(0, t) = 0.18, h(25, t) = 0.33, and c(0, t) = 0.02. Fig.
7 and Fig. 8 show the steady-state reached using 250 points in the interval. Notice
that the free surface and concentration (left plot in Fig. 7 and 8) computed by
E3W-HLLC and 4W-HLLC are practically the same, but the computed discharge
q is more accurate for the latter one (right plot in Fig. 7 and 8). We remark Roe
scheme gives a better result here, specially in the zone where the shock is produced
on top of the bump. This is due to the fact that Roe scheme is less diffusive than
HLLC scheme but the results are comparable nonetheless.
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Figure 7: Transcritical flow. E3W-HLLC solver
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Figure 8: Transcritical flow. 4W-HLLC solver
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Figure 9: Dam-break problem. E3W-HLLC solver

6.4 A dam-break test case

We consider next a dam-break problem over a bottom with a step. The equations
are solved in the interval [0, 10] with initial condition:

h(x, 0) =

{
1 if x < 2,

0 otherwise,
, c(x, 0) =

{
0.05 if x < 2,

0 otherwise,
(6.7)

and q(x, 0) = 0, for all x ∈ [0, 10]. We consider again qb = 0 and a fixed bottom
given by:

zb(x) =

{
0.2 if 5 < x < 6,

0.1 otherwise.
(6.8)

Free boundary conditions are considered. The results are shown in Fig. 9 and Fig.
10 for time t = 2. In this test both HLLC schemes give similar results. In Fig. 11
we can observe the surface evolution for different times.

6.5 Moving bottom

In this text, the Grass solid transport formula (2.4) - (2.5) is used with A = 0.005.
The interval is [0, 10] and the initial condition is given by

(h+ z)(x, 0) = 1.1, q(x, 0) = 0, c(x, 0) = 0, ∀x ∈ [0, 10], (6.9)

and

zb(x, 0) =

{
0.2 if 4 < x < 6,

0.1 otherwise.
(6.10)
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Figure 10: Dam-break problem. 4W- HLLC solver
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Figure 11: Surface evolution with E3W-HLLC solver

We impose the boundary conditions q(0, t) = 0.5 and

c(0, t) =

{
0 if t < 20,

0.02(cos(t/π))+ if t ≥ 20,
(6.11)

so that a wave of sediments is getting into the domain periodically.
The results are shown in Fig. 12 to Fig. 16. Again the E3W-HLLC and the 4W-

HLLC solvers give practically the same results for the free surface and concentration
(see Fig. 12 to Fig. 15 ) while some differences can be observed in the discharge
(see Fig. 16): again 4W-HLLC is more accurate than E3W-HLLC.

The CPU time required for this test with Roe scheme is 166.55, while with
the E3W-HLLC and 4W-HLLC we need 61.57 and 65.72 respectively. This means
roughly a gain 60% when using HLLC instead of Roe. Remark that E3W-HLLC is
slightly faster as it does not need the computation of the intermediate velocity SM .
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Figure 12: Moving bottom: E3W-HLLC
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Figure 13: Moving bottom: E3W-HLLC
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Figure 14: Moving bottom: 4W-HLLC
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Figure 15: Moving bottom: 4W-HLLC
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Figure 16: Moving bottom.
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Figure 17: Hugoniot curves for external shock

6.6 Hugoniot curves

This is designed to measure the convergence due to the numerical viscosity discussed
in Section 1. We consider c = 0 and the Grass formula with A = 0.1. Consider a
given right state hR = 4.8863763300885e− 1, uR = −4.8295086427435e− 1, (zb)R =
9.3440819151415e − 2. Using the jump relations (3.22) we may compute the left
states that can be connected by an entropy shock associated to the external velocity
SR. In order to numerically compute the Hugoniot curve given by the numerical
scheme, we solve a family of Riemann problems whose initial conditions are given
by the fixed right state and some of the left states lying on the exact Hugoniot
curve. The 4W-HLLC is applied to these Riemann problems with ∆x = 0.001. At
time t = 1, the location of the shock is detected and the value of the left state is
stored. In Fig. 17 the theoretical and numerical Hugoniot curves are composed.

Next a similar procedure has been applied to a Hugoniot curve corresponding
to internal shocks, that is, entropy shocks associated to the second characteristic
curve. In this case we fixed the left state hL = 1, uL = 1, zL = 1. Fig. 18 shows
the comparison at time t = 1 of the right states obtained from (3.22) and computed
numerically with 4W-HLLC. In both cases a very good agreement is found.

7 2D test case

The scheme can be easily extended for the 2D case. We refer to [???] for further
details.

Let us consider here a case of moving bottom. We shall consider the domain
D = [−1, 1]× [−1, 1] and the initial condition
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Figure 18: Hugoniot curves for internal shock

zb(~x, 0) =

{
1.1 + 0.05 cos(10|~x|) if |~x| ≤ π/10,

1.05 otherwise.
(7.1)

h(~x, 0) + zb(~x, 0) = 2, q(~x, 0) = (1, 0), c(~x, 0) = 0; (7.2)

for ~x ∈ [−1, 1]× [−1, 1] ∈ R2.
Then, we set the boundary conditions

qy(~x, t) = 0, for ~x ∈ [−1, 1]× {−1, 1}, t ≥ 0

qx(~x, t) = 1, for ~x ∈ −1× [−1, 1], t ≥ 0

cx(~x, t) = 0.02, for ~x ∈ −1× [−1, 1], t ≥ 0,

(7.3)

where q = (qx, qy) and we consider open boundary conditions for the remaining
cases.

We consider 100 points in the x and y direction respectively and a second order
extension is used (referencia ????)

Figures 19 to 21 show the results obtained with Roe, E3W-HLLC and 4W-HLLC.
In general, we see a good agreement between the results. In general, the E3W-HLLC
scheme is more difussive than the other two schemes, specially if we do not use a
high-order reconstruction technique.

8 Conclusions

In this paper two HLLC solvers have been defined for the turbidity current model
(2.8). The essentially three-wave HLLC solver preserves the non-negativity of the
current thickness if qb = 0. Under some assumptions on the form of qb when qb 6= 0,
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Figure 19: Topography elevation at time t = 20

the non-negativity of the layer of sediment is also ensured. Moreover, the three-
wave HLLC solver for fixed flat topography is entropy satisfying as in that case
it essentially coincides with Suliciu scheme presented in [3]. A four-wave HLLC is
also defined and some conditions that ensures the positivity of h are also derived if
qb = 0. Both schemes give similar results, being the four-wave solver more accurate.
Moreover, the results are close to those provided by the Roe scheme introduced in
[18]. Concerning the efficiency, both HLLC solvers are cheaper than Roe as they
do not need the eigenstructure of the system. In the simulations shown above, a
speedup of about 60% is obtained for the four-wave HLLC solver.
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Figure 20: Discharge on the x direction at time t = 20

A Proof of Theorem 5.1

For the sake of completeness we give here the proof. First, let us remark that p(h, c)
defined by (5.8) verifies that

∀h, c > 0,
∂

∂h

(
h

√
∂p

∂h
(h, c)

)
> 0, (A.1)

h

√
∂p

∂h
(h, c)→∞ as h→∞, (A.2)

∂

∂h

(
h

√
∂p

∂h
(h, c)

)
≤ α

√
∂p

∂h
(h, c), (A.3)

where α = 3/2.
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Figure 21: Discharge on the y direction at time t = 20

(A.1)-(A.2) allow us to define an inverse function ψ(·, c) : (0,∞) → (0,∞) for
each c,

h

√
∂p

∂h
(h, c) = k ⇔ h = ψ(h, k). (A.4)

Then, we have the following Lemma:

Lemma A.1 Assume kR > 0 and define

kL
hL

=

√
∂p

∂h
(hL, cL) + α

(
PLR

kR
+ uL − uR

)

+

, (A.5)

then
1

hL
+
kR(uR − uL)− PLR

kL(kL + kR)
≥ 1

ψ(kL, cL)
. (A.6)
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Proof: Suppose first that

kR(uR − uL)− PLR ≥ 0, (A.7)

then

kL = hL

√
∂p

∂h
(hL, cL)⇔ ψ(kL, cL) = hL (A.8)

and the result follows. Assume now

kR(uR − uL)− PLR < 0, (A.9)

and define

X =
PLR

kR
+ uL − uR > 0. (A.10)

Then, (A.6) is equivalent to

1− kR
kL + kR

X√
∂p

∂h
(hL, cL) + αX

≥ hL
ψ(kL, cL)

. (A.11)

Denote by

θ =

√
∂p

∂h
(hL, cL)

√
∂p

∂h
(hL, cL) + αX

, 1− θ =
αX√

∂p

∂h
(hL, cL) + αX

. (A.12)

It is enough to prove

1− 1− θ
α
− hL

ψ

(
hL

(√
∂p

∂h
(hL, sL) + αX

)
, cL

) ≥ 0. (A.13)

From (A.3) we get
∂ψ

∂k
(k, c) ≥ ψ(k, c)

αk
(A.14)

and
∂

∂k

(
ψ(k, c)k−1/α

)
≥ 0, (A.15)

so that
∀λ ≥ 1, ψ(λk, c) ≥ λ1/αψ(k, c). (A.16)

Thus, it is enough to prove

1− 1− θ
α
− θ1/α ≥ 0, (A.17)

and this is indeed the case when 0 < θ ≤ 1 and α ≥ 1. �
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Remark A.1 The result of the lemma can be symmetrized and for any kL > 0, the
value

kR
hR

=

√
∂p

∂h
(hR, cR) + α

(
−PLR

kL
+ uL − uR

)

+

, (A.18)

satisfies
1

hR
+
kL(uR − uL) + PLR

kR(kL + kR)
≥ 1

ψ(kR, cR)
. (A.19)

Proof: [Theorem 5.1]
Let us assume that PLR > 0, being the other case completely analogous.
Then, by Remark A.1 we have

1

hR
+
kL(uR − uL) + PLR

kR(kL + kR)
≥ 1

ψ(kR, cR)
. (A.20)

Now, if kR(uR − uL)− PLR ≥ 0, then

1

hL
+
kR(uR − uL)− PLR

kL(kL + kR)
≥ 1

hL
≥ 1

ψ(kL, cL)
. (A.21)

If kR(uR − uL)− PLR < 0, then

kR ≥ hR

√
∂p

∂h
(hR, cR) and PLR ≥ 0 (A.22)

and we have kL ≥ k̂L with

k̂L
hL

=

√
∂p

∂h
(hL, cL) + α

(
PLR

kR
+ uL − uR

)

+

. (A.23)

By applying Lemma A.1 to the pair (k̂L, kR) we have

1

hL
+
kR(uR − uL)− PLR

k̂L(k̂L + kR)
≥ 1

ψ(k̂L, cL)
, (A.24)

and by using the fact that kR(uR − uL)−PLR < 0 and that f(k) = −1/(k(k + kR))
is an increasing function of k ∈ (0,∞) we obtain

1

hL
+
kR(uR − uL)− PLR

kL(kL + kR)
≥

1

hL
+
kR(uR − uL)− PLR

k̂L(k̂L + kR)
≥ 1

ψ(k̂L, cL)
≥ 1

ψ(kL, cL)
. (A.25)

�
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Remark A.2 We have actually proved that

1

hL
+
kR(uR − uL)− PLR

kL(kL + kR)
≥ 1

ψ(kL, cL)
,

1

hR
+
kL(uR − uL) + PLR

kR(kL + kR)
≥ 1

ψ(kR, cR)
,

(A.26)

which can be used to show that the numerical scheme for fixed flat topography is
entropy satisfying.

B Definition of a four-wave HLLC solver

We consider now the system given by (5.1)-(a) and the following modification of
(5.1)-(b):





SL(zb
M
L − zbL) = (zb

M
L q̃b

M
L − zbLq̃bL),

SR(zbR − zb∗R) = (zbRq̃bR − zb∗Rq̃b∗R),
SL(zb

M
L − zbL) + SM(zb

∗
L − zbML )

+S∗(zb
∗
R − zb∗L) + SR(zbR − zb∗R) = (zbRq̃bR − zbLq̃bL).

(B.1)

Now, system (5.1)-(a)-(B.1) can be solved by considering hML and SM as two free
parameters:

c∗R = cR, c∗L = cL, cML = cL,

S∗ =
SM(hL(SL − uL)− SLhML ) + hRuR(SR − uR) + hL(u2

L − S2
L) + S2

Lh
M
L − PLR

hR(SR − uR) + hL(uL − SL) + (SL − SM)hML
,

(B.2)
u∗L = u∗R = S∗, (B.3)

uML =
hLuL + SL(hML − hL)

hML
, (B.4)

h∗L =
hL(uL − SL) + (SL − SM)hML

S∗ − SM
, (B.5)

h∗R =
hR(uR − SR)

S∗ − SR
, (B.6)

zb
M
L =

zb L(−SL + q̃b L)

q̃MbL − SL
, zb

∗
R =

zbR(SR − q̃bR)

SR − q̃∗bR
, (B.7)

z∗b L =
SL(zb L − zMbL) + SR(z∗bR − zbR) + zbRq̃bR − zb Lq̃b L + SMz

M
bL − S∗z∗bR

SM − S∗
, (B.8)

PLR = FP (WR)[2] − FP (WL)[2] + B(WL,WR)[2]. (B.9)

Finally, to fully define the scheme, hML and SM must be defined:

Definition of hML :
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• In order to preserve water at rest solutions, we define hML as follows:

hML = h∗L + zbR − zbL. (B.10)

In this particular case, expressions (B.2) to (B.8) can be simplified. For in-
stance, from (B.5) we get

h∗L =
hL(uL − SL) + (SL − SM)(zbR − zbL)

S∗ − SM
+
SL − SM
S∗ − SM

h∗L, (B.11)

and thus

h∗L =
hL(uL − SL) + (SL − SM)(zbR − zbL)

S∗ − SL
. (B.12)

From (B.2) we have

S∗(hR(SR − uR) + hL(uL − SL)) + (SL − SM)(S∗ − SL)hML
= SMhL(SL − uL) + hRuR(SR − uR) + hL(u2

L − S2
L)− PLR, (B.13)

and using the fact that

(SL − SM)(S∗ − SL)hML
= (SL − SM) (hL(uL − SL) + (SL − SM)(zbR − zbL) + (S∗ − SL)(zbR − zbL))

= (SL − SM)hL(uL − SL) + (SL − SM)(S∗ − SM)(zbR − zbL), (B.14)

some easy calculations show that

S∗ =
hRuR(SR − uR) + hLuL(uL − SL) + SM(SL − SM)(zbR − zbL)− PLR

hR(SR − uR) + hL(uL − SL) + (SL − SM)(zbR − zbL)
.

(B.15)

• If q̃b = 0, a more general family of stationary solutions is given by:

q = constant, c = constant,
u2

2
+ g(1 +Rc)(h+ zb) = constant.

In order to preserve this more general family, a better choice for hML would be
given by:

E(WM
L ) = E(W ∗

L), (B.16)

where

E(W ) =
u2

2
+ g(1 +Rc)(h+ zb).

Nevertheless, we have not been able to find an analytical expression of the
solution of the system (5.1)-(a), (B.1), (B.16). An iterative procedure could
be used to approximate the solution, but in this article we have only considered
the simplest choice (B.10).
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Definition of SM :

Let us now discuss, some possible definitions for SM .

• Steady bottom: If qb = 0, we choose

SM = 0. (B.17)

• Moving bottom: In this case, SM is approximated by the corresponding eigen-
value of A(W ) in an given intermediate state.

Remark B.1 If q̃b = 0 and the bottom is flat then, the essentially three-wave and the
four-wave HLLC solver coincide. The main difference between both solvers is that,
in the four-wave one, SM explicitly appears in the definition of the hydrodynamic
variables.

Concerning the positivity-preserving property of the four-wave HLLC, if q̃b = 0,
the following result can be shown:

Proposition B.1 Assume that SL < SM = 0 < S∗ and

0 < hML ≤ max

(
hL(SL − uL)

sL
,

hR(uR − SR)2 + hL(uL − SL)2 + hLuL(SR + 2SL − 2uL)− hLSLSR − PLR

−SL(SR − SL)

)
.

(B.18)

Then, the HLLC scheme is positive and well defined, that is, if hL ≥ 0 and hR ≥ 0,
then h∗L ≥ 0, h∗R ≥ 0 and S∗ < SR.

Proof:
From (B.5), we have

h∗L =
hL(uL − SL) + SLh

M
L

S∗
, (B.19)

which is positive by the first upper bound in (B.18).
Then, from (B.6) we have

h∗R =
hR(uR − SR)

S∗ − SR
, (B.20)

which is positive as long as uR − SR ≤ 0 and S∗ ≤ SR.
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On the one hand, we may define SL = uL −
kL
hL

and SR = uR +
kR
hR

as it was

done in Theorem 5.1.
On the other hand,

S∗ − SR

=
hRuR(SR − uR) + hL(u2

L − S2
L) + S2

Lh
M
L − PLR − SR(hR(SR − uR) + hL(uL − SL) + SLh

M
L )

hR(SR − uR) + hL(uL − SL) + SLhML

=
hR(uRSR − u2

R − S2
R + SRuR) + hL(u2

L − S2
L − SRuL + SRSL) + SL(SL − SR)hML − PLR

hR(SR − uR) + hL(uL − SL) + SLhML
.

(B.21)

Now remark that

hR(SR − uR) + hL(uL − SL)

−SL
≥ hL(uL − SL)

−SL
≥ hML , (B.22)

which means that S∗ − SR ≤ 0 as long as the numerator in the right hand side of
(B.21) is non positive.

Some easy calculations show that this is the case when

hML ≤
hR(uR − SR)2 + hL(uL − SL)2 + hLuL(SR + 2SL − 2uL)− hLSLSR − PLR

−SL(SR − SL)
(B.23)

which completes the proof.

�

Remark B.2 In general, the difficulty in (B.18) is to prove that the upper bound is
positive. In fact, this is not possible when ’big steps’ are present in the bottom. In
those cases, the essentially three-wave HLLC scheme should be used to ensure the
non-negativity.

Finally, let us check the well-balanced property of the numerical scheme given by
this HLLC-solver. Given two statesWL = [hL, 0, cLhL, zb L]T , WR = [hR, 0, cRhR, zbR]T

such that:
cL = cR = c̄, hL + zb L = hR + zbR,

from definitions (B.2)- (B.8), (B.12) and (B.15) one can check the following equali-
ties:

SM = S∗ = 0, W ∗
L = W ∗

R = WR, WM
L = WL,

and the result follows.
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