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…“What could we do with layered structures with just the right layers? What would the 

properties of materials be if we could really arrange the atoms the way we want them? 

They would be very interesting to investigate theoretically. I can’t see exactly what 

would happen, but I can hardly doubt that when we have some control of the 

arrangement of things on a small scale we will get an enormously greater range of 

possible properties that substances can have, and of different things that we can 

do.”… 

This is a transcription of a fragment of the famous talk given by Richard P. Feynman to 

the American Physical Society in Pasadena on December 1959. It is notorious how 

these words, more than 50 years later, are more present than ever before.  

The main motivation behind nanotechnology is not to decrease drastically the amount 

of material/s required for a given application, which is indeed desired in a world of 

limited resources and can be effectively addressed by nanotechnology, but to exploit 

novel and enhanced materials properties as a consequence of the extreme size 

reduction of matter. By lowering down dimensions to the nanoscale, not only the 

specific surface area increases significantly but also the electronic properties may 

change considerably (owing for example to quantum size effects, strong contribution 

of surface reconstruction or surface curvature can be obtained). These effects might 

also contribute to drastically improve the reaction/interaction between a device and the 

surrounding media, thereby making the system more effective [Diebold U., Surf. Sci. 

Rep. 2003][Eustis S., Chem. Soc. Rev. 2006], or even opening entirely novel reaction 

pathways. 

Naturally, the technology involved in the fabrication of these nanostructures has its 

limitations. It is still difficult to scale up these processes and vacuum technology 

continues to be expensive (in comparison to solution-processed methods). 

Nevertheless, the constant miniaturization of technology, the necessity of more 

environmentally friendly production methods, the search for high quality high-tech 

devices, etc. have triggered the development and expansion of these fabrication 

processes. Furthermore, the vacuum technology related to them has been evolving 

steadily and it is maturing reasonably fast, which in turn will bring costs down and 

stimulate its use. 

1.1. Classification and fabrication of nanomaterials 
Nanomaterials is the term given to a wide range of systems whose size is above 

molecular dimensions and with at least one of their dimensions below 100 nm. 

Nanomaterials may be classified in several ways according to their applications and 
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philosophy adopted. For instance, they can be classified by their dimensionality 

(Siegel), type of nanomaterial (carbon based, metal based, dendrimers, and 

composites), crystalline form and chemical composition (Gleiter), etc. [Gleiter H., Acta 

mater. 2000][Siegel R. W., Springer 1994][Ngô C. & van der Voorde M., Atlantis Press 

2014].  

According to their dimensionality, nanomaterials can be classified into: 

 0D: All dimensions of the nanostructure are below 100 nm. e.g. 

nanoparticles or clusters. 

 1D: One dimension above 100 nm. e.g. Nanowires, nanobelts, nanorods, 

nanotubes, etc. 

 2D: Two dimensions above 100 nm. eg. nanocoatigns, grids, thin films of 

molecular monolayers, etc. 

 3D: All three dimensions escape from the nanoscale, but the material is 

formed by lower-dimensionality nanomaterials. e.g. polycristals, powders, 

frameworks, colloids, networks, nanoboxes, etc. 

Fig. 1 illustrates the four cases. 

 
Figure 1. Different types of nanomaterials: 0D, 1D, 2D and 3D. Modified from [Sajanlal 

P. R., Nano Rev. 2011]. 

 

More complex or hierarchical nanostructures require a slightly more sophisticated 

classification which takes into account the dimensionality of the final nanostructure 

and that of the elementary units or building blocks. A relatively simple and 

straightforward classification nomenclature that encompass several combinations of 

nanostructures was introduced by Pokropivny V. V. and is known as kDlmn 

classification, shown and self-explained in Fig. 2 (here it has been limited to 0D and 

1D nanostructures). 

 

1D0D 2D 3D
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Figure 2. kDlmn dimensionality classification of nanostructures (truncated up to 1D) 

[Pokropivny V. V., Mater. Sci. Eng. C 2007]. 

 

Due to the fact that this thesis is focused on 1D nanostructures, only the classification 

involved with this dimensionality will be commented. 

Different types of 1D nanostructures are presented in Fig. 3. According to the kDlmn 

classification, nanowires, nanobelts, nanorods and nanotubes are just 1D materials. 

Hierarchical nanostructures such as nanotrees, axial and radial junctions (core@shell) 

are all designated as 1D11, whereas 1D materials decorated with nanoparticles are 

regarded as 1D10. Naturally, these systems are being considered as isolated ones for 

the sake of simplicity, but for example, a highly interconnected array of nanotrees falls 

into the category of 3D11 nanomaterials. 
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Figure 3. Some examples of 1D nanostructures. a) square nanowire, b) nanobelt, c) 

axial junction, d) radial junction (core@shell), e) nanotube, f) nanowire decorated with 

nanoparticles, and g) branched nanowire (nanotree). 

 

There are two well-established general approaches for the fabrication of nano-objects, 

the top-down and bottom-up procedures (Fig. 4). Independently of the method chosen, 

it should be taken into consideration the manufacturing costs, yields, environmental 

impact, etc. which will ultimately decide the viability of the material. 

 Top-down approach: consists in the “erosion” of macroscopic materials by 

implementing subsequently finer tools to create nanometer-size structures. 

Examples include lithographic techniques, micromachining, laser ablation, 

etching, grinding, etc. 

 Bottom-up approach: atomic and molecular units are assembled to form 

molecular structures ranging from atomic dimensions to nano-sized 

structures and above. Examples span from physical methods such as 

evaporation techniques, sputtering, spray pyrolysis, inert gas phase 

condensation technique, etc. to chemical methods such as electrochemical 

deposition, hydrothermal and solvothermal techniques, chemical vapor 

deposition, sol-gel, etc. [Ngô C. & van der Voorde M., Atlantis Press 

2014][Tiwari J. N., Prog. Mater. Sci. 2012]. 

a) b)

c)

d) e)

f) g)
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Figure 4. Illustration of the top-down and bottom-up processes. 

1.1.1. Description of 1D Core@Shell nanostructures 

Among the different nanostructures already mentioned, 1D core@shell materials have 

been of central interest for this thesis. These materials  have been extensively studied 

an applied in a diversity of fields, including water splitting [Hernández  S., ACS Appl 

Mater Interfaces 2014], catalysis [Wei H., Nano-Micro Lett. 2011][Hasan M., J. 

Electrochem. Soc. 2012], supercapacitors [Singh A. K., J. Mater. Chem. A 2013], solar 

cells [Adachi M. M., Sci. Rep. 2013][Tamang A., Opt. Express 2014], electronics 

[Dong Y., Nano Lett. 2008], etc.  

The combination of Organic nanowires (ONWs) produced by Physical vapor 

deposition (PVD) and metal oxides fabricated by Plasma enhanced chemical vapor 

deposition (PECVD) to produce 1D core@shell nanostructures originates an 

enormous field of exciting possibilities and new challenges, with promising potential in 

the fields of wettability, solar cells, waveguides, sensors, etc. [Macías M., Adv. Funct. 

Mater. 2013]. The fabrication and characterization of these nanostructures began in 

the Ph.D. thesis of Dr. Manuel Macías Montero, but here the complexity (e.g. number 

and nature of the shells) and applicability of these systems has been augmented. 

Furthermore, the relatively unexplored fabrication of 1D organic core@shell has been 

studied and significantly developed during this work. 
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The extremely high aspect ratio of these nanostructures confers them unique 

properties and advantages (compared to thin films), just to mention but a few: 

 Remarkably high surface area: it can be controlled by adjusting the density 

of NWs, their length, width, the possibility of adding branches to the main 

NW and thus generating branched/hyperbranched nanostructures 

(nanotrees), the microstructure determining the porosity/roughness of the 

inorganic shell, etc. 

 Multilayer 1D nanostructures: Several shells of different metals/metal 

oxides/organic compounds may be produced one over the other (Mamushka 

structure) in order to attain the desired properties for the application in 

question. In addition, shells of mixtures may be produced as well. 

Metal oxide shells can be fabricated by PECVD as already mentioned, or by 

plasma oxidation of a shell formed by metalorganic molecules such as 

porphyrins or phthalocyanines, whereas metallic shells can be formed by a 

reductive plasma of these compounds or an oxidative plasma of those 

containing precious metals in their structure. 

 Highly interconnected networks of NWs are easily attainable (nanotrees), 

which can increase even further the surface area of the final core@shell 

array [Borras A., Adv. Mater. 2009]. 

 The use of organic molecules for the cores allows for the production of these 

nanostructures to be compatible with sensible substrates and flexible ones, 

which cannot stand temperatures much beyond 100 ºC under vacuum. 

Moreover, a wide range of substrates may be employed due to large 

diversity of porphyrins and phthalocyanines, i.e., it is often possible to find a 

suitable molecule to grow ONWs in a particular substrate, after which a shell 

may be formed [Macías M., Adv. Funct. Mater. 2013]. 

 Less requirement of raw materials when compared to thin films. 

 Whole 1D devices can be readily fabricated using a combination of PVD, 

PECVD, plasma post-treatment, etc. 

In Fig. 5 some ONW@ZnO can be appreciated. Fig. 5b demonstrates the compatibility 

of the various techniques for the fabrication of hybrid nanostructures. 
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Figure 5. a) Cross-section view of broken hybrid NWs. b-c) TEM images and selected 

area diffraction (SAED) (inset) of two distinct hybrid NWs by bright field mode. In (c) 

the molecular planes of MePTCDI are clearly visible [Macías-Montero M., Adv. Funct. 

Mater. 2013]. 

1.2. Device Fabrication and concept of One-reactor 

1.2.1. ONE-REACTOR. In chemistry, there is an upward trend in coupling several 

steps of a multi-step chemical reaction into just one reactor. This strategy is generally 

known as One-pot synthesis and it is of much interest for chemists and the chemical 

industry due to economic and environmental advantages [Zhao W., Curr. Org. Synth 

2012]. The One-pot synthesis may be extrapolated as well to a vacuum reactor where 

numerous deposition techniques and sample treatment processes are demanded. A 

chamber capable of performing all required fabrication operations without the 

necessity of transferring the samples to other equipments can be regarded as a One-

reactor. This concept present several potential advantages in comparison with usual 

reactors limited to only one operation: 
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 Faster fabrication process. Every cycle of pumping and breaking the vacuum 

it is considerable time-consuming. By reducing the number of these cycles to 

a minimum, production time drops significantly. 

 Lower manufacturing costs. An increase in sample/device output due to a 

fabrication time reduction obviously brings costs down. Furthermore, by 

adapting a chamber to work as a One-reactor, the number of equipments and 

power consumption are drastically decreased, making the whole process 

cheaper and more environmentally friendly.    

 Less reproducibility issues and higher yields. Avoiding exposure of fresh 

samples to air in-between preparation stages (samples transfer), 

contamination problems and undesired reactions are diminished. 

The One-reactor approach could make the fabrication of highly integrated and 

complex devices more feasible. It could be applied to the production of a fully 

operational Lab-on-chip, implementing different types of nanostructures to 

enhance the functionality of the device and reduce its size and cost as far as 

possible. A concept of a “nanostructured” Lab-on-chip is shown in Fig. 6, briefly 

describing all its individual components. The possibility of creating novel 1D 

nanostructures and applying them to real devices, such as in the Lab-on-chip, has 

been one of the main motivations behind this work.  

 

Figure 6. “Nanostructured” Lab-on-chip scheme. Some possible components would 

be: solar cells as on-chip power supplies (1), laser diodes/LEDs as light sources (2), 

nanoribbons (3) and 2D photonic bandgap (PBG) nanowire arrays (4) as filters and 

waveguides to select and route input and output signals; (6) sample analysis 

chambers, such as silver nanocube arrays for SERS (5) or nanoribbon/sample 
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intersection for absorption analysis; nanowire based photodectectors (7) and a 

microfluidic system for liquid sample transport (8) [Yang P., Nano Lett. 2010].    . 

Some advanced 1D nanostructured devices that could also be fabricated by means of 

a One-reactor include: 

Piezoelectric nanogenerators.  Even though the progress made in microelectronics 

and nanotechnology has helped to greatly cut down the power consumption of 

electronic and electromechanical devices, they still require a small amount of energy 

to fulfill their function. This energy can be effectively provided by a piezoelectric 

generator integrated in the same chip, exploiting the movement of animals, humans, 

plants (due to wind), blood, muscles, organs, wind, water currents, sound, etc. and 

thus creating self-powered devices [Wang Z. L. Adv. Func. Mater. 2008][Yang R., 

Nano Lett. 2009][Wang Z. L., Sci. Am. 2008]. The photograph in Fig. 7 is an example 

of a piezoelectric attached to a living heart which could provide energy to a 

peacemaker and avoid surgeries for battery replacement.  

 

Figure 7. Flexible piezoelectric device installed on a living animal heart [Dagdeviren 

C, PNAS 2014]. 

Excitonic solar cells. Modern solar cells may be split into two categories: 

conventional solar cells, such as the well-established silicon p-n junctions, and 

excitonic solar cells (XSCs). Dye sensitized solar cells (DSSCs) and the majority of 

organic solar cells belong to the second class. The main difference between both 

types of cells lies in the electron-hole pair generation mechanism. In XSCs, carriers 

are photogenerated and simultaneously separated across a heterointerface, while in 

conventional solar cells carriers emerge throughout the bulk of the semiconductor and 

are separated lately at their arrival to the junction. XSCs present an alternative to 

conventional cells despite they cannot compete in terms of efficiency, but they do have 
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the potential to become cheaper and more environmentally friendly. Moreover, they 

can be made flexible, a characteristic that facilitates their implementation in portable 

electronic devices and wearables. Furthermore, DSSCs may exhibit a rich and eye-

catching gamut of colors while still being semi-transparent, which is attractive in 

buildings (Fig. 8) [Gregg B. A., J. Phys. Chem. B 2003][Mehmood U., Adv. Mater. Sci. 

Eng. 2014].   

The work carried out here has been focused on “classical” DSSCs, but could be 

extended to organic cells or solid state DSSCs. 

 

Figure 8. DSSCs installed at the Swiss Tech convention center. 

Nanosensors. Optical and conductometric sensors are greatly demanded in areas 

such as chemical analysis, health care and environment control. The current challenge 

consists in the development of nanoscale sensors compatible within photonic and 

optoelectronic devices with a higher selectivity and sensibility and, as far as possible, 

multisensing performance. Organic and metalorganic nanowires, nanotrees and both 

organic and hybrid core@shells nanostructures are expected to increase the sensing 

sensitivity by virtue of their higher surface when compared to their 2-D counterparts 

(thin films). A nanoengineered sensor which acts as an electronic nose for the 

detection of toxins in the food supply chain is presented in Fig. 9. 
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Figure 9. Nanosensor array for the detection of harmful airbone substances 

[http://ucrtoday.ucr.edu/15913]. 

1.3. Methodology 

Vacuum Deposition  

Vacuum deposition is the name given to a family of techniques used to deposit layers 

of material atom-by-atom or molecule-by-molecule on a solid surface. Material from a 

thermal vaporization source reaches the substrate with little or no collision with gas 

molecules in the space between the source and substrate. The trajectory of the 

vaporized material is “line of sight.” The vacuum environment also provides the ability 

to reduce gaseous contamination in the deposition system to a low level. Typically, 

vacuum deposition takes place in the gas pressure range of 10-1 mTorr to 10-9 mTorr, 

depending on the level of gaseous contamination that can be tolerated in the 

deposition system and the process requirements. Vacuum deposition is generally 

used to form optical interference coatings, mirror coatings, decorative coatings, 

permeation barrier films on flexible packaging materials, electrically conducting films, 

wear resistant coatings, and corrosion protective coatings [Mattox D., Elsevier 2010]. 

These are all examples of compact layers, but the technique can be equally employed 

to create porous films [Parra-Barranco J., ACS Appl. Mater. Interfaces 2015][Vick D., 

J. Mater. Res. 2002][Gil-Rostra J., Sol. Energy Mater. Sol. Cells. 2014][Sánchez-

Valencia J. R., Adv. Mater. 2011][González-García L., J. Mater. Chem. 2010]. 

If the vapor source is a solid or a liquid, the process is designated as Physical Vapor 

Deposition (PVD), whereas in Chemical Vapor deposition (CVD) the source material is 

a reagent which undergoes chemical reactions during the deposition. Before 

describing each technique, a brief description of plasmas will me made due to their 

relevance in many vacuum deposition processes. 
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Introduction to plasmas 

Plasmas make up more than 99% of visible matter in the universe. They consist of 

positive ions, electrons or negative ions, and neutral particles. Plasma is regarded as 

the fourth state of matter. When a solid (the first state of matter) is heated, the 

particles in it get sufficient energy to loosen their structure and thus melt to form a 

liquid (the second state of matter). After obtaining sufficient energy, the particles in a 

liquid escape from it and vaporize to gas (the third state of matter). Subsequently, 

when a significant amount of energy is applied to the gas through mechanisms such 

as an electric discharge, the electrons that escape from atoms or molecules not only 

allow ions to move more freely but also produce more electrons and ions via collisions 

after accelerating rapidly in an electric field. Eventually, the higher number of electrons 

and ions change the electrical property of the gas, which thus becomes ionized gas or 

plasma. 

Plasmas can be classified into three categories according to their thermal equilibrium: 

 Thermal Equilibrium Plasma:  The electron temperature (Te), ion temperature 

(Ti), and neutral temperature (Tn) are identical in thermal equilibrium plasma. 

Examples include the natural fusion reactor (Sun), a magnetic field (of 

tokamak design), or inertial (laser) confinement of a plasma. 

 Nonthermal Equilibrium Plasma: the electron temperature (Te) is 

considerably higher than in ions (Ti) and neutrals (Tn), that is, Te >> Ti, Tn. 

Nonthermal equilibrium plasmas are generated by corona discharge, glow 

discharge, arc discharge, capacitively coupled discharge, inductively coupled 

discharge, wave heated plasma, and so on. Applications of nonthermal 

plasma have expanded to cover a large number of fields including 

environmental engineering, aeronautics and aerospace engineering, 

biomedicine, textile technology, and analytical chemistry. 

 Local Thermal Equilibrium Plasma: the electron, positive ion, and neutral 

temperatures are in the same range. The ion temperature of local thermal 

equilibrium plasma is 3,000–10,000 K (0.4–1 eV), which is much higher than 

that of nonthermal plasma, but its electron temperature is much lower (0.4–1 

eV compared with 2–10 eV of nonthermal plasma). Local thermal equilibrium 

plasma can be generated by DC and RF arcs, or by an inductively coupled 

torch. They are used for plasma spraying (coating) and thermal plasma 

chemical and physical vapor deposition [Chu P. K., CRC Press 2014]. 
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In this work only nonthermal equilibrium plasmas were involved. 

1.3.1. Physical Vapor Deposition 

Physical vapor deposition (PVD) processes are atomistic deposition processes in 

which material is vaporized from a solid or liquid source in the form of atoms or 

molecules, transported in the form of a vapor through a vacuum or low pressure 

gaseous environment to the substrate where it condenses. Typically, PVD processes 

are used to deposit films with thicknesses in the range of a few nanometers to 

thousands of nanometers of elements and alloys as well as compounds using reactive 

deposition processes; however they can also be used to form multilayer coatings, 

graded composition deposits, very thick deposits and freestanding structures [Holleck 

H., Surf. Coat. Technol. 1995]. The PVD process can be modified or adapted to cover 

substrates of an incredible range of sizes and geometries like silicon wafers, cutting 

tools, watchbands, windows, etc. (Fig. 10) [Knotek O., Surf. Coat. Technol. 

1993][faltaría agregar otra referencia] Moreover, the deposition on flexible substrates 

has successfully been addressed as well (Fig. 13) [Silva N. L., J. Mater. Sci.: Mater. 

Electron.][Han T., Nat. Photonics 2012][Wang Z. B., Nat. Photonics 2011].  

The main categories of PVD processing are vacuum evaporation, sputter deposition, 

arc vapor deposition, and ion plating. Here the focus will be put on the first two 

techniques used to fabricate organic, inorganic and hybrid materials. 

 

Figure 10. Objects which require one or more PVD processes for their production: A 

drill covered with TiCN (left) and a 65” UHD OLED TV (right). 

In this thesis up to 3 distinct PVD techniques were employed for the fabrication of 

organic and inorganic thin films and 1D nanostructures: Glancing Angle Deposition 

(GLAD), DC and magnetron  sputtering and Organic Physical Vapor Deposition 

(OPVD). 
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a) Glancing Angle deposition (GLAD) 

By employing the technique known as Glancing Angle Deposition (GLAD) it is possible 

to fabricate nanometric columnar films with controlled shape and porosity. The 

technique consists in the evaporation of a given material, which arrives at the 

substrate surface with a high zenith angle with respect to surface normal (Fig. 11). As 

a result, self-aligned tilted nanocolumnar structures can be produced due to 

shadowing effects during the film growth. There are several parameters controlling the 

morphology of the columns, from which it is worth mentioning the evaporation angle 

and rate [Hawkeye M. M., John Wiley & Sons 2014]. 
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* Other gases may be used besides Ar. 
 

 

 

Figure 11. Illustration of the growth mechanism in GLAD [Schubert F. M., Appl. Phys. 

Lett. 2007]. 

b) DC and magnetron sputtering 

The DC sputtering system is composed of a pair of electrodes, a cathode and an 

anode. The top plasma-facing surface of the cathode, known as the target, is covered 

with the material to be deposited on the substrates, which placed on the anode. When 

the sputtering chamber is kept in argon gas at around 0.1 torr and several kilovolts of 

dc voltage are applied between the electrodes, the glow discharge is initiated. The Ar 

ions* in the glow discharge are accelerated at the cathode fall and sputter the target; 

these sputtered particles collide with gas molecules and eventually diffuse to the 

substrate resulting in the deposition of thin film on the substrates. The process can be 

observed in Fig. 12 where the cathode is a Ag wire. 

 

Figure 12. DC sputtering of Ag at the Nanotechnology on Surfaces group, ICMS. 
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DC sputtering allows higher deposition rates than electron or ion beam processes. A 

limitation is that the ion flux cannot be controlled independently of the ion energy. 

Even higher deposition rates may be achieved with magnetron sputtering 

configuration, where electrons are magnetically confined close to the target, increasing 

the ionization of the gas and thus the sputtering rate. Furthermore, in the last case 

there are virtually no restrictions in the target nature, whereas in DC configuration the 

target should be conductive [Wasa K., William Andrew Inc. 2004][Harry J. E., Wiley-

VCH 2010]. 

c) Organic Physical Vapor Deposition (OPVD) 

Going organic. While it is true that organic semiconductors still cannot rival their 

inorganic counterparts in terms of performance, the gap is getting narrower and 

organics will certainly become superior in a wide range of applications, an irrefutable 

proof of which are living organisms. Of course, nature has had much more time to 

develop and refine its designs, but organic research and technology has advanced at 

a tremendous speed. To a great extent, this research effort has been triggered by the 

possibility of creating low-cost, light-weight and flexible electronics such as OLEDs, 

memory devices based on molecular spintronics, sensors, wearables, solar cells, field 

effect-transistors and integrated circuits, flexible and transparent electrodes, etc. 

[Feature, Nat. nanotechnol. 2013][Smits E. C.P., Nat. Lett. 2008][Xia Y., Adv. Mater. 

2012].  

The progress made in the field of organic semiconductors has already been 

materialized in many functional prototypes and cutting-edge technologies:  microchips, 

OLEDs for stunning displays and lighting, organic photovoltaics, non-volatile memory, 

medical sensors, etc. [Myny K., J. SOLID-STATE CIRCUITS 2012][Heliatek, 2013][Liu 

Y., Nat. Commun. 2014][Kim R. H., Nat. Commun. 2014][Lochner C. M., Nat. 

Commun. 2014]. Some of these devices are shown in Fig. 13. 
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Figure 13. Examples of organic semiconductors in real devices. a) Organic nonvolatile 

memory [Sekitani T., Science 2009] b) All-organic pulse oximeter [Lochner C. M., Nat. 

Commun. 2014], c) Organic solar cell produced by [Andersen T. R., Energy Environ. 

Sci. 2014] and d) 0.01 mm thick full-color flexible AMOLED [Royale corporation, 2014]. 

OPVD relies in the evaporation of organic molecules, generally by thermal 

evaporation, to generate organic thin films. By a proper choice of the deposition 

conditions, i. e. deposition rate, substrates nature and temperature, pressure, etc., 1D 

organic nanostructures can be growth, such as nanowires, nanobelts, nanorods, etc. 

Due to their incredible high aspect ratio, intrinsic anisotropy, two-dimensional quantum 

confinement, electronic properties, etc. 1D semiconductor nanowires, nanorods, 

nanobelts and so on have attracted special attention among researchers [Zhang C., 

Annu. Rep. C 2013]. Owing to their relevance in this thesis, a brief description of the 

growth mechanism of ONWs will be given. 

c1) Mechanism of formation of Organic Nanowire (ONWs) 

The force for the formation of organic nanowires (ONWs) from planar aromatic 

molecules is the π-stacking, which directs the crystallization process responsible for 

the growth mechanism of these 1D nanostructures. A supersaturarion regime leads 

the crystallization process, and the extent of the former depends upon: 

a) b)

c) d)
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 The number of molecules arriving at the substrate per unit area and time. 

This is the flux of molecules and is given by the deposition rate. A very low 

rate will not satisfy de supersaturation condition and no crystals will 

develop, whereas at very high rates the quality of the crystals will diminish 

dramatically. 

 

 The temperature of the substrate. If it is too low the molecules simply do not 

have enough energy to move freely on the surface of the substrate and 

distribute themselves at the nucleation sites, so as a result a film is formed. 

On the other hand, if the temperature is too high, the molecules do not stick 

to the substrates and no material is deposited on them. Moreover, there is a 

range of temperatures where the density and width of the NWs may be 

tuned, e.g., at a higher temperature the density and width of the NWs 

usually decrease. 

 

 The chemical nature, roughness and morphology of the substrates. The 

surface free energy of the substrates depends on the former, and hence 

their sticking properties and optimal NW formation temperature will change, 

while the morphology and roughness provide the adequate and necessary 

nucleation sites. It is worth mentioning that if the size of the nucleation site 

is smaller than the average diameter of the NWs, then their formation is 

severely inhibited [Mbenkum Beri M., Nano Lett. 2006][Borrás A., Langmuir 

2010 26(3)][Borras A., Langmuir 2010 26(8)]. 

All the aforementioned variables can be experimentally controlled, and the 

density, length and width of the NWs may be varied at will. 

The formation of the NWs comprises several stages as illustrated in Fig. 14: 

i. Presence of nucleation sites: defects, rough surfaces, metallic 

nanoparticles, etc. 

ii. Arrival of the molecules to the surface of the substrate in an appropriate 

concentration (to satisfy the supersaturation condition) and molecular 

diffusion until reaching the nucleation sites. 

iii. Formation of the crystal by self-assembly of the molecules. 

iv. Development of the nanowire.  
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Figure 14. Stages of ONWs formation and growth [Borras A., Langmuir 26(8) 2010]. 

As shown in Figure 15, an ONW is actually a single-crystal 1D nanostructure. In the 

cropped image at the right it is even possible to visualize the molecular planes along 

the longest axis of the NW. 

 

Figure 15. Bright field TEM image of iron phthalocyanine NWs and a cropped image 

of one section of the NWs. 

c2) Remote Plasma Assisted Vacuum Deposition (RPAVD) 
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This method has been completely developed by the group of Nanotechnology on 

Surfaces and is devoted to the fabrication of composite thin films containing 

luminescent organic molecules. One of the aims of this work is to extend the 

procedure to the deposition of conformal organic shells on the ONWs and to 

incorporate new material precursors such as n- or p-type semiconducting molecules 

including (metal) phthalocyanines and (metal) porphyrins, which may be post-treated 

to generate metallic or oxide shells/nanowires. 

In contrast to conventional plasma polymerization, the precursor molecules may suffer 

negligible fragmentation by the discharge due to a fine regulation of the interaction 

between the low/medium power microwave plasma and the precursor molecules 

sublimated in the afterglow region. This is achieved by the simultaneous adjustment of 

different deposition parameters, namely MW power, the total pressure, the sublimation 

rate and the geometrical arrangement used for the deposition. From previous results, 

the distance between the plasma and the growing film is one of the main operating 

parameters of RPAVD process, given that it controls the interaction between plasma 

discharge and precursors molecules. This distance, limiting the plasma-precursor 

interaction, makes the deposition process highly versatile, inasmuch as gradually 

regulates the film properties. By only modifying it, the method provides a wide range of 

films, from a highly cross-linked plasma polymer without the retention of original 

precursor monomers (deposition at the glow discharge), to plasma films containing a 

controllable amount of active dye molecules (deposition in the afterglow). By further 

increasing the plasma-to-substrate distance or the deposition rate, one obtains films 

which resemble more to those prepared by vacuum deposition (without plasma) 

[Aparicio F. J., J. Phys. Chem. C 2012][Aparicio F. J., J. Mater. Chem. C 2014]. 

In Fig. 16, the difference in morphology between a vacuum sublimated perylene thin 

film and its RPAVD film counterpart can be easily appreciated. RPAVD film looks 

much more homogeneus, continuous and without the presence of islands or 

aggregates. 
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Figure 16. Microstructure of a sublimated perylene (a) and its RPAVD thin film 

counterpart (b) [Alcaire Martín M., Ph.D. thesis 2015]. 

c3) Reagents for OPVD and RPAVD   

Porphyrins and Phtalocyanines 

These compounds are structurally related and have been extensively studied and 

implemented as dyes, catalysts, semiconductors, sensors, etc. [Livshits, J. Struct. 

Chem. 1967][Castillero P., App. Mater. Interfaces 2010][Wang Z., Adv. Mater. 

2006][Lloyd M., Mater. Today 2007]. Their versatile characteristics and properties can 

be largely attributed to the extensively delocalized π-system which is electronically 

highly sensitive and tunable. Furthermore, the nature of peripheral substituents and 

identity of the central metal ion have great ability to tune the electronic levels of these 

molecules. The nature of interaction between the metal ion and the porphyrinato or 

phthalocyanato moieties is such that both species mutually influence their electronic 

levels [Falk J. E., Elsevier 1964]. 

Porphyrins and phthalocyanines can be used as building blocks for the fabrication of 

organic nanostructures through self-assembly which is driven by supremolecular 

interactions, i.e., van der Waals forces, π-π interactions, metal coordination and 

hydrogen bonding. They possess an extensive network of delocalized electrons, the 

so called π-electrons, which allows this class of molecules to undergo aromatic-

aromatic interactions and stack one over the other, which is known as π-stacking 

[Kadish, Porphyrin handbook]. The self-assembly in highly π-conjugated planar 

systems is mainly dominated by this π-π interactions, but it is largely affected by the 

type of substituents and central metal ion which can lead to different nanostructured 

motifs, such as tubes, rods, sheets, nanowires, etc [di Natale, Mater. Today 2010]. 

The formation of Nanowires is of central interest in this thesis and will be further 

explained. 
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The molecular structures of a general porphyrin and phthalocyanie are shown in Fig. 

17a and 17b, whereas in figure 17c and 17d their metalloderivatives counterparts are 

represented. In the latter, the existence of central cations with oxidation states higher 

than two was taken into account by the addition of axial substituents, which originate 

non-planar molecules. 

2,9-DIMETHYL-ANTHRA(2,1,9-DEF,6,5,10-'E'F')DIISOQUINOLINE-

1,3,8,10-TETRAONE  (MePTCDI) 

Red DPP is a perylene derivative frequently used as a pigment in the industry, mainly 

the automotive industry, and this substance along with other perylenes have attracted 

a great deal of attention due to their optical, sensing and electronic 

properties.[Aparicio F.J.,J. Phys. Chem. C 2012][Karthaus O, Jap. J. App. Phys. 2008] 

The fused aromatic system in this molecules also gives rise to π- π interactions, which 

in turn opens up the possibility for the formation of several 1D nanostructures [Yan P., 

J. Phys. Chem. B 2005][Zang L., Acc. Chem. Res. 2008].  

Fig. 17e shows the chemical structure of MePTCDI. 

 

Figure 17. a) Porphyrin; b) Metalloporphyrin c) Phthalocyanine; d) 

Metallophthalocyanine; e) MePTCDI. 

1.3.2. Chemical Vapor Deposition (CVD) 

c)a) b)

d) e)
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Chemical vapor deposition (CVD) is the process of chemically reacting a volatile 

compound with gases introduced in the reactor to produce a nonvolatile solid that 

deposits atomistically on a suitably placed substrate.  

High-temperature CVD processes for producing thin films and coatings have found 

increasing applications in such diverse technologies as the fabrication of solid-state 

electronic devices, the manufacture of ball bearings and cutting tools, and the 

production of rocket engine and nuclear reactor components. In particular, the need 

for high-quality epitaxial semiconductor films for both Si bipolar and MOS transistors, 

coupled with the necessity to deposit various insulating and passivating films at low 

temperatures, has served as a powerful impetus to spur development and 

implementation of CVD processing methods.  

Many variants of CVD processing have been researched and developed in recent 

years, including low-pressure (LPCVD), plasma-enhanced (PECVD), and laser-

enhanced (LECVD) chemical vapor deposition. Only a brief description of PECVD will 

be given here. 

a) Plasma-Enhanced Chemical Vapor Deposition (PECVD) 

In PECVD processing, glow discharge plasmas are sustained within chambers where 

simultaneous CVD reactions occur. Generally, the radio frequencies employed range 

from about 100 kHz to 40 MHz at gas pressures between 50 mtorr to 5 torr. Under 

these conditions, electron and positive-ion densities number between 109 and 

1012/cm3, and average electron energies range from 1 to 10 eV. This energetic 

discharge environment is sufficient to decompose gas molecules into a variety of 

component species, such as electrons, ions, atoms, and molecules in ground and 

excited states, free radicals, etc. The net effect of the interactions among these 

reactive molecular fragments is to cause chemical reactions to occur at much lower 

temperatures than in conventional CVD reactors without benefit of plasmas. 

Therefore, previously unfeasible high-temperature reactions can be made to occur on 

temperature-sensitive substrates. 

An important advance in PECVD relies on the use of microwave radiation along with 

magnetic confinement, originating what is called electron cyclotron resonance (ECR) 

plasmas. In this operation mode, microwave energy is coupled to the natural resonant 

frequency of the plasma electrons in the presence of a static magnetic field (scheme 

shown in Fig 18). The condition for energy absorption is that the microwave frequency 

ω, (commonly 2.45 GHz) be equal to qB/m, where q is the elementary charge (~ 
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1.6x10-19 C), m the electron mass (~ 9.1x10-31kg), and B is the magnetic field (T). 

Physically, plasma electrons then undergo one circular orbit during a single period of 

the incident microwave. 

Whereas rf plasmas contain a charge density of ~ 1010 cm-3 in a 10-2 to 10-1 torr 

environment, the ECR discharge is easily generated at pressures of 10-5 to 10-3 torr. 

Therefore, the degree of ionization is about 1000 times higher than in the rf plasma. 

This coupled with low-pressure operation, controllability of ion energy, low-plasma 

sheath potentials, high deposition rates, absence of source contamination 

(electrodeless system), etc., has made ECR plasmas attractive for both film deposition 

as well as etching processes [Ohring M., Academic Press 1992][Wilhelm R., 

ATBWBGP 1999]. 

 

 

Figure 18. ECR Plasma deposition reactor [Ohring M., Academic Press 1992]. 

a1) Reagents for PECVD

The necessity of obtaining highly conformal metal oxides with different types of 

microstructure and crystallinity, and therefore with variable physical properties, while 

maintaining the nature of the organic template unaltered has been addressed with the 

technique of PECVD. The chemical structure of the reagents employed for PECVD 

and the experimental conditions required in each case are shown in Fig. 19 and table 

1*, respectively [Barranco Á., J. Vac. Sci. Technol. A 2004][Borrás A., J. Electrochem. 
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Soc. 2007][Borras A., Crys. Growth. Des. 2009][Borrás A., Mic. Mes. Mat. 

2012][Romero G., J. of Phy. Chem. C 2010]. 

 

Figure 19. a) Titanium isopropoxide (TTIP), b) Diethylzinc (ZnEt2), c) 

Chlorotrimethylsilane (TMCS). 

Precursor Microstructure Working 
pressure 

(mbar) 

Gas Substrate 
Temperature 

(ºC) 

Plasma 
power 

(W) 

ZnEt2 Columnar 1.5x10-2 O2 RT 400 
ZnEt2 Columnar 1.5x10-2 O2/H2 170 400 
TTIP Columnar 9x10-3 O2 RT 400 
TTIP Columnar 

(Anatase) 
9x10-3 O2 280 400 

TTIP Continuous 6 x10-3 O2/Ar RT 400 
TMCS Continuous 2x10-2 O2/Ar RT 400 

 
Table 1. Experimental conditions for the preparation of TiO2, ZnO and SiO2 by 

PECVD. 

The corresponding microstructures obtained by PECVD may be observed in Fig. 20.

27

http://sincaf.icmse.csic.es/papersrevista.php?revista=Journal%20of%20the%20Electrochemical%20Society&ano=2007
http://sincaf.icmse.csic.es/papersrevista.php?revista=Microporous%20and%20Mesoporous%20Materials&ano=2012


 

 

 

Figure 20. SEM cross section of: a) Columnar ZnO, b) Columnar ZnO (H2), c) 

Columnar TiO2 d) nano-TiO2, e) Anatase, f) Microporous SiO2. 

1.3.3. Deposition chambers and reactors 

a) Vacuum deposition system for PVD and RPAVD 

The deposition chamber and the instruments associated to it are shown in Fig. 21. It 

consists of two OLED evaporators (up to 500 ºC) and two high temperature RADAK 

evaporators (up to 1350 ºC), all of which can be varied in height (i.e. distance to 

plasma and/or sample holder) and their respective evaporation angles adjusted at will. 

An automatic pressure controller valve is used to precisely regulate the pressure 

inside the chamber in the range of 10-4-10-1 mbar, although the ultimate vacuum may 

reach 10-7 mbar. The pressure is monitored at all time employing a full-range pressure 

gauge and the flux of gases into the chamber is regulated by several mass flow 

controllers, one for each type of gas. 

The chamber is equipped with a 2.45 GHz microwave ECR plasma source with a 

maximum power output of 1200 W, capable of delivering stable plasmas even at low 

pressures (10-4 mbar) or low power (<100 W), the latter being extremely useful for soft-

plasma treatments. 
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The samples are placed in rotatable and heatable (up to 300 ºC) holder, which can be 

turned to face the evaporators or the plasma. If required, the holder can be placed on 

large screws fixed to the base of the evaporators-holder so as to vary its distance to 

the plasma. Moreover, the substrates and samples are normally protected with a 

shutter before deposition begins and once it has finalized. 

The deposition rate and nominal thickness of the deposit can be followed by one or 

two refrigerated quartz crystal monitor (QCM) conveniently placed so as to obtain the 

most accurate and realistic measurements as possible. 

The whole system, including the pipes for gases, is pumped by an oil rotatory pump 

for rough vacuum and a turbomolecular pump for attaining high vacuum. 

 

Figure 21. Scheme of the PVD and RPAVD reactor. 

b) Vacuum deposition system for PECVD 

This equipment is mainly used for the fabrication of metal oxides with different types of 

microstructure. It comprises a 2.45 GHz microwave ECR plasma source with a 

maximum power output of 2000 W. The plasma is feed with several gases which are 
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introduced into the chamber using the appropriate mass flow controller and the 

pressure of the system is varied employing a mechanical pressure control valve. 

The precursors are finely dispersed just over the substrates by means of a 

housemade shower, allowing the correct distribution of the metal oxide in relatively 

large areas. Furthermore, the sample holder may be heated up to 450 ºC using 

halogen lamps, which is sometimes necessary for obtaining crystallinity and/or 

particular microstructures in certain materials. 

A scheme of the PECVD reactor used is shown in Fig. 22. 

 

Figure 22. Scheme of the PECVD reactor. 

 
1.4. Objectives 
1) Fabrication of new 1D hybrid and heterostructured nanomaterials by combining self-

assembly and plasma assisted deposition of organic molecules, plasma assisted 

deposition of semiconducting oxides and metal nanoparticles and soft-plasma etching 

for the formation of ultra-thin metal layers in a one-reactor approach. These 

nanostructures will comprise different combinations of organic functional small-

molecules such as phthalocyanines and perylenes, semiconducting oxides (ZnO and 

TiO2) and metal nanoparticles, and ultrathin metal layers (Au, Ag, Pt). A main goal to 
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achieve is the determination of the experimental protocol to provide a strict control on 

the nanostructures properties yielding high density arrays of nanostructures with a 

high homogeneity on processable substrates, including sensible and soft materials for 

defined applications. 

 

2) Advanced characterization of hybrid materials as both individual identities and in the 

form of high density arrays. 

3) Comprehensive understanding of the growth mechanisms. Single crystal organic 

nanowires (ONWs) will play a critical role as core in the organic@organic/inorganic 

configuration but also as precursor materials in the soft-plasma etching treatment and 

sacrificial template in the case of ZnO and TiO2 and metal decorated nanotubes. 

4.1) Fabrication of gases nanosensors. Prototype for optical and electrical sensing of 

hybrid nanostructures. Probe of concept of the light (UV and Vis) activation of 

electrical sensors. 

4.2) Fabrication of dissolved organic molecules nanosensors. Study of the sensing 

capabilities by SERS of 1D TiO2 nanostructures decorated with silver nanoparticles.   

5.1) Fabrication of excitonic solar cells. Implementation of 1D hybrid nanostructures 

into DSSCs and study of the influence of hyperbranched nanostructures (nanotrees) 

and multi-shell systems on the overall performance of the cell. Development of 

nanometric/micrometric transparent electrodes for solar energy harvesting. 

5.2) Fabrication of nanogenerators based on piezoelectric effect. Fabrication of 

several prototypes applicable to thin films, NWs and nanotrees. 
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2. Inorganic nanotubes for DSSCs 

 
Abstract 

Single-shell and multishell ZnO and TiO2 nanotubes are fabricated by 

PECVD following a template procedure based on ONWs growth by OPVD. 

The emptying mechanism of the initial 1D nanostructures is evaluated as 

a function of annealing speed. Their characterization by electron 

microscopy techniques and implementation in DSSCs is addressed, 

investigating the effect of wall thickness on the photovoltaic parameters 

of the cells and the gain in performance when compared to their thin film 

counterparts. 
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2.1. Introduction  

ince 1883 solar cells have evolved from a laboratory curiosity to a real energy 

generation alternative [Fritts C. E., Am. J. Sci. 1883]. Moreover, the interest in 

photovoltaic (PV) technology emerged due to economic reasons after the first 

oil crisis in 1973, but it has further increased owing to environmental concerns, i.e. 

pollution related issues associated to conventional power sources (oil, gas, coal, etc.) 

have further stimulated research and production of solar cells [Armaroli N., Wiley 

2011][ Palz W., CRC Press 2014]. As seen in Fig.1, PV energy production keeps 

augmenting, exhibiting a tenfold increase in the period 2008-2014, a remarkable 

increase in only 6 years. This demonstrates the high level of commitment with PV 

technology, accompanied by a heavy investment in the field.  

 

Figure 1. Evolution of global solar PV power capacity in the period 2004-2014 

[REN21].  

The quest for higher efficiencies and more competitive photovoltaic technologies has 

led to the development of several classes of solar cells. According to the active 

materials composing the cells, they may be divided into three groups: 

 Inorganic: They are the most efficient, reliable and long-lasting ones, but 

also the most expensive both in terms of money and resources 

consumption (energy payback time is quite high) [Miles R. W., Mater. Today 

2007][Espinosa N., Energy Environ. Sci. 2012]. This family comprises 

several well-established commercial and aerospatial technologies like 

S   
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amorphous and crystalline Si cells, thin-film (CIGS, CdTe, a-Si:H) and 

multijunction cells. Third-generation, quantum dot and copper zinc tin 

selenide (CZTSSe) solar cells are among the novelties in this group and 

have attracted significant attention [Chuang C. M., Nat. Mater. 2014][Wang 

W., Adv Energy Mater. 2014][Conibeer G., Mater. Today 2007]. 

 

 Organic: This kind of solar cells rely on the implementation of a small-

molecule or polymer, or a combination of both, acceptor and donor for the 

formation of a proper n-p heterojunction for charge separation. Much effort 

has been directed towards novel architectures, microstructures and 

molecular engineering of the organic materials. Organic photovoltaics is a 

promising field which could ultimately allow for the manufacturing of large-

area, cheap and flexible light harvesters, even though the maximum 

theoretical efficiency of non-tandem organic solar cells has been calculated 

to be approximately 15% [Li G., Nat. Photonics 2012][Mishra A., Angew. 

Chem. 2012][Wright M., Sol. Energ. Mat. Sol. C. 2012][Su Y., Mater Today 

2012].  

 

 Hybrid: The combination of organic and inorganic materials in photovoltaics 

is a route to surpass some of the drawbacks of the individual families, 

getting the best out of each of them. For example, increasing the efficiency 

while keeping costs down. The broadly studied dye sensitized solar cells 

(DSSCs) and the recent organometal halide perovskites belong to this 

category. The solar cells fabricated during this Thesis are DSSCs, and 

therefore the ones that will be discussed in further detail here [Fan J., 

Photon Res. 2014][Heo J. H., Nat. Photonics 2013][Hardin B. E., Nat. 

Photonics 2012].  

Chart 1 summarizes the evolution in certified record efficiencies for different PV 

technologies. 
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Chart 1. Best confirmed Research-Cell efficiencies up to March 2015 (up) and a 

zoomed area of the same chart (down) [NREL 2015]. 

2.1.1. Brief introduction to semiconductors 

A semiconductor is a material which can behave as an insulator or conductor 

depending on external factors such as temperature, electric field, etc. Intrinsic 

semiconductors possess a forbidden energy band, the so-called band gap, separating 

the conduction and valence bands in the solid to which no electronic transitions are 

allowed. However, electronic transitions from the conduction to the valence band can 
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occur due to excitation (thermal, electric, etc.), in case the provided energy is larger 

than the band gap (Fig. 2).      

 

Figure 2. Electronic transitions in an intrinsic semiconductor upon irradiation.  

Intrinsic semiconductors may be doped with extremely low quantities of other 

elements to produce n-type or p-type extrinsic semiconductors. The doping elements 

are electron donor (pentavalent) or acceptor (trivalent) for n- and p-type extrinsic 

semiconductors, respectively. Moreover, the presence of defects in the crystal 

structure of the semiconductor may also confer one of these two behaviors.  As 

observed in Fig. 3, in an n-type semiconductor there are dopant states in the band gap 

close to the conduction band levels. The energy required to promote an electron from 

these states to the conduction band (Ed) is much less than the bandgap and at room 

temperature there is enough energy available for such transitions, partially filling the 

conduction band and thus increasing the conductivity of the material. In the case of n-

type semiconductors, the majority charge carriers are electrons, opposed to holes in p-

type ones [Berger L. I., CRC Press 1997]. 

 

Figure 3. Electronic transitions in an n-type semiconductor upon irradiation.  
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2.1.2. Operational principles of solar cells 

As already mentioned in the General Introduction, solar cells may be split in two 

different classes according to their working mechanism. On the one hand, 

conventional solar cells undergo three processes that lead to the generation of a 

photovoltage: 

 Generation of charge carriers throughout the bulk of the semiconductor 

due to absorption of electromagnetic radiation. For light absorption to 

occur, the energy of the incident radiation must be equal or higher the 

semiconductor bandgap (Fig. 2). 

 Subsequent separation of the charge carriers upon arrival at the cell 

junction, a pn type for example. 

 Collection of the charge carriers at the electrodes. 

On the other hand, in excitonic solar cells such as DSSCs only two processes take 

place: 

 Simultaneous photogeneration and separation of the charge carriers at the 

heterointerface.  

 Collection of the charge carriers at the electrodes. 

The operational principle of a liquid DSSC is quite simple and can be easily 

understood looking at Fig. 4. A mesoporous thin film of a wide band gap oxide 

semiconductor (TiO2, ZnO, Nb2O5, etc.) is generally deposited on a transparent 

conductive oxide electrode, such as fluorine-doped tin oxide (FTO) on glass, and 

placed in contact with an electrolyte. A dye (sensitizer), attached to the semiconductor 

film as a monolayer, is photoexcited and injects an electron into the conduction band 

of the metal-oxide. The regeneration of the dye is carried out by a redox couple 

present in the electrolyte (𝐼3
− 𝐼−⁄  in this case), which is in turn regenerated at the 

platinum coated counter electrode. Platinum acts as a catalyst for the reaction 𝐼3
− +

2𝑒− → 𝐼−, where electrons are supplied through the external load [Grätzel M., Inorg. 

Chem. 2005].  
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Figure 4. Illustration of a DSSC under operation. E and CE stan for electrode and 

counter electrode respectively, while MOS TF means Metal-Oxide-Semiconductor thin 

film (mesoporous in the diagramm). 

While the photocurrent in DSSCs depends on the number of dye molecules adsorbed 

to the oxide, the photovoltage arises from the difference between the Fermi level of 

the electrons in the semiconductor and the redox potential of the electrolyte. Assuming 

that the Fermi level is considered to be quite proximate to the conduction band, then 

for TiO2 in anatase crystalline form and using 𝐼3
− 𝐼−⁄  as a redox couple, the maximum 

attainable photovoltage would be ∆𝐸 = |𝐸𝐶𝐵 𝑇𝑖𝑂2
− 𝐸𝐼3

− 𝐼−⁄ | = |−4.2 𝑒𝑉 +

4.8 𝑒𝑉| = 0.6 𝑒𝑉 = 600 𝑚𝑉. In practice, the immersion of the semiconductor in 

the electrolyte with redox couple will shift the electron energy levels at the film surface. 

For example, it has been determined that for anatase, and using  𝐼3
− 𝐼−⁄  as redox 

couple, the conduction band shifts from -4.2 eV to -3.9 eV, so the maximum possible 

photovoltage for this DSSC would be 900 mV.  Of course, this is an ideal value and is 

usually lower mainly due to electron recombination in the semiconductor film [Cahen 

D., J. Phys. Chem. B 2000][Raga S. R., J. Phys. Chem. Lett. 2012].   

DSSCs efficiency has slowly improved from 10% to 12.3% in a time lapse of 20 years 

[Yella A., Science 2011]. New ruthenium-free dyes and combination of dyes have been 

introduced in order to enhance light harvesting (boosting the photocurrent) while in 

conjunction with novel Co(II/III) electrolytes favors a parallel increase of the 
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photovoltage. Moreover, despite the longevity of DSSCs is still inadequate for 

commercial applications, huge efforts has been made in improving their long term 

stability, which along with efficiency and low production costs will determine the 

marketing viability of these cells [Upadhyaya H. M., Sol. Energ. Mat. Sol. C. 2013].  

In this work, both ZnO and TiO2 wide-bandgap semiconductors have been employed 

as active materials in DSSCs electrodes. Bulk wurtzite ZnO has a direct band gap of 

3.44 eV with n-type behavior. Although the causes for such a n-type behavior are still 

unclear, although it is speculated that the unintended incorporation of impurities such 

as H would be a possible explanation [Janotti A., Rep. Prog. Phys. 2009]. Bulk TiO2 

has a band gap of 3.2 eV for the anatase phase. It is also an n-type due to oxygen 

vacancies and the presence of Ti+3 cations [Moorthy S. B. K., Springer 2015]. 

On the one hand, the high electron mobility of ZnO*, μe = 200 cm2V-1s-1, and 

acceptable exciton binding energy of 60 meV make it an attractive candidate for its 

potential implementation in DSSCs [Look D.C., Sol. State Commun.1998][Xu F., 

Energy Environ. Sci. 2011][Kosyachenko L. A., Solar Cells – Dye-Sensitized Devices]. 

On the other hand, its known degradation by many usual dyes limits the overall cell 

performance and operation lifetime [Soga T., Elsevier 2006]. TiO2 was the first choice 

for DSSCs [O’Regan B., Nature 1991] since it is chemically more stable than ZnO and 

it possesses an injection efficiencyξ of 100%, twice than ZnO. The major drawbacks 

associated with TiO2 are its low electron mobility, ranging from 1 cm2V-1s-1 for 

amorphous TiO2 to 30 cm2V-1s-1 for anatase*, and its relatively low exciton binding 

energy of 4 meV [Tiwana P., ACS Nano 2011][ Forro L., J. Appl. Phys. 1994].  

ZnO nanostructures in the form of thin film, nanowires, nanotubes and hierarchical 

nanostructures have been used as photoanodes in dye sensitized solar cells (DSSC) 

as an alternative to TiO2 [Anta J. A., J. Phys. Chem. C 2012]. The record efficiency 

reported for a DSSC is 7.5% under 1-sun illumination using hierarchical ZnO 

nanostructures [Memarian N., Angew. Chem. Int. Ed. 2011]. The application of this 

semiconductor oxide to the emerging field of the perovskite solar cells has also been 

recently explored [Zhou H., J. Phys. Chem. C 2015]. In fact, nanocolumnar ZnO thin 

films deposited by PECVD were reported last year as photoanode for both dye-

sensitized [Vega-Poot A. G., ChemPhysChem 2014] and perovskite solar cells 

[Ramos F. J., ChemPhysChem 2014]. In the first work, the electron-transport 

properties of the highly crystalline and texturized PECVD ZnO film were compared to 

that of a nanoparticulate layer by means of small-perturbation electrochemical 

techniques. In this way it was demonstrated that the electron transport in the case of 
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the texturized film was determined by Fermi-level pining that made voltage 

independent, in contrast to the nanoparticulate film [Vega-Poot A. G., 

ChemPhysChem 2014]. On the other hand, a stimulating power conversion of 4.8% 

was obtained for the solid-state solar cell by depositing CH3NH3PbI3 on a porous ZnO 

nanocolumnar layer [Ramos F. J., ChemPhysChem 2014]. 

Both TiO2 amorphous and anatase have also been extensively employed in DSSCs in 

the form of nanoparticles, nanosheets, nanowires, etc. [O’Regan B, Nature 

1991][Chen D., Adv. Mater. 2009][Yu J., Nanoscale 2010][Liao Jin-Yun, Energy 

Environ. Sci. 2012][Wu Wu-Qiang, Energy Environ. Sci. 2014], achieving remarkable 

efficiencies by implementing new dyes and electrolytes [Yella A., Science 2011], 

[Mathew S., Yella A., Nature Chem 2014.]. It has been demonstrated that TiO2 

nanoparticles suffer from higher charge recombination than 1-D nanostructures due to 

the huge number of grain boundaries in the nanoparticle film. However, 1-D 

nanostrucutures such as nanorods or nanowires offer much lower surface area 

compared to nanoparticles, hence dye concentration, and thereby photocurrent, are 

superior in the latter case [Tan B., J. Phys. Chem. B 2006][Yan X., Phys. Chem. A 

2013]. In order to achieve even higher efficiencies with TiO2 systems, it is therefore 

required to fabricate structures with low charge recombination and high surface area. 

State of the art DSSCs comprising 1D anatase nanostructures have achieved 

remarkable efficiencies of about 10 % by implementing hierarchical anatase NWs [Wu 

Wu-Qiang, Energy Environ. Sci. 2014]. In other recent works, efficiencies between 

4%-8% have been attained, always exploiting hierarchical 1D nanostructures [Roh D. 

K., Adv. Funct. Mater. 2014][Liao Jin-Yun, Energy Environ. Sci. 2012][Tan B., J. Phys. 

Chem. B 2006]. However, not less than 14 μm or even 47 μm of film thickness were 

needed for such high efficiencies. Here, the maximum attained power conversion 

efficiency was 4.32% (mean value) with films less than 10 μm thick.    

While carbon nanotubes are mainly explored for their use in microelectronic 

technology and as structural component, inorganic nanotubes (especially metal 

sulfides or oxides) are mostly fabricated to exploit other material-specific properties, 

focusing the interest on biomedical, photochemical, electrical, and environmental 

applications [Patzke G. R., Angew. Chem. 2002][Xia Y., Adv. Mater. 2003][Kolmakov 

A., Annu. Rev. Mater. Res. 2004][Roy P., Angew. Chem. 2011]. Thus, other materials 

like ZnO and TiO2 have been developed and applied in photocatalytic self-cleaning 

surfaces, piezoelectric devices, chemical sensing, for energy storage and solar energy 

harvesting applications due to their suitable electrochemical properties, excellent 
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solution stability, and relatively low toxicity [Pan Z., Science 2001][Wang Z. L., J. Phys. 

Condens. Matter. 2004][Law M., Nat. Mater. 2005][Nakata K., J. Photochem. 

Photobiol. C: Photochem. Rev. 2012].  

Potential applications of 1D nanostructures have been explored over the past 20 years 

in devices with increasingly sophisticated photovoltaic, electrochromic, antifogging, or 

self-cleaning properties or as biomedical coatings, sensors, or smart-surface coatings 

[Huusko J., Sensor. Actuat. B-Chem. 1993][Satake K., Sensor. Actuat. B-Chem. 

1994][Huang S. Y., J. Electrochem. Soc. 1995]. To achieve a maximum overall 

efficiency for many of these applications, it is crucial to maximize the specific surface 

area. For this purpose, nanoparticulated materials are usually the first choice, although 

other nanosize geometries, particularly that of nanotubes, may render a much better 

control of the chemical or physical behavior. By lowering down dimensions to the 

nanoscale, not only the specific surface area increases significantly but also the 

electronic properties may change considerably (owing for example to quantum size 

effects, strong contribution of surface reconstruction or surface curvature can be 

obtained). These effects might also contribute to drastically improve the 

reaction/interaction between a device and the surrounding media, thereby making the 

system more effective, or even opening entirely novel reaction pathways.  

In a general way the methods applied to the fabrication of nanotubes can be divided in 

four wide groups [Barth S., Prog. Mater. Sci. 2010]: formation of nanotubes due to 

morphological constrictions by classic VLS, VS and other catalytic methods [Rao C. N. 

R., Dalton Trans. 2003]; electrospinning [Li L., Electrochem. Commun. 2010]; 

anodization [Zhu K., Nano Lett. 2007], treatment of solid nanofibres (NFs) and 

nanowires (NWs) in order to remove the inner part [Elias J., Chem. Mater. 

2008][Mancic L. T., Cryst. Growth Des. 2009] and, finally, the use of templates [Cheng 

F., Chem. Mater. 2008]. There are two principal approaches settled in the last group, 

namely the use of anodized alumina as hollow 1D template that can be filled through 

solution-based or vacuum methodologies [Hulteen J., J. Mater. Chem. 

1997][Martinson A. B. F., Nano Lett. 2007] and the application of the atomic layer 

deposition (ALD) of inorganic precursors using as substrate pre-grown 1D 

nanostructures and fibers [Marichy C., Adv. Mater. 2012][Cho S., Sensor. Actuat. B-

Chem. 2012].  

The methodology presented herein might be included in the last group of methods 

above mentioned, with three important particularities:  

48



 
 

 

 Firstly, the nanomaterials used as template are supported single crystalline 

organic nanowires (ONWs) fabricated by physical vapor deposition of small-

molecules on an ample variety of substrates including metal nanoparticles 

and layers, metal oxide thin films and polymer flexible supports [Briseno A. L., 

Mater. Today 2008][Oulad-Zian Y., Langmuir 2015]. 

 Secondly, the metal oxide layers forming the walls of the nanotubes are 

prepared by PECVD [Macias-Montero M., Adv. Func. Mater. 2013][Gómez-

Romero P., J. Phys. Chem. C 2010][Borrás A.,  J. Electrochem. Soc. 2007]. 

 Finally, the organic template is removed by annealing of the ONWs at mild 

temperature.  

These characteristics render a full vacuum approach for the fabrication of 3D 

nanotubes with tunable length, hole dimensions and shapes and tailored wall 

composition, microstructure, porosity and structure.  

Quite recently, the development of hybrid ONW@semiconducting-oxide supported 

nanowires with application as nanoscale waveguides has been published [Macias-

Montero M., Adv. Funct. Mater. 2013]. Critical advantages of the use of PECVD for the 

formation of such hybrid nanowires are the vertical alignment of the final 

nanostructures and the formation of the inorganic shell with no damage of the organic 

structure in the core. Two different amorphous TiO2 shells have been prepared, 

labelled as meso and nano attending to their characteristic porosity, columnar and 

mesoporous in the first case and continuous and microporous in the second one 

[Borrás A.,  J. Electrochem. Soc. 2007]. Nano-TiO2 characterization is included in 

chapter 3. Moreover, anatase shells have also been successfully fabricated and 

implemented in DSSCs. The prepared ZnO shows a globular-columnar microstructure 

in the wurtzite phase. 

This chapter is structured as follows: first it is presented the development of the 

methodology for the formation of TiO2 and ZnO nanotubes and their characterization. 

Then, the extension of the technique to a multishell system ZnO NTs@TiO2 is 

discussed. Next, the supported ZnO nanotubes are employed as active nanomaterials 

in the fabrication of a dye sensitized solar cell. Finally, TiO2 anatase nanotubes, 

including their characterization and the combination ZnO NTs@TiO2 (amorphous) and 

ZnO NTs@TiO2 anatase are also investigated as active materials in DSSCs. 
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*A general approach to the fabrication and characterization of ZnO and TiO2 
systems will be given, for further details please refer to Dr. Manuel Macías-
Montero ´s Ph.D. Thesis [Macías-Montero M., Ph.D. thesis 2013] 

2.2. Objectives 

The following objectives were proposed for this Chapter: 

 Fabrication of single-shell and multi-shell nanotubes made up of ZnO and TiO2 by 

PECVD following a template procedure based on ONWs grown by OPVD. 

 Achieve crystalline nanotubes for both ZnO and TiO2. 

 Structural characterization of the obtained nanostructures. In the case of multi-

shell NTs, investigate whether the developed methodology is still suitable for 

these more complex systems.  

 Apply these nanostructures as active electrodes for dye-sensitized solar cells and 

characterize the cells. 

2.3. Methodology 

2.3.1. Fabrication of nanotubes* 

There are basically 4 steps involved in the production of 1D hollow nanostructures: 

1) Deposition of seeds 

The growth of the ONWs is a seed-mediated process. It requires a minimum 

roughness on the samples which can be obtained by depositing thin films of ZnO, 

TiO2, or noble metals, among many others. In the case of the prepared solar cells 

a thin film of ZnO or TiO2 (anatase) was first deposited by PECVD on the FTO 

electrode which act as a hole blocking layer (Fig. 5a).  

 

2) Growth of ONWs 

Formation of the ONWs template (Fig. 5b) is a temperature controlled physical 

vacuum deposition (OPVD) process that allows the growth of squared NWs and 

nanobelts. As previously mentioned, the organic nanowires are formed on 

substrates of different chemical nature from metal nanoparticles to polymers 

including oxide thin films. References [Borras A., Adv. Mater. 2009][Macias-

Montero M., Adv. Func. Mater. 2013][Gómez-Romero P., J. Phys. Chem. C 

2010][Oulad-Zian Y., Langmuir 2015] gather detailed information on the 

methodology developed for the controlled fabrication of ONWs. In this work, 

looking for the final applications of the nanotubes, ONWs have been deposited on 
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*A general approach to the fabrication and characterization of ZnO and TiO2 
systems will be given, for further details please refer to Dr. Manuel Macías-
Montero ´s Ph.D. Thesis [Macías-Montero M., Ph.D. thesis 2013] 

commercial FTO substrates coated with a thin film of TiO2 or ZnO. Additional 

reference substrates like metal nanoparticles and thin films were utilized for 

specific characterization methods. 

 

3) Formation of a metal oxide semiconductor (MOS) shell 

The third step represents the conformal deposition by PECVD of the metal oxide 

shell on the as-grown ONWs (Fig. 5c).  

 

These three steps are illustrated in Fig. 5 

 

Figure 5. Formation of 1D ONWs@MOS nanostructures. MePTCDI has been 

used in the illustration for the growth of the ONWs, but other molecules have been 

employed as well (see experimental details). 

 

4) Evacuation of the 1D nanostructures 
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A simple additional step is performed in order to remove the organic and obtain 

vertical aligned inorganic nanotubes. This additional step consists on the 

annealing under vacuum of the hybrid nanowires. In this step, the heating ram is 

crucial in the final NT microstructure. Increments of the temperature lower than 10 

ºC min-1 lead to closed nanotubes meanwhile higher temperature ramps result in 

open nanotubes. Steps ii) and ii’) in Fig. 6 depict such a phenomenological 

conclusion.   

 

 

Figure 6. Representation of the steps involved in the formation of the oxide 

nanotubes. 

2.3.2. Experimental details 

a) NTs fabrication steps 

ONWs by OPVD. The organic precursor perylenediimide (2,9-dimethyl-anthra[2,1-

def:6,5,10-d′e′f′]diisoquinoline-1,3,8,10-tetrone (Me-PTCDI) was acquired from 

Sensient Imaging Technologies, and Octaethylporphyrin (OEP), Phthalocyanine (Pc) 

and Nickel Phthalocyanine (NiPc) were supplied from Aldrich and used as received 

without further purification. The OPVD procedure for the formation of single crystal 

ONWs has been fully described in previous references [Borras A., Langmuir 26(8) 

2010][Mbenkum Beri M., Nano Lett. 2006]. It consists on the sublimation of the organic 

molecules from a Knudsen cell at 0.02 mbar of Ar using a growth rate about 0.3 Å/s 

and controlled substrate temperature. The substrates temperatures were settled at 
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~175 ºC for the Me-PTCDI; ~130 ºC for the OEP and ~230 ºC for the Pc and NiPc. In 

DSSCs, the thickness of the NWs was set to 0.65 kÅ which corresponds to NWs 2-3 

μm long. 

OEP and MEPTCDI have been used for the growth of template NWs in ZnO and 

multishell DSSCs, while Pc has been employed for the formation of anatase NTs (it 

withstand higher temperatures). NiPc has been utilized only for mechanistic 

elucidation purposes.  

ZnO and TiO2 layers by PECVD. Both semiconducting oxides, ZnO and TiO2, were 

fabricated by PECVD in a microwave (2.45 GHz) ECR reactor with a down-stream 

configuration. The experimental setup for PECVD can be found elsewhere [Macias-

Montero M., Adv. Funct. Mater. 2013]. Diethylzinc (ZnEt2) and titanium 

tetraisopropoxide (TTIP) were utilized as precursors (Sigma Aldrich). Crystalline ZnO 

was grown at RT with oxygen as plasma gas. Total pressure in the chamber was 

settled at 1.5 x 10-2 mbar and plasma power at 400 W. meso-TiO2 was grown at the 

same conditions with a slightly lower pressure (8.6 x 10-3 mbar). For TiO2, an 

amorphous thin layer (lower temperature) must be deposited before increasing the 

substrate temperature to 250 ºC, required for a proper anatase crystalline growth. 

Although the amorphous layer will certainly act detrimentally to the solar cell 

performance, it is mandatory since otherwise Pc nanowires will sublimate. 

Empty of the 1D nanostructures. Except for anatase nanostructures that loses the 

organic core during growth, a heating treatment at 350 ºC and 10-6 mbar of pressure 

was applied to these samples for 3 hours to achieve a complete emptying of the inner 

organic core. No alteration of the vacuum was detected during the process. A cold 

finger placed in the vacuum system was filled with liquid nitrogen to condensate the 

sublimated organic material. After the annealing process is performed, the samples 

are allowed to cool down in high vacuum avoiding water condensation in the highly 

porous nanotube walls. 

b) Solar  cells fabrication procedure 

Counter electrode. FTO/glass substrates of 2.5 x 2 cm provided by Xop Glass (12-14 

Ω/□) were drilled in two points for later electrolyte injection, rinsed with acetone, 

isopropanol and absolute ethanol and heated to 500 ºC for 1 hour. 12 μL of plastisol 

(Solaronix) are dispersed on the substrates, dried in air and heated in a furnace for 20’ 

at 400 ºC. 
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Working electrodes. FTO/glass substrates were cleaned just as the counter 

electrodes. An active area of 0.7 cm2 was defined with an aluminum foil mask and a 

layer of less than 100 nm of ZnO was deposited by PECVD. This ZnO acts as a hole 

blocking layer and provides the necessary roughness for the growth of ONWs. ZnO 3 

NTs with different thicknesses were fabricated by PECVD onto FTO electrode through 

a mask to delimitate a covered area of 7 x 10 mm2. Samples were heated up to 80ºC 

before immersing in the dye solution, 0.5 mM solution of N719 dye (cis-

diisothiocyanato-bis(2,20-bipyridyl-4,40-dicarboxylato) ruthenium(II) bis 

(tetrabutylammonium))  [purchased from Solaronix] in ethanol, to prevent adsorption of 

air moisture. For cells containing ZnO, immersion time was limited to 1 hour to avoid 

degradation of the NTs and for anatase the cells were allowed to remain in the dye 

overnight.  Afterwards they were rinsed with an ethanol baker and dried in air. 

Polished n-type Si(100) purchased from Topsil and fused silica  from Sico Technology 

GmbH were used in each preparation for later characterization. 

The electrolytic solution. Prepared by addition of 0.6 M 1,2-dimethyl-3-

propylimidazole iodine (DMPII), 0.1 M LiI, 0.5M 4-tertbutyl-pyridine (TBP), 0.05 M I2 

and 0.1 M guanidinium thiocyanate (GuSCN) to a mixture of acetonitrile/valeronitrile 

(85/15).  

Sealing of the cells. A frame of a thermoplastic polymer (Surlyn, Solaronix) was 

placed on the perimeter of the active area and then sandwiched with the 

counterelectrode. The whole cell was heated to 140 ºC under slight pressure to ensure 

a proper sealing. After that the electrolyte was injected and the holes on the 

counterelectrode sealed with Surlyn and a cover slide glass. 

The whole fabrication process of a DSSC is depicted in chart 1. 
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Chart 1. Steps involved in the production of a DSSC. 

Characterization of DSSCs. The solar-cell devices were characterized using a solar 

simulator with an AM1.5G filter (ABET). A reference solar cell with temperature output 

(Oriel, 91150) was used for calibration. EIS measurements were performed under light 

with perturbations in the 105-10-3 Hz range and the IMPS measurements in the same 

Hz range. For all the small perturbation techniques, a LED LUXEON collimated (540 

nm) source and an Autolab/PGSTAT302N potentiostat were used. Zview equivalent 

circuit modelling software (Scribner) was used to fit the EIS data, including the 

distributed element DX11 (transmission line model). The NOVA 1.7 software was used 

to analyze the IMPS data. 

c) Dye N719 concentration determination 

A calibration curve was constructed by measuring the absorbance between 200 and 

900 nm of four solutions of dye N719 in KOH 1M in MeOH, being the molar 
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concentration of the dye in each case 1x10-6, 5x10-6, 5x10-5 and 1x10-4. By taking the 

absorbance at 515 nm and by using the Lambert-Beer´s law, the absorption coefficient 

𝜀 (M-1cm-1) can be calculated. This law is usually expressed as 𝐴 = 𝜀𝑐𝑙, where A is 

the absorbance, 𝑐 the concentration (M) and 𝑙 the light path (cm). In this case, a 

straight line with R2 = 0.997 was obtained by linear regression, estimating a value of 

11331±276 for 𝜀. With this value and a known value of 1 cm for the light path, the 

molar volume concentration was calculated for each sample. 

The total number of moles for each film was calculated by multiplying the obtained 

concentration by the volume of solution employed (2 ml). Then, the surface 

concentration was calculated by dividing this value by the area of the sample (1.875 

cm2). Finally, the normalized surface concentration is simply this value divided by the 

thickness of the layer.  

A precision quartz cell from Hellma with a light path of 1 cm and a Cary 100 

spectrometer from Varian were used for these experiments. 

d) Characterization of samples 

SEM micrographs were acquired in a Hitachi S4800 working at 2 kV. The samples 

were dispersed onto Holey carbon films on Cu or Ni grids from Agar scientific for TEM 

characterization. EDX maps were acquired with a FEI Tecnai Orisis TEM/STEM 80-

200 working at 200 kV. Post-processing of EDX data was performed with the open 

source Hyperspy software: hyperspy.org. EDX raw data was post-processed in order 

to obtain more accurate compositional maps of the multishell system. The main reason 

for this post-treatment is an inadequate description of the Ti spatial distribution arising 

mainly from the fact that the microscope software mixes the signal of Ti Lα with O Kα 

and it does not allow selection of other emission lines or any further spectral 

refinement, which is critical in this nanosized structures. HAADF STEM and HRTEM 

were carried out with both Osiris and FEI Tecnai G2F30 S-Twin STEM microscope 

also working at 200 kV. The crystal structure was analyzed by XRD in a Siemens 

D5000 spectrometer operated in the θ - 2 θ configuration and using the Cu Kα (1.5418 

Å) radiation as an excitation source. UV-Vis analysis of the samples was done in a 

Cary 100 spectrometer from Varian.  

2.3.3. Solar cells characterization techniques 

a) IV curves measurements 
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By performing a linear sweep voltammetry to an illuminated solar cell, i.e. the external 

applied potential is increased linearly in time while recording the photocurrent, key 

photovoltaic parameters of the cell can be obtained (Fig. 7). 

 

Figure 7. Example of an IV curve and the most relevant photovoltaic parameters 

associated to the cell. 

The power conversion efficiency of a cell is generally defined as 

  

𝜂 =
𝐽𝑆𝐶 × 𝑉𝑂𝐶 × 𝐹𝐹

𝑃𝑠𝑢𝑛
 

Where JSC is the short-circuit photocurrent per unit of active area of the solar cell 

(mA/cm2) and it represents the maximum attainable current flow at closed circuit (zero 

resistance). VOC is the open-circuit photovoltage, achieved under no current flow 

conditions (infinite resistance). Psun is the power of the incident light and FF stands for 

the fill factor of the cell, a parameter representing the ease of extraction of the 

photogenerated carriers out of the photovoltaic device. The FF is mathematically 

expressed as 

𝐹𝐹 =
𝐽𝑚𝑝 × 𝑉𝑚𝑝

𝐽𝑆𝐶 × 𝑉𝑂𝐶
 

𝐽𝑚𝑝 × 𝑉𝑚𝑝 = 𝑃𝑚𝑝 is the maximum power output of the cell, while 𝐽𝑆𝐶 × 𝑉𝑂𝐶 is the 

so-called ‘dummy’ power output of the device (see Fig. 7). The fill factor is mainly 
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influenced by the series resistance of the cell and the non-ideality factor m of still 

uncertain origin. 

In order to study the response of the solar cells, a standard spectral distribution of light 

corresponding to an Air Mass parameter of 1.5G (AM 1.5G) is normally used, but the 

irradiance is set to 1000 W/m2 (1 sun illumination). 

Shor-circuit voltage (Vsc) measurements 

The electron quasi-Fermi level in dye-sensitized semiconductors may be estimated 

using this technique. It consists on illuminating the cell under short-circuit conditions, 

suddenly turning the light off and simultaneously switching the cell to open-circuit 

condition.  

b) Frequency-domain small-perturbation analysis techniques 

In this family of techniques, a tiny sinusoidal modulation in light intensity or voltage is 

superimposed to a DC component while recording the phase and magnitude. 

Frequencies in the range mHz-MHz are swept, which correspond to timescales of 

crucial photoelectrochemical processes in DSSCs. 

b1) Electrochemical Impedance Spectroscopy (EIS) 

The basis of EIS is to apply a small amplitude sinusoidal modulation to the voltage of 

the cell and to register the sinusoidal current response as a function of the modulation 

frequency. The impedance is given by the expression 

𝑍 = 𝑍0𝑒−𝑗∅ = 𝑍0 cos 𝜑 − 𝑍0 𝑗 sin 𝜑 

Where Z0 is the characteristic frequency of the system and ϕ is the phase shift. By 

varying the frequency of the applied signal, the impedance of the system as a function 

of frequency may be obtained. The data can be represented either as a Bode plot 

(magnitude of Z and phase vs frequency) or as a Nyquist plot (Re(Z) vs Im(Z)). A 

Nyquist representation is shown in Fig. 8 along with the potential information 

obtainable from each frequency zone. Note that not all features will be present or 

distinguishable for a particular DSSC, e.g. for low viscosity electrolytes the third 

semicircle will be absent or negligible.   
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Figure 8. Nyquist impedance spectrum of a common DSSC. 

To extract useful information about the charge transfer and to a less extent the 

transport processes of the cell, it is often necessary to implement an equivalent circuit 

model made up of common electrical elements such as resistors, capacitors and 

inductors placed in series or parallel. The equivalent circuit employed in this work is 

depicted in Fig. 9. 

 

Figure 9. Equivalent circuit model employed to fit the impedance spectra. 

DX1 represents the distributed element accounting for the diffusion-recombination 

transmission line, which is generally used to model the various processes occurring in 

the oxide film. RPt and CPt arise from the charge transfer resistance and the double 

layer capacitance at the platinized FTO (counter electrode), while Rs symbolizes the 

series resistance of the electrode plus any other elements that might be in series with 

cell circuit. Finally, a finite-length Warburg element is used to model the diffusion 

impedance (Zd) of the redox species present in the electrolyte. 

By applying the diffusion-recombination model of Bisquert and coworkers to a DSSC 

where electron trapping is dominant, the chemical capacitance (Cμ) and 

recombination resistance (Rrec) present at the oxide/electrolyte interface may be 

calculated according to 

𝐶𝜇
−1 =

𝜕𝐸𝐹

𝜕𝑛
= 𝐶𝜇,0

−1𝑒𝑥𝑝 (
−𝛼(𝐸𝐹 − 𝐸𝐹

0)

𝑘𝐵𝑇
) 
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𝑅𝑟𝑒𝑐
−1 =

𝜕𝐽𝑅

𝜕𝐸𝐹
= 𝑅𝑟𝑒𝑐,0

−1 𝑒𝑥𝑝 (
−𝛽(𝐸𝐹 − 𝐸𝐹

0)

𝑘𝐵𝑇
) 

where α is a dimensionless parameter related to the mean energy of the exponential 

distribution of localized states in the oxide, β is a dimensionless parameter which can 

be related to the reaction order of the recombination reaction with respect to free 

electrons, T is the temperature (ºK), k is the Boltzmann constant and the term 

𝐸𝐹 − 𝐸𝐹
0 accounts for difference in Fermi levels in the oxide and electrolyte, 

respectively, and is equal to the voltage applied to the cell. 

Moreover, the electron lifetime can be extracted from the intermediate frequency 

semicircle using the relationship 

𝜏𝑛
𝐸𝐼𝑆 = 𝑅𝑟𝑒𝑐 × 𝐶𝜇 = 𝜔𝑚𝑎𝑥

−1  

The small amplitude diffusion length may be determined from the transfer and 

transport resistances, 

𝐿𝑛

𝑑
= √

𝑅𝑟𝑒𝑐

𝑅𝑡
 

where d is the thickness of the film. 

Zview software (Scribner) has been used to fit the EIS spectra along with the above 

mentioned equivalent circuit. 

b2) Intensity-modulated spectroscopies 

These techniques comprise a small amplitude sinusoidal modulation in light intensity, 

instead of in voltage as in EIS, superimposed to the steady-state illumination level. 

Photocurrent (IMPS) response and the phase-shift of this response to the applied 

modulation are recorded.  

A 530 nm LED from LUXEON capable of moving backwards and forward to regulate 

the light intensity was employed as illumination source for all three frequency 

response techniques. 

Intensity modulated photocurrent spectroscopy (IMPS): carried put under short-circuit 

conditions. It provides information about the transport processes in the cell (electron 
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recombination is negligible due to short-circuit conditions). The time constant in IMPS 

is related to the effective diffusion coefficient (Dn) through equation: 

𝜏𝐼𝑀𝑃𝑆 =
1

𝜔𝑚𝑖𝑛
=

𝑑2

𝛾𝐷𝑛
 

Where d is the layer thickness and  𝛾 is a numerical factor dependent on the layer 

thickness, absorption coefficient and illumination direction. Here it has been given a 

value of 2.5. 

2.4. Results and Discussion 

2.4.1. Fabrication and characterization of TiO2 and ZnO 

nanotubes 

a) Single-shell NTs 

Figures 10 and 11 summarize representative FESEM and HAADF-STEM results 

obtained after the post-annealing of MePTCDI@meso-TiO2 (Fig. 10), and 

MePTCDI@ZnO (Fig. 11) nanowires. It is important to remark that controlling the 

annealing ramp, the nanotubes either keep the original domed shape with rounded tip 

(Fig. 10) or appears open on the top (Fig. 11 a-d).  

ONWs composition working as template is an element of choice. In this case octaethyl 

porphyrin (OEP) and red perylene (MePTCDI) have been preferentially employed 

because of their low sublimation temperature (below 300 ºC at 10-2 mbar) facilitates 

their sublimation through the inorganic walls porous microstructure. Results on metal 

phthalocyanine as ONWs are also included in the section regarding the emptying 

mechanism of the nanotubes in order to follow the metal in the molecule as trail of the 

evacuation pathway. 

In Figures 10 and 11 it is possible to appreciate that the original morphology of the 

hybrid nanowires, even their preferential vertical orientation (Fig. 10b), is preserved 

after the evacuation process. Moreover, the NTs do not collapse or get deformed after 

this annealing treatment. Thus, the NTs remain supported on the substrates (Fig. 10b) 

where the original cores, i.e. the ONWs, were grown. This result is of special 

relevance since it opens the way for a straightforward growth of these 1D 

nanostructures on electrodes, processable substrates and devices.  
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Figure 10. Meso-TiO2 nanotubes. SEM (a-b) and HAADF-STEM (c-e) characterization 

of nanotubes formed by columnar TiO2 walls. Panel (a) shows the globular surface 

characteristic of the meso-TiO2 fabricated by PECVD at RT under oxygen plasma. 

Micrograph in (c) demonstrates the mesoporous microstructure of the wall with 

columns growing radially from the evacuated core. d) and e) gather snapshots of the 

HAADF-STEM 3D reconstruction were the rectangular cross section of the tube is 

clearly appreciable (e) along with a continuous interface between the empty core and 

the TiO2 columns (d).  
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Regarding the formation of tailored porous TiO2 shells, Fig. 10a shows that the 

TiO2-mesoporous NTs (see Methodology) depict a rough and globular surface in good 

concordance with a columnar microstructure radially distributed along the nanowire 

length (Fig. 10c-d). These columns present a diameter distribution between 5 and 20 

nm with pores comprised in both the mesopores (2 < d < 50 nm columnar 

interdistance) and the micropores range (d < 2 nm inherent to the distribution of the 

material forming the columns). It is worth of mention that the HAADF-STEM 

reconstruction in Fig. 10d demonstrates the formation of a continuous interface 

between the columns and the empty core in the order of the tens of nanometers that is 

likely the responsible for the good mechanical stability of the samples. These shells 

are amorphous since the fabrication process has been carried out at room 

temperature. Formation of the anatase crystalline thin films is obtained by increasing 

the substrate temperature up to 250 ºC as it will be described below. 

On the other hand, Figure 11 gathers representative SEM, HAADF-STEM and HRTEM 

images of the ZnO shells. The shell is formed by globular-columnar features growing 

from a granular interface (Fig. 11a-d). PECVD ZnO thin films are crystalline even 

deposited at room temperature [Gómez-Romero P., J. Phys. Chem. C 2010]. Figure 

11d shows a low magnification STEM micrograph of a ZnO nanotube where it is 

possible to appreciate an inner hollow core surrounded by ZnO globular grains. 

Electrical conductivity of the ZnO nanotubes is a key property for many different 

applications, but it is especially important for the purposes of this Thesis such as solar 

cells or piezoelectric devices [Wang Z. L., J. Phys. Condens. Matter. 2004][Aricò A. S., 

Nat. Mater. 2005]. Grain boundary and crystal orientation has been investigated by 

HR-STEM, since they are critical microstructural features that control the conductivity. 

This technique provides high resolution images revealing the crystal planes that 

appear as parallel stripes. Fig. 11e shows the outer side of a nanotube wall formed by 

ZnO single crystalline columns. The symmetries of the crystal planes are observed by 

performing a fast Fourier transformation (FFT) of the image in the stripped areas (see 

insets in e and f). The interplanar distances obtained from the selected area are 2.6 

and 2.45 Å which correspond to the typical distances between the (002) and (101) 

planes, respectively. Fig. 11f presents a high resolution micrograph of the inner 

nanotube where it is possible to assess the porous size, crystal planes and grain 

boundaries. At first glance, the material shown in this figure is heavily packed with 

narrow spaces between grains. However, it also reveals the presence of open porous 

of about 2-3 nm width that are connecting the inner hollow with the exterior. It will be 

discussed below that this porosity is crucial to empty the organic core and determinant 
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in the electron transport properties of the NTs. The FFT analyses in regions A and B 

yield plane distances of 2.6 and 2.8 Å that correspond to the (002) and (100) planes 

respectively. The FFT of the C zone results in both distances supporting that both 

planes are simultaneously observed. These results are in good agreement with the 

XRD spectra in Figure 12, where peaks corresponding to the planes (100), (002) and 

(101) were present.  

 

 

 

64



 
 

 

 

Figure 11. ZnO Nanotubes. a-c) SEM characterization of different nanotubes formed 

by ZnO of thickness 250 nm a), 80 nm b) and 20 nm c). Details of the columnar 

microstructure and different shape and lateral sizes of the cavity in open nanotubes 

are appreciated in (e-g). d) STEM micrograph of a ZnO nanotube, e) and f) HR-STEM 

micrographs of a ZnO nanotube where the outer and inner wall are correspondingly 

exposed and analyzed. The insets show the FFTs of the marked areas in the images.  
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However, analyzing the XRD diagram of supported ZnO nanotubes and comparing 

them with the reference ZnO thin film, i.e. the layer deposited under the same 

experimental conditions on a Si(100) substrate, there are some interesting differences. 

An important feature is the non-texturized character of the supported NTs as 

evidenced by the presence of an intense (002) peak along to the (100) and (101) in 

comparison with the XRD diagram corresponding to the thin film that is dominated by 

the (101) peak (Fig. 12).  

 

Figure 12. XRD diagrams of ZnO thin film (black) and nanotubes (red). Note that 

the Ag(111) peak originates from the Ag nanoparticles used as seeds for the ONWs 

growth. 

Also important to notice is that the ZnO nanocrystals present some internal stress as 

evidenced by a left-shift on the diffraction peaks. From previous studies regarding the 

growth of nanocrystalline plasma materials it is well known that thinner films present a 

higher level of stress [Gómez-Romero P., J. Phys. Chem. C 2010] and a low degree of 

texture development. The smaller deposited thickness on the 1D nanostructure is 

result of a much larger effective area to be covered in this case. In addition, using 

Sherrer equation, the wider shape of the diffraction peaks of the nanotubes sustains a 

smaller crystallite size of ~ 21 nm.  

It is also interesting to address several additional features of this method. In one hand, 

the thickness of the 3D nanotubes is easily controlled and defined by the deposition 

time. The SEM images in Figure 11a-c show examples of open ZnO nanotubes with 
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wall thicknesses of 200 nm, 80 nm and 20 nm respectively where the empty core is 

clearly visible. The wall thickness tends to be thicker at the tips of the NTs (Fig. 10d) 

due to a self-shadowing effect during the inorganic shell growth by plasma deposition. 

This effect is more pronounced for thicker nanotubes and is directly linked to their 

vertical alignment [Macias-Montero M., Adv. Func. Mater. 2013].  

The NTs synthesis is carried out at low temperature and in remote plasma deposition 

conditions, being compatible with temperature-sensible and delicate substrates. On 

the other hand, the created hollow core replicates the shape of the organic nanowires, 

characterized by squared (Fig. 11a) or rectangular (Fig. 10e and 11b) inner walls.  It is 

also worth noting the flatness of the inner face (e.g. Fig. 10d). Thus, the outer parts 

present the typical surface roughness of the TiO2 or ZnO thin films meanwhile, the 

interface between the empty core and the shell keeps memory of the smooth 

molecular surface of the single-crystal wire template. The length of the NTs is as well 

easily tunable by the deposition time applied in the formation of the ONWs, ranging 

between the 500 nm and several tens of micrometers. 

b) Multishell oxide nanotubes 

The PECVD technique allows the formation of multilayer systems of metal oxides by 

simply alternating the metalorganic or organometallic precursors within the reactor 

without the need to expose the interfaces to air. This concept has been applied to the 

fabrication of multishell nanotubes, i.e. nanotubes with 3D walls formed by layers of 

different metal oxides. Figure 13 gathers two examples of multishell nanotubes of ZnO 

and TiO2. In the Figure 13 a)-b) it is shown the formation of a ZnO@nano-TiO2 

multishell (see chapter 3 for nano-TiO2 information), where the crystalline ZnO layer 

were first deposited on the ONWs template and the nano-TiO2 subsequently fabricated 

on the ONW@ZnO system  
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Figure 13. Multishell Nanotubes. a-b) HAADF-STEM micrographs of a ZnO@nano-

TiO2 nanotube at two magnification scales showing the homogeneous coverage of 

TiO2 along the ZnO nanotube length (a) and a detail of this complex nanostructure (b). 

c-f) Formation of an anatase layer on top of a ZnO nanotube. Distribution of Zn (up) 

and Ti (down) in the resulting EDX maps (c) obtained from the ZnO@anatase 

nanotube (d). Bright field TEM (e) and HRTEM (f), the inset showing the FFT of the 

selected area. 
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After evacuation of the organic compound the final nanostructure is defined as a 

ZnO@nano-TiO2 nanotube as seen in the EDX analyses from Fig. 14. 

 

Figure 14. EDX (right) spectra of the selected points in the HAADF-STEM micrograph 

on the left) showing the different composition of the shells in good agreement with the 

sequential deposition of ZnO (inner shell) and TiO2 (outer shell). 

The HAADF-STEM image in Figure 13 a) demonstrates the homogeneous deposition 

of the second layer on top of the ZnO shell. The microstructure of the TiO2 shell 

remains continuous and microporous. Moreover, it conformally follows the roughness 

of the ZnO surface (Fig. 13b). The method is also extendable to the fabrication of two 

crystalline shells. As an example, Figure 13 c-f shows the formation of TiO2 anatase 

grains as external shell on the top of the wurtzite ZnO layer. It is noticeable in the EDX 

maps (Fig. 13c) that even for such a low thickness (20 nm), the anatase phase is 

covering the whole ZnO shell. The FFT analysis of the selected area in Fig. 13 f) is in 

good agreement with the preferential formation of (004) planes as previously 

published for PECVD polycrystalline TiO2 thin films [Borras A., Crys. Growth. Des. 

2009]. Although the results reported here were obtained with TiO2 and ZnO NTs, the 

methodology is straightforwardly applicable to other oxides deposited by PECVD 

deposition like SiO2, SiOxCyHz, Al2O3, Ta2O5, oxynitrides, doped oxides, etc. and even 

to metal (Au, Ag) layers deposited by sputtering. The virtually universal character of 

the developed procedure and the variety of possible synthesized materials opens the 
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way to the fabrication of multishell 1D nanostructures with potential applications as 

single-wire devices.  

c) Core-emptying mechanism of hybrid ONW@MOx nanowires 

An important characteristic of the NTs microstructure is their tailored porosity. The 

microstructures presented in this chapter, the meso-TiO2 and ZnO, possess open 

pores connecting the inner channel with the exterior. Such porosity contributes 

positively to the evacuation of the organic template after annealing under vacuum. 

EDX (Fig. 14), XPS (not-shown) and UV-Vis spectroscopy results (Fig. 15) support 

that after the evacuation step ii) in Fig. 6, the organic core is completely removed. 

Figure 15 compares the UV-Vis spectra of PtOEP@ZnO NWs with the corresponding 

ZnO nanotubes after the vacuum annealing at 280 ºC during 60 minutes at 10-6 mbar. 

The spectrum of the as-prepared samples shows a high absorption in the visible 

range, due to the absorption of the PtOEP molecules, combined with light scattering. 

However, after the emptying process, the UV-Vis spectrum changes, resulting in a 

considerable increment of transparency. At an intermediate stage of annealing it can 

be seen how the spectrum still presents some features of the absorption bands of 

PtOEP. In all cases where ZnO shell is present, the spectra are significantly dominated 

by light scattering effects related with the size and distribution of the 1D supported 

nanostructures.  

 

Figure 15. UV-vis spectra of PtOEP NWs, PtOEP@ZnO NWs (hybrid nanowires), 

PtOEP@ZnO partially evacuated (p.e.) NWs and ZnO nanotubes (fully evacuated) on 

a fused silica substrate previously coated with a GLAD-SiO2 thin film. 
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Further information on the evacuation mechanism was obtained after characterization 

of different nanowires (Fig. 16) in intermediate stages of post-annealing, i.e. before the 

organic molecules were completely removed from the inorganic shell. Figure 16 a)-c) 

gathers characteristic SEM micrographs of the emptying process. The organic 

compound segregates to the surface of the nanotube in the form of thin stripes (Fig. 

16 a). Because of the columnar microstructure of the shells (ZnO and meso-TiO2) it is 

possible to observe how some porous channels weaken, provoking the detachment of 

small grains (e.g. Fig. 16 c). Such effect is more important on the tips of the wires 

leading to tip detachment under appropriated annealing conditions as schematized in 

Fig. 6 from the methodology section.  

To have access to the interior of the nanostructure during the emptying process, a 

HAADF-STEM analysis was carried out for partially evacuated samples (Fig. 16d-f). 

Experiments were performed with NiPc@meso-TiO2 as starting hybrid nanowire in 

order to enhance the contrast between the organic compound and the inorganic shell. 

In good agreement with SEM results, by HAADF-STEM it is possible to appreciate that 

the remaining organic material redistributes in the form of long and irregular stripes 

that lay close to the inner walls (brighter regions in Fig. 16 d). Besides, the porous 

structure appears well defined, evidencing a pore size distribution of a few 

nanometers. Looking closer to these pores (Fig. 16 e) it is possible to observe low 

contrast halos surrounding them. These may be attributed to the leftover organic 

material precipitated during the evacuation through the pores. To verify this, EDX 

analysis was performed on areas marked in Figure 16 f) as 1 (brighter region) and 2 

(darker region). The resulting spectra are compared in Figure 16 g) showing that zone 

2 has an important amount of titanium, while zone 1 presents nickel and carbon as 

main components. It is also important to remark that after completing the emptying 

process there is no trace of the small-molecules forming the original ONW template.  
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Figure 16.Characterization of the emptying process. a-c) SEM micro-graphs of hybrid 

MePTCDI@ZnO after heating for 30 min in high vacuum, where the emptying process 

is clearly observable: arrows in a) indicate the accumulation of the organic molecule; 

c)shows one of the leaking points of the nanostructure. d-f) HAADF-STEM 

micrographs of hybrid NiPc@TiO2 after a partially completed emptying process where 

the brighter regions correspond to the Ni in the NiPc molecule as it is corroborated by 

the EDX comparison in g) between the areas marked as 1 and 2 in (f). 

Therefore, these results conclude that the organic core molecules are released 

through the connected porosity on the inorganic shells without decomposition. In the 

cases analyzed in Figure 16, the final situation of the nanotubes is open but similar 

results were found for the domed nanotubes. Figures 6i and 6i’ in the methodology 
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section intend to illustrate the intermediate steps. The increased pressure created in 

the interior of the inorganic shell by partial sublimation of the organic core would be 

released by diffusion of the organic part through the porous structure in a continuous 

and homogeneous way. This takes place when the hybrid nanowires temperature is 

slowly increased to the organic molecule sublimation temperature, which leaves the 

unmodified inorganic shell microstructure (Fig. 6i). For higher temperature ramps, the 

overpressure conditions inside the nanowire drive to the detachment of the tip, likely 

due to a different grain or columnar orientation (Fig. 6i’).The last route makes 

accessible the inner hollow of the nanotube as presented in Fig. 11a-d.  

In the previous subsections, a full vacuum approach for the fabrication of supported 

3D nanotubes with tailored composition, microstructure and porosity have been 

presented. The aim now is to demonstrate that the developed procedure allows the 

implementation of functional oxide NTs as active component in a particular application, 

namely as photoanode in dye sensitized solar cells. 

2.4.2. ZnO Nanotubes-Based Dye Sensitized Solar Cells 

In this section, the fabrication of a complete and functional DSSC based on supported 

NTs is presented. The main goal of this study is to demonstrate the capability of the 

ZnO nanostructures to act as photoanodes and to study their charge transfer and 

electron transport properties. Moreover, for the first time the influence of NT wall 

thickness on DSSCs performance is introduced and analyzed. The length of the NTs 

was kept constant owing to prior studies of its impact in DSSCs [Bi D., J. Phys. Chem. 

C. 2010]. It is important to note that no efforts have been carried out to optimize the 

efficiency, as this requires to look for the appropriate dye, sensitization procedure and 

choice of electrolyte, which is out of the scope of this study.  

The analysis of the electron dynamics transport in the NTs is especially important 

since its results are extendable to the performance of the NTs in other devices such as 

the already mentioned perovskite solar cells, piezoelectric nanogenerators, gases and 

UV sensors. Three different types of samples have been chosen for this study with a 

similar NT density and length but different NT wall thicknesses: 20 nm, 80 nm and 250 

nm.  

To avoid recombination at the bare zones of the electrode, a ZnO thin film of 200 nm, 

covering completely the FTO substrate, has been deposited prior to the nanotube 

growth (see Fig. 18a). Additional details about device fabrication are included in the 

methods section. Figures 17 and 18 and Table 1 gather selected photovoltaic 
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parameters for the solar cells fabricated by using the three photoelectrodes. An 800 

nm ZnO porous thin film electrode has also been included in the study as a reference 

to compare the performance of the nanotubes with respect to porous thin films. This 

reference sample was grown under the same experimental conditions that the NTs but 

a longer deposition period and without the ONW-template. 

Significant changes are observed in the IV curves as a function of the NT wall 

thickness. The first difference is that the open circuit voltage decrease for thicker NTs. 

This parameter depends on the recombination rate from the ZnO electrode to 

acceptors in the electrolyte (I3
− in Fig. 18b). Its lower value for 250 nm electrodes 

indicates that thicker NTs present higher surface area for electron transfer to the 

electrolyte. An inverse effect is observed in the generated photocurrent, a parameter 

that is larger for thicker NTs. This is likely due to the amount of dye absorbed on the 

surface. The observed tendency can be accounted for by the increment of the effective 

surface available in thicker nanotubes that should result in a higher dye load.  
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Figure 17. Schematics of the DSSC device based on ZnO NTs (a) and energy levels 

(b) [Liu J., Nanotechnology 2010] c) I-V curves for the DSSCs assembled with NTs of 

three wall thickness and a 900 nm thick ZnO thin film as a reference [Macías M., Ph.D. 

thesis 2103].  
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The best efficiency reached by the DSSCs implementing the electrode with 250 nm is 

0.3% (c.f., Table 1). In order to contextualize the results obtained for the ZnO NTs, a 

reference DSSCs incorporating a PECVD porous ZnO thin film as electrode has been 

fabricated. It is apparent that although the highest nanotube DSSC efficiency is lower 

than the one obtained for the reference thin film, the photocurrent measured is larger 

for the NT electrode. This result is very significant since the nanotubes are more than 

three times thinner than the reference thin film. The increment of dye adsorbed might 

be related to the high specific surface area achieved with the nanotubes configuration 

and the smaller crystal size developed in these systems (Fig. 11). 

Table 1. Photovoltaic parameters for ZnO-based DSSCs as a function of the wall 

thicknesses. - Mean photovoltaic parameters values and estimated errors have been 

obtained from data of three devices with the same configuration. A device fabricated 

with an 800 nm thin film is used as reference. 

Cell Jsc(mA/cm2) Voc(mV) FF(%) η(%) 

20 nm ZnO NT 0.390.21 61025 401 0.100.05 

80 nm ZnO NT 0.730.15 50030 442 0.200.05 

250 nm ZnO NT 1.480.25 46020 501 0.300.05 

Reference 1.050.30 67015 451 0.500.1 

 

Further information about the charge transfer and electron transport processes of the 

cell can be obtained by Electrochemical Impedance Spectroscopy (EIS) and Intensity 

Modulated Photocurrent Spectroscopy (IMPS). The EIS spectra exhibited the typical 

shape of the current response of a DSSC under small Fermi level perturbations, with a 

semicircle at intermediate frequencies attributed to the charge transfer between 

semiconductor and electrolyte (recombination reaction) [Fabregat-Santiago F., Sol. 

Energ. Mat. Sol. C. 2005][Guillén E., J. Phys. Chem. C. 2011]. Fitting these spectra by 

using the transmission line model accounting for transport and recombination in the 

semiconductor electrode provides specific data for the recombination resistance and 

the capacitance of the system as a function of the applied bias. The variation of these 

parameters as a function of the Fermi level (voltage) is presented in Figure 18 a)-c). 

The recombination resistance presents the usual exponential behavior with respect to 

the applied bias, while the exponential behavior of the experimental capacitance for 

the two ZnO textured electrodes (reference and NT) suggests that it corresponds to a 

chemical capacitance [Bisquert J., Phys. Chem. Chem. Phys. 2003]. Moreover, the 

lifetime of accumulated electrons in the semiconductor electrode is higher for the 

reference DSSC, a result that explains the larger Voc obtained for this electrode.  
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Figure 18. a-c) Impedance spectroscopy results of DSSCs fabricated with ZnO 

nanotubes. Impedance parameters extracted from the fitting of the EIS spectra at 

various applied potentials: a) Recombination resistance. b) Capacitance. c) Lifetime. 

Collection efficiency: d) electron diffusion length, estimated as the ratio of 

recombination and transport resistances, normalized to the ZnO thickness (Ln/d). e) 

Collection efficiency calculated as 1 - τIMPS/τn. 

The IMPS measurements provide useful information about the electron transport 

properties of the electrodes. The calculated time constants (τIMPS) are in the order of 

tens of milliseconds and present two different behaviors. An exponential dependence 

is found for the DSSCs fabricated with the thinnest nanotubes (20 nm), while for the 
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80 nm and 250 nm NTs, τIMPS remains approximately constant. A similar constant 

behavior is found for the reference thin film. Such a constant value of τIMPS can be 

related with the absence of an electron multiple trapping behavior in the ZnO electrode 

as previously reported [Vega-Poot A. G., ChemPhysChem 2014]. The diffusion length, 

defined as the average distance that electrons can travel in the photoanode before 

recombination, provides information about charge collection processes in 

photoanodes. For small perturbations of the Fermi level, a small-perturbation diffusion 

length Ln is defined, which can be obtained by combining EIS lifetime and IMPS 

transport time. Figure 18 d) presents the calculated values for this magnitude, showing 

values around ten times larger than the ZnO wall thickness and values for the 

reference thin film cell one order of magnitude higher than those found for the 

nanotubes DSSCs. A diffusion length much longer than the film thickness indicates 

that electron collection is quantitative, so this is not an issue for the performance of the 

cell.  

Joining the information provided by the EIS and IMPS analysis it is possible to 

approximately estimate the collection efficiency as 1 - τIMPS/τn (Fig. 18e) where τn 

corresponds to the lifetime of accumulated electrons. Due to the relatively long 

diffusion lengths observed, this equation can be expected to be reasonably valid with 

an acceptable level of inaccuracy. Moreover, given the possible deviations of the 

calculated collection efficiencies from real ones, for values < 90%, focus is made on 

the trends and not on the absolute values. The graph shows clear differences between 

the efficiencies calculated for the different nanotubes devices, although in all the cases 

they converge to a maximum efficiency situation for low Fermi level energies (short-

circuit conditions).  
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Figure 19. IMPS of DSSCs implementing ZnO nanotubes - a-c) Imaginary IMPS 

component plotted versus the frequency at different light intensities for NTs 20 nm wall 

thickness. d) τIMPS plotted versus the Fermi level for the different DSSCs, including the 

ZnO porous thin film device as a reference. 

Taking into account all this information, the mechanism shown in Figure 20 for the 

electron transport in ZnO NTs is proposed. The nanotube wall is formed by ZnO 

globular columns (see Fig. 11) growing from the interface with the core. The 

photoelectrons are mainly generated in the outer shell of the ZnO wall and then 

migrate till the FTO substrate across the shell. The transport of electrons is effective 

within the column as such is the case in the columnar thin film and in good agreement 

with the single-crystalline condition (see Fig. 11e). However, while in the porous thin 

film configuration the columns are directly connected to the FTO electrode, in the NT 

architecture the path between the column where the photoelectron was generated and 

the electrode is more tortuous due to the grain boundaries between the columns and 

at their bases (i.e., in the inner face of the wall), involving as well the interface 

between the NT and the 200 nm ZnO blocking layer. This explains the shorter lifetimes 

and diffusion lengths and lower recombination resistances observed in NTs of 

increased thickness and when compared with the reference. 
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Figure 20. Scheme of electron conduction along a ZnO NT by an electron hopping 

mechanism.  

2.4.3. TiO2 Nanotubes-Based Dye Sensitized Solar Cells  

Hollow 1-D nanostructured anatase NTs DSSCs were also fabricated. Three different 

anatase nanotubes were produced with increasing thickness so as to study the 

evolution of photovoltaic performance. The equivalent thin film thickness for each cell 

was: 660 nm, 1.6 μm and 6.6 μm. A 200 nm anatase thin film (blocking layer) was 

deposited on the FTO prior to the growth of the NTs (for further details see the 

methodology section). At the same time, reference thin films directly grown on the 

bare FTO substrate were also fabricated for comparison.  

Figure 21 a) presents a complete anatase TiO2 NT, where it can be appreciated a 

great number of crystalline facets arising radially and axially (at the tip). These crystals 

are present along the whole body of the NTs as observed in Figure 21 b). The 

microstructure of the NTs resembles that of anatase thin films grown directly on Si 

substrates, as already reported [Borras A., Crys. Growth. Des. 2009].  
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Figure 21. SEM normal view of a 660 nm anatase NT tip (a) and its “body” (b). 

By augmenting the thickness of the NTs to 1.6 μm, the crystal habits develop even 

further to the extent of conferring a rose-like shape to the NTs (when observed from 

the top) as seen in Figure 22 a). As already discussed for ZnO NTs, the thickness is 

not uniform along the whole structure. The thickness matches with the analogue thin 

film at the very top of the nanotube and it gradually becomes thinner towards the base 

(Fig. 22 b). It is also evident from the SEM cross-section that there is still plenty of 

unoccupied space between NWs which will not contribute to the cell performance. 

However, by a close inspection to Fig. 22 d), it may be noted that each crystal 

emerging from the NT is decorated with numerous sub-crystals, resembling a feather. 

These features will increase even more the surface area of the NTs, which in turn 

should boost dye loading. 
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* In a feather, the barb consists of the small filaments growing from the shaft 
(center of the feather). 
 

 

Figure 22. SEM images of 1.6 μm NTs. normal view (a) and cross sections (b-c). (d) 
zoomed area of (c).  

The anatase feathers growing radially from the axis of the NTs retain some degree of 

individuallity with some empty space between as evidenced by STEM in Fig. 23, even 

though they are welded at the bottom forming the cavity walls. This axial cavity is 

formed as a consequence of the organic template evaporation.  

 

Figure 23. HAADF STEM image of a 1.6 μm NT with some features indicated. 

If the thicknees of the anatase shell is increased even further up to 6.6 μm, the shape 

of the NTs heads change from “roses” to “artichokes” (Fig. 24 a-d). A few more 

observations can be made by inspection of the SEM images in Fig. 25: the gaps 

between adjacent structures has been reduced dramatically (Fig. 24 c-d), to the extent 
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of notiaceable percolation at the top with some voids as evidenced in Fig. 24 a-b). 

Cross-section micrographs (Fig. 24 c-d) also reveal that the initial small crystals (Fig. 

21-22) have evolved into “huge” structures, changing from barbs* to feathers. 

Moreover, it is worth mentioning that these structures present a high degree of 

interconnection at the bottom, visible in Figure 24 d) where an island of these 

structures has detached from the substrate. On the other hand, anatase TiO2 thin films 

exhibit a vertical growth of feather-like crystals as shown in Figure 24 e). Compared to 

1D NTs, thin film are more compact, even when they possess both micro and 

mesoporosity [Borrás A., Micropor. Mesopor. Mat. 2009]. 

 

Figure 24. SEM images in normal view of 6.6 μm anatase NTs (a) and (b). Cross 

sections of NTs (c)-(d) and thin film (e). 

Furthermore, some interesting changes are readily observed in anatase thin films 

used as reference when the thickness is increased ten times. As it can be observed in 

Figure 25, the first noticeable difference is the interspacing between adjacent anatase 

columns. For 660 nm there exist clear gaps between columns (Fig. 25a-b), while for 

6.6 μm the empty space has been drastically reduced, giving the sensation of more 

closed-packed structures (Fig. 25c-d). Secondly, the size of the columns has evolved 

from less than 100 nm to more than 200-300 nm, which certainly explains the 

reduction of free space. 
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Figure 25. SEM cross sections of 660 nm (a-b) and 6.6 μm (c-d) anatase thin films. 

The XRD diagramms for the anatase NTs are presented in Figure 26, where it is clear 

the crystalline nature of the as prepared samples. Just as in the case for ZnO, NTs did 

not presented a preferential orientation while thin film samples were texturized [Borras 

A., Cryst. Growth Des. 2009]. 
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Figure 26. XRD diagramms of anatase NTs for a TiO2 thickness of 660 nm, 1.6 μm 

and 6.6 μm. 

The optical properties of these samples were also investigated. As it can be observed 

In Figure 27, thin film samples were relatively transparent presenting low scattering, 

which became more apparent for thicker samples. On the other hand, NTs exhibited 

always a whitish appearance due to important scattering effects.  
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Figure 27. Photograph of 1.6 μm thick anatase thin film (right) and NTs (left) samples 

prepared on FTO coated glass.  

Figure 28 presents the UV-Vis-NIR transmission spectra of a 3 μm thick anatase thin 

film and the corresponding NTs samples. NTs strongly scatter the light in the whole 

visible and NIR range, whereas the thin films present significantly less scattering. It is 

important to note that the strong absorption bands in the region 1400-2500 nm are due 

to the FTO/glass substrate. 

 

Figure 28. UV-Vis-NIR transmission spectra of 3 μm thick anatase thin film and NTs 

on FTO/glass. 

The mean NT length can be calculated performing statistics on cross-section SEM 

images. The mean values for the three NT samples are presented in table 2, where it 

can be observed that even for the thickest sample the average NT length stays below 

10 μm. 

Table 2. Mean NT length obtained from SEM micrographs. 

Sample Mean length (μm) 

660 nm 2.67 (extrapolated) 

1.6 μm NT 3.14±1.26 

6.6 μm NT 5.62±3.34 

 

A second type of anatase with a different microstructure was grown just for 

comparison with the as-grown anatase in DSSCs. This second version of anatase 
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consisted in meso-TiO2 which was post-annealed to 450 ºC to induce the 

crystallization to anatase. Furthermore, an hiperbranched anatase variant of meso-

TiO2 (nanotree) has also been prepared and implemented in DSSCs (For further 

details about nanotrees formation please refer to Chapter 4). Meso-TiO2 exhibited the 

typical columnar nanostructure, but due to the high thickness (3.72 μm), the tips were 

rounded and smooth like a baseball bat (Fig. 29a-b). However, the nanotree version 

retained the columnar character even at the tip, probably due to a smaller diameter of 

the nanostructures. This last fact is a consequence of a higher density of template 

NWs (see Chapter 4), which in turn gives rise to a major distribution of TiO2 and hence 

thinner nanostructures (Fig. 29c-d). 

 

Figure 29. SEM cross sections of meso-TiO2 post-heated samples (a-b) and the 

corresponding nanotree (NTree) version (c-d).  

In order to evaluate the dye loading on the samples, integrating sphere measurements 

were performed. Unfortunately, due to the high light scattering of the NTs samples 

which increased significantly with the thickness, the results were not coherent. Instead 

of that, to illustrate the dye loading the Figure 30 presents both NT and thin film 

samples with the three different anatase thicknesses after the dye adsorption. It is 
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clear that the thicker the anatase layer the greater the amount of dye adsorbed. 

Moreover, NT samples exhibited always a more intense pigmentation than their 

equivalent thin film. 

 

Figure 30. Photographs of real DSSCs electrodes after overnight immersion in dye 

N719. The anatase layer thickness was 660 nm (up), 1.6 μm (middle) and 6.6 μm 

(down).  

Anatase DSSCs were constructed just as ZnO ones: on the electrode side, a thin 

anatase blocking layer (see methodology) was deposited on FTO/glass followed by 

the growth of a nanostructured film (thin film or 1D). The rest of the cell, i. e. 

counterelectrode, electrolyte and dye remained unchanged. A scheme of a complete 

cell is shown in Figure 10 a) together with the energy level diagramm of the cell, 

Figure 31 b). The I-V curves of four different thicknesses of anatase in NTs and thin 

films are presented in Figure 31 c). 
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Figure 31. a) Scheme of a DSSC with anatase NTs (blocking layer not shown), b) 

energy levels of the cell [Cao G., World Scientific Publising 2010] and c) I-V curves for 

the DSSCs assembled with NTs  and TFs of three wall thicknesses (best cells shown). 

Mesto-TiO2 and meso-TiO2 NTree curves are also shown.  

89



 
 

 

The photovoltaic parameters of a DSSC are directly linked to the thichkness of the 

mesoporous layer for a given semiconductor material. Usually, by increasing the 

thickness of the active area, more dye is adsorbed as a consequence of a higher 

surface area, which in turn translates in a higher photocurrent (JSC), but the 

photovoltage (VOC) drops as a consequence of a higher recombination rate.  [Ref 

paper Jesús] 

According to Table 4, an increase in anatase thickness effectively produced higher 

photocurrents, but interstengly, the photovoltage does not drop as expected for the 

thickest samples. On the other hand, the fill factor presented a mixed behavior 

depending on the kind of film present, i.e. thin film or nanotubes. 

 As already mentioned, the photocurrent increases with the thickness of 

anatase. Moreover, for the same thickness NTs exhibited always a higher 

photocurrent than TF, probably due to their superior surface area. This is in 

perfect agreement with noticeable more dyed NT samples compared to their 

TF counterparts (Fig. 30). Furthermore, the superior optical dispersion of 

NTs compared to TF is probably contributing to a higher photocurrent. This 

effect  is well known to be beneficial for the cell performance due to an 

increase in light harvesting [Cheol S., Adv. Pow. Tech. 2012][Wu Wu-Qiang, 

Energy Environ. Sci. 2014]. 

 Unexpectedly, the photovoltage of the cells generally did not decrease for 

thicker layers of anatase. Thin film cells showed an improved behavior when 

the the thickness of TiO2 was increased reaching a maximum of 831±1 mV 

for 6.6 μm. A feasible explanation may be found in Table 3 where the size of 

the crystalline domains have been calculated for some samples. When the 

thickness is increased beyond 660 nm up to 2 μm, the size of the crystals is 

incremented, and considering that the crystal size for TFs is larger than that 

for equivalent NTs cells, then for a 6.6 μm the size of the crystalline 

domains should surprass 80-90 nm, which in turn should translate into a 

smaller recombination rate and higher photovoltage, as observed. 

The photovoltage of NTs cells was more or less constant with thickness, but 

generally much larger than that of equivalent thin film cells. An unattended 

diference between NTs and TF cells is the presence of a blocking layer in 

NTs. According to Table 3, a blocking layer of 200 nm should posses a 

crystal size of aorund 80-90 nm, while for a thin film of 660 nm the 

crystalline domains are around 49 nm, giving rise to a higher recombination 
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and lower photovoltage. So, the thickness of the blocking layer seems to 

play an important role due to recombination a at the electrode level.   

Table 3. Sizes of the crystalline domains determined by the Scherrer method after the 

XRD patterns in Figure 27 and reference [Borras A., Cryst. Growth Des. 2009]*. 

  

 

 

 

 

 

 

The photovoltaic parameters extracted from the I-V curves are gathered in Table 4. 

The most important observations from the Table 3 are the following: 

 Anatase was considerably more efficient than ZnO, at least for the thin film 

case. By comparing a 800 nm ZnO thin film vs a 660 nm anatase one, it can 

be noticed that ZnO yielded lower photocurrent, photovoltage and fill factor. 

It has been determined that ZnO-based cells posses worse electron injection 

rate and dye regeneration, contributing to a poorer performance against TiO2 

[Idígoras J., J. Phys. Chem. C 2015].  

 The fill factor does not seem to have changed much for TFs, while for NTs 

there has been a drop of this value when the thickness of anatase was 

increased. Interestingly, NTs possesed a higher FF than thin films. 

 For higher thickness, 6.6 μm, the efficiency of the thin film cell nearly 

triplicated, whereas for NTs it augmented by a factor of 1.5. Looking at the 

photovoltaic parameters of NTs and thin film, it can be noticed that there are 

no big differences between them, with a slightly higher photocurrent 

generated by NTs. A possible explanation for this behavior is based on the 

high level of (undesired) percolation reached for such a thick deposit (Fig. 

24a-d), i. e. the advantage of a higher surface area is lost. Taking this fact 

into consideration, it is reasonable to think that there might be a maximum in 

Sample Crystal size (nm) 

(101) 

150 nm TF* 80.2 

295 nm TF* 90.6 

660 nm TF* 49.1 

2 μm TF* 57.6 

660 nm NT 42.9 

1.6 μm NT 39.1 

6.6 μm NT 86.6 
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efficiency for NTs between 1.6 μm and 6.6 μm, althgugh it has not been 

reached in this work. 

 3.7 μm meso-TiO2 performed reasonably well, exhibiting a high photocurrent 

and photovoltage, although the fill factor was somewhat lower compared to 

anatase thin films (see Fill Factor for 1.3 and 6.6 μm TF). The nanotree 

sample, which has the same thickness, was expected to present a higher 

photocurrent due to an increase in the surface area and a lower 

photovoltage (higher recombination). However, it turned out that the 

photocurrent was appreciably lower than for regular meso-TiO2. A probable 

explanation might be the extremely low covearge at the base of the NTs 

(most of the material accummulates at the body and tip owing to the high 

density of initial template NWs), as it can be observed in Figure 29 c). If the 

NTs are not properly linked to the anatase blocking layer, then a higher dye 

load will not translate into photocurrent. 

Table 4. Photovoltaic parameters for TiO2 (anatase)-based DSSCs as a function of the 

wall thicknesses. - Mean photovoltaic parameters values and estimated errors have 

been obtained from data of three devices with the same configuration, except for the 

devices marked with a * where statistics were performed with only two cells due to 

malfunction of the third one. Thin films of the same thickness as their NTs counterparts 

are used as references.  

Cell Jsc (mA/cm2) Voc (mV) FF (%) η (%) 

660 nm TF 1.520.05 6707 62.71.9 0.640.05 

1.6 μm TF* 2.860.30 69858 64.91.4 1.310.27 

6.6 μm TF 7.120.15 8311 63.61.6 3.760.17 

660 nm NT 2.480.30 8339 71.40.8 1.470.10 

1.6 μm NT* 5.390.53 8192 66.62.4 2.930.18 

6.6 μm NT 7.870.58 8356 65.70.2 4.320.30 

3.7 μm meso-TiO2 6.630.60 83022 60.93.4 3.340.18 

3.7 μm meso-TiO2 NTree* 3.900.05 81135 61.51.6 1.950.15 

800 nm ZnO TF 1.050.30 67015 451 0.500.1 
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It must be stressed that the active area of the cells used in this work is 0.7 cm2, 

in contrast with the typical areas of ca. 0.2 cm2. The utilization of smaller areas 

assures a more reliable and more efficient solar cell performance due to 

inhomogeneities in the samples and lower series resistance [REF??]. In this 

work we have taken a higher active area that, under our consideration, is more 

representative of the fabricated solar cells, even if it is detrimental for the 

overall cell performance. In addittion, the mean thickness of the film always 

remains below 10 μm in contrast with other works which uses significantly 

higher thicknesses [Roh D. K., Adv. Funct. Mater. 2014][Liao Jin-Yun, Energy 

Environ. Sci. 2012][Tan B., J. Phys. Chem. B 2006].

By means of Electrochemical Impedance Spectroscopy (EIS) and modelling, some 

process parameters may be quantified as already seen for ZnO. Again, focus will be 

made on the trends, not on the absolute values. In addition, EIS and IMPS 

measurements were done only for the best cells of each series due to the fact that 

these are considerably time-consuming techniques and it is out of the scope of this 

work. The different parameters obtained by EIS are plotted in Figure 32. 

 
Figure 32. a-d) Impedance spectroscopy results of DSSCs fabricated with anatase 

nanotubes and thin films. Impedance parameters extracted from the fitting of the EIS 

spectra at various applied potentials: a) Recombination resistance, b) Capacitance, c) 
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Lifetime, d) electron diffusion length, estimated as the ratio of recombination and 

transport resistances.  

In order to correctly compare the parameters extracted from EIS and IMPS, it is 

generally necessary to take into consideration the band shifts occasioned by the 

additives and solvent composing the electrolyte. In this case, the electrolyte is the 

same for all samples so in principle, there is no such shift between different cells. 

Nevertheless, still a correction must be applied so as to compare all cells at the same 

value of the total electron density stored in the semiconductor oxide. This is done by 

shifting the potential so that the capacitance lines overlap (in a vertical axis) and then 

this shift in potential is equally applied to the other parameters extracted from EIS and 

IMPS [Idígoras J., J. Phys. Chem. C 2014]. 

Figure 33 presents the corrected EIS parameters from Figure 32. It can be noticed that 

the recombination resistance (Fig. 33 a) was larger for the thinner anatase cells, 

whereas it got smaller when the thickness was increased as expected due to a higher 

specific area. The effect of the area on the recombination resistance is also evident for 

low thicknesses where a much thinner film of NTs (1.6 μm) exhibited more or less the 

same values as a thin film of 1.6 μm. Interestingly, for higher anatase thicknesses the 

resistance appears to be quite similar. 

The capacitance (Fig. 33 b) showed an opposite behavior, being larger for thicker films 

and smaller for the thinner ones, again this is expected due to surface area effects. 

The exponential behavior resembles a chemical capacitance [Azaceta E., J. Mater. 

Chem. A 2013].  

The electron lifetime (Fig. 33 c) was in line with the obtained potentials in the I-V 

curves, the higher the electron lifetime the higher the VOC and vice versa. Finally, the 

normalized diffusion length (Fig 33 d) shows that all cells had a diffusion length larger 

than their mean thickness, which means that the photovoltaic performance is still not 

constrained by the thickness and could be increased even further.  
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Figure 33. a-d) Corrected Impedance spectroscopy results of DSSCs fabricated with 

anatase nanotubes and thin films. Impedance parameters extracted from the fitting of 

the EIS spectra at various applied potentials: a) Recombination resistance, b) 

Capacitance, c) Lifetime, d) electron diffusion length, estimated as the ratio of 

recombination and transport resistances.  

IMPS technique was also used to extract the time constant of the diffusion process 

(Fig. 34 a) and diffusion coefficient (Fig. 34 b). The time constants were larger for 

thicker thin films, even though for NTs of 660 nm and 1.6 μm they were quite similar, 

whereas the diffusion coefficients are quite similar, except for the 6.6 um TF sample 

which exhibits significantly higher values. 
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Figure 34. Corrected τIMPS (a) and diffusion coefficient (b) plotted versus the Fermi 

level for various antase thicknesses in both thin film and nanotubes. 

In spite of the fact that the efficiencies reached in this work do not come close to the 

best reported ones for anatase 1D nanostructures, the results are certainly 

encouraging. Two possibilities are proposed to push even further the light harvesting 

capabilities of these cells: 

 To deposit even thicker films of anatase in the form of thin films. There is still 

margin to improve the efficiency with this architecture, and it seems that by 

adding more material to NTs will only result in an even more percolated 

structure, thus diminishing its advantage with respect to thin film. 

 To produce a stack of NTs. This is a much more tempting attempt to 

increase the surface area, dye load and cell efficiency. The idea behind this 

approach is quite simple, it just requires the production of NTs as usual with 

an anatase thickness between 1.6 and 6.6 μm, and repeat the entire growth 

process of NTs on top. This last step may be repeated until a maximum in 

efficiency is reached. In this way, percolation is avoided and surface area 

can still be maintained high. 

 Longer NTs will not improve the solar cell performance due to preferential 

accumulation of TiO2 on the tip, i. e. the base of the NTs could probably 

receive far less material than the body and tip, suffering from the same 

issues as meso-TiO2 NTree. 

2.4.4. Multi-shell Nanotubes-Based Dye Sensitized Solar Cells 

Despite possessing remarkable electron mobility, the already mentioned poor chemical 

stability of ZnO certainly limits its use in DSSCs. In an attempt to hinder its 

degradation, 1-D multishell based DSSCs comprising ZnO NTs covered with a TiO2 

shell have been fabricated. In order to investigate the effect of the outer shell in the 

chemical stability of the ZnO, both meso-TiO2 amorphous and anatase were produced. 

Moreover, three different shell thicknesses have been tested to examine the influence 

of thicker TiO2 layers. The multi-shell samples are named as “inner shell”@”outer 

shell”, for example ZnO@meso-TiO2. Within this section, the analogue multi-layer (i.e 

a multilayer of ZnO and then TiO2) have also been studied to compare the 

performance in thin film architecture (named TF1/TF2, for example ZnO/meso-TiO2). 

For the sake of simplicity, ZnO wurtzite will be called just ZnO. 
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The thickness of the ZnO NT was maintained at 250 nm, while three different TiO2 

shells thicknesses were chosen: 5 nm, 20 nm and 50 nm. The general aspect of a 

ZnO NT@TiO2 has already been presented in Figure 13 (d) for the case of anatase. 

The kind of TiO2 (meso or anatase) or its thickness do no change the appearance of 

the nanostructure (for such low thicknesses involved), just a small increase in the NT 

walls is noticed (especially on the top).    

Figure 35 shows the evolution of TiO2 coverage. With a layer only 5 nm thin, the 

intensity of Ti in the EDX maps is extremely low, revealing deposit preferentially at the 

top. Owing to this poor coverage by TiO2, most of the ZnO is expected to be exposed 

to its surround. In the case of 20 nm, there are only a few regions approaching deep 

blue in the color scale, meaning that almost no ZnO will be directly exposed. For 50 

nm a continuous layer of TiO2 is formed, hindering the direct contact between ZnO and 

its surroundings. Please note that both meso-TiO2 and anatase are porous materials, 

so it is expected that the electrolyte and dye can diffuse to and into ZnO, but the 

negative effect of the solvent is diminished.  

 

Figure 35. Intensity of Ti Kα at 4.51 keV in the resulting EDX maps obtained from the 

ZnO@meso-TiO2 nanotube for a TiO2 thickness of a) 5 nm, b) 20 nm and c) 50 nm. 

In order to investigate the influence of the multi-shell in the adsorption capacity, 

several adsorption-desorption experiments were conducted in the corresponding 

single layers on ZnO, meso-TiO2 and anatase. The experiments consisted in the 

immersion of the thin film samples in N719 followed by desorption of the dye in KOH 

1M in MeOH and collection of the UV-Vis spectra of the resulting dye solutions. Figure 

36 shows the UV-Vis spectra in the region of one of the absorption bands of N719 for 

ZnO, meso-TiO2 and anatase. Note that the absorbance has been normalized by the 

corresponding thin film thickness. 
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Figure 36. UV-Vis spectra of N719 in KOH 1M in MeOH after desorption from ZnO, 

meso-TiO2 and anatase thin films. 

It is clear that the dye intake ability of ZnO is limited, perhaps due to the low 

permissible immersion time for this material. Meso-TiO2 performs much better, but it is 

greatly surpassed by anatase. Please note that even though anatase and meso-TiO2 

films are thicker, these conclusions will still be valid thinner films since the absorption 

has been normalized to the thickness of each sample. 

The addition of a TiO2 shell to 250 nm ZnO enhances significantly the dye loading 

capability of the films. Moreover, the effect was found to be more pronounced in 

anatase (Fig. 37a) than in amorphous meso-TiO2 (Fig. 37b). 
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Figure 37. UV-Vis spectra of N719 in KOH 1M in MeOH after desorption from (a) 

ZnO/meso-TiO2 and (b) ZnO/anatase. 

Table 5 gathers the obtained concentrations for ZnO, meso-TiO2, anatase and the 

different multilayers (please, refer to the methodology section for the concentration 

determination procedure). 

Note that the normalized surface concentration is just the surface concentration 

divided by the thickness of the film. It is remarkable that the combination of ZnO and 

TiO2 boosts the dye load in the films. Looking at the obtained concentrations in the 

table, three observations can be made. First, all ZnO/TiO2 films are able to adsorb 

more dye than even anatase. Secondly, anatase seems to work better than meso-TiO2 

99



 
 

 

in the ZnO/TiO2 system. Lastly, an increase in the thickness of the TiO2 films 

(amorphous or anatase) gives rise to an increment in dye surface concentration, which 

may be due to microstructural transitions of TiO2. 

Table 5. N719 dye concentration for the studied samples obtained from adsorption-

desorption experiments 

Sample Absorbance 
at 515nm 

Surface 
concentration 

(x10-10 moles/cm
2
) 

Normalized surface 
concentration (x10-12 

moles/nm.cm
2
) 

600nm ZnO 0.0220 20.7 ± 0.5 3.45 ± 0.08 

800nm TiO2 0.0547 51.5 ± 1.3 6.44 ± 0.16 

1600nm anatase 0.1605 1510.8 ± 3.7 9.44 ± 0.23 

ZnO 250nm/5nm 
meso-TiO2 

0.0773 727.6 ± 1.8 28.53 ± 0.69 

ZnO 250nm/20nm 
meso-TiO2 

0.0896 843.4 ± 2.1 31.24 ± 0.76 

ZnO 250nm/50nm 
meso-TiO2 

0.1075 1011.9 ± 2.5 33.73 ± 0.82 

ZnO 250nm/5nm 
anatase 

0.0983 925.3 ± 2.3 36.29 ± 8.83 

ZnO 250nm/20nm 
anatase 

0.1314 1236.9 ± 3.0 45.81 ± 1.11 

ZnO 250nm/50nm 
anatase 

0.1662 1564.5 ± 3.8 52.15 ± 1.27 

 

Due to severe limitations in the desorption of N719 from NTs (the films did not release 

all the dye), integrating sphere measurements were successfully performed in ZnO 

samples covered with 50 nm of anatase to compare qualitatively the dye load in thin 

film and nanotubes. It is clear from Figure 38, that NTs can increase substantially the 

dye loading by offering a much higher surface area as already observed for pure 

anatase systems. Moreover, this difference in dye concentration is readily noticeable 

at the naked eye as in Figure 38 b): the thin film samples possess a barely 

appreciable color whereas in NTs the dyed film was pretty apparent. 
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Figure 38. a) Comparison of the Kubelka-Munk function for a multi-shell NT (ZnO@50 

nm anatase) cell and its multi-layer analogue. b) electrodes for DSSCs comprising 

ZnO/TiO2 TF (left) and ZnO@TiO2 NT (right) as active materials 

Table 6 collects the most relevant photovoltaic parameters for the prepared multi-shell 

and multilayer cells. At first glance, the incorporation of a TiO2 shell is detrimental for 

the cell performance. Photocurrents are remarkable lower, in spite of the fact that 

multi-shells show a more promising dye adsorption capacity (table 5). Moreover, fill 

factors generally exhibit a poorer behavior as well, only the highest thickness of meso-

TiO2 shows a fill factor close to uncovered ZnO NTs. In contrast, the photovoltage is 

superior to that of pure ZnO NTs, especially for the thickest anatase shell.  

101



 
 

 

Table 6. Photovoltaic parameters for ZnO@TiO2 NT-based DSSCs as a function of 

the TiO2 (meso or anatase) wall thicknesses. - Mean photovoltaic parameters values 

and estimated errors have been obtained from data of three devices with the same 

configuration. ZnO NT without TiO2 has been included for comparison. 

Cell Jsc(mA/cm2) Voc(mV) FF(%) η(%) 

250 nm ZnO NT 1.480.25 46020 501.0 0.300.05 

ZnO 250nm@meso-TiO2 

5nm NT 

0.810.05 5405 43.80.5 0.200.05 

ZnO 250nm@meso-TiO2 

20nm NT 

0.790.05 5425 47.31.0 0.200.05 

ZnO 250nm@meso-TiO2 

50nm NT 

0.770.05 5297 491.0 0.200.05 

ZnO 250nm/meso-TiO2 

50nm TF 

0430.05 57313 39.98.0 0.100.05 

ZnO 250nm@anatase 

5nm NT 

0.870.14 57913 38.30.5 0.200.05 

ZnO 250nm@anatase 

20nm NT 

0.990.13 5888 43.45.3 0.200.05 

ZnO 250nm@anatase 

50nm NT 

0.960.17 63515 32.30.5 0.200.05 

ZnO 250nm/anatase 

50nm TF 

0.640.16 6151 37.92.0 0.150.05 

 

Apparently, the electronic transfer between TiO2 and ZnO is hindered due to a small 

energy barrier [Manthina V., J. Phys. Chem. C 2012], despite their conduction bands 

and thus their respective Fermi levels are generally considered to be aligned, just as in 

Figure 39. 
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Figure 39. Energy levels diagram for a ZnO/TiO2 system [Cao G., World Scientific 

Publising 2010][Liu J., Nanotechnology 2010]. 

Owing to this lack of electronic transfer between TiO2 and ZnO, the photovoltaic 

response seems to be proceeding primarly from the ZnO cores at least for the thinnest 

TiO2 shells, where the clusters of TiO2 are not percolated yet and cannot contact the 

substrate directly. Once full percolation of the TiO2 shell is achieved and the ZnO core 

is completely covered, the response should switch to that of TiO2 (again, due to 

negligible electronic transfer between ZnO and TiO2). The photovoltaic response of the 

cells was different depending on the crystallinity of TiO2: 

 Meso-TiO2 shells improved the fill factor, but the photocurrent got worse 

when the thickness was increased probably due to severe electron trapping 

[Soga T., Elsevier 2006]. The potential remained more or less constant, with 

a  slight decrease for the thickest meso-TiO2 shell.  

 Anatase shells did improve the photovoltage, but contrary to meso-TiO2, an 

intermediate stage seems to be present. For 20 nm, the fill factor and 

photocurrent have reached a maximum, which could suggest contribution 

from both ZnO and antase. On the other hand, a 50 nm anatase shell 

produced and obvious drop of the fill factor while the photocurrent remained 

the same. This could indicate a still poor percolation of the final anatase shell. 

Thin Films with 50 nm of meso-TiO2 and anatase have been measured as references. 

Compared to their 1D counterparts, these cells offered higher photovoltages probably 

due to a lower recombination rate and lower photocurrents as a consequence of a 

lower surface area. 
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As mentioned above, in the studied 1D multishell system, the addition of a TiO2 shell 

to ZnO nanotubes demonstrated to be detrimental for the performance of the cells. No 

further electrochemical studies were carried out due to the poor results obtained. 

2.5. Conclusions 

A reliable full vacuum methodology for the fabrication of semiconducting nanotubes 

made of ZnO and TiO2 with single and multishell configurations has been presented. 

The versatility of the plasma techniques such as PECVD and dc-sputtering for the 

growth of metal nanoparticles and metal oxide layers has been exploited here for the 

formation of nanostructured nanotubes with tailored shells in terms of microstructure, 

porosity, structure and thickness on an ample variety of substrates ranging from FTO 

supports to metal nanoparticles. 

The procedure provides hollow’s cross sections in the form of square or rectangle 

keeping memory of the flat surface of the organic single crystal used as templates.   

The performance of the ZnO and anatase nanotubes as photoanodes in DSSC has 

been analyzed as a function of the shell thickness, finding an increase of efficiency 

with this parameter.  In the case of multi-shell nanotubes, mixed results were obtained 

for amorphous and crystalline TiO2, however, it has been found that the addition of a 

thin TiO2 shell turned out to be detrimental for the performance of the cells. 
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3. 1D and 2D transparent 

platinum nanoelectrodes by 

plasma processing of platinum 

porphyrin nanocolumns and thin 

films 

 

Abstract 

The fabrication of platinum nanoelectrodes in the form of higly porous layers (2D) and 

nanocolumns (1D) by dry processing of platinum octaethylporphyrin (PtOEP) 

nanomaterials is presented. Transparency as high as 70% with about 750 Ω.cm ohms 

are achieved by controlling the deposition of the PtOEP precursor materials by organic 

physical vapor deposition and remote plasma assisted plasma deposition and 

posterior oxydation-reduction plasma treatments. The catalytic properties of the 

nanoelectrodes are further demonstrated by their implementation as counter electrode 

in a solar cell. The expansion of the protocol to the fabrication of porous materials of 

different compositions by tuning the metal porphyrin or phthalocyanine used as 

precursor is as well explored. Finally, it is included the application of organic 

nanowires as supported template of the developed material giving rise to a new family 

of hierarchical heterostructured  core@shell nanowires.  
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3.1. Introduction  

evelopment of new fabrication methods for transparent and semitransparent 

conductive nanoelectrodes compatible with different processable substrates 

and high mass production is extremely important in fields like 

nanoelectronics/photonics and solar energy harvesting.[Hu-MRSBulletin.2011, 

Angmo-JAP.2013] The urgency to replace the highly and rising cost indium in the 

current ITO technology has motivated an intensive research to fabricate high density 

nanoelectrodes with high transparency along to a high active area. Looking to these 

requirements, the use of tailored porous conductive nanostructures appears as a 

promising route because of their inherent high surface area [Hu-MRSBulletin.2011; 

Chen-ACS2013; Langley-Nanotechnol2013; Hu-PNAS2009]. Most of the recent 

results on the literature reports in the use of silver nanomesh and nanowires or metal 

decorated carbon nanotubes networks.[Langley-Nanotechnol.2013; Hu-

MRSBulletin.2011, Angmo-JAP.2013] However, the use of platinum nanostructures 

present an added value related with the simultaneous function as transparent counter 

electrode and catalyst layer in dye sensitized solar cells.[Kim-ACS.2013; Jang-

ChemMater.2013]  In this chapter we will approach to this issue from the point of view 

of the fabrication of supported transparent and porous Pt in form of thin layers and 

nanocolumns, i.e., Pt nanoelectrodes in 2D and 1D architectures respectively. The 

method consists in a combination of vacuum and plasma procedures applied to the 

deposition and posterior decomposition of platinum octaethylporphyrin (PtOEP) acting 

as precursor for the formation of highly porous platinum nanoelectrodes.  Two different 

methodologies have been utilized in the deposition of the precursor materials, namely 

physical vapour deposition of small molecules (PVD)[Borras-Langmuir.2009] and 

remote plasma assisted vapour deposition (RPAVD)[Aparicio-JMC.2014] both of them 

scalable up to wafer level and carried out at room temperature. In addition, these 

methods have been proved to be compatible with an ample range of processable 

substrates including polymers, Si, ITO, metal electrodes and photonic 

architectures.[Macias-Montero-AFM-2013; Aparicio-AM2011] The post-processing of 

the PtOEP precursor layers to form the metal nanostructures is achieved by soft 

plasma etching (SPE)[see also Chapter 4; Alcaire-Nanoscale.2011; Alcaire-PPP2015] 

under different combinations of oxygen, argon and hydrogen gases in the plasma and 

for temperatures ranging from RT to 280 ºC.  

PVD is a well stablished methodology for the fabrication of two dimensional organic 

and metal-organic layers also extended in the last years to the formation of supported 

D 
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small-molecule organic nanowires.[Borras-Langmuir2010; Briseno-MT2008]  The main 

parameters controlling the formation of organic thin films and nanowires from 

evaporable molecules are the substrate surface composition and microstructure, 

temperature of the substrate in relation with the sublimation temperature of the 

molecules, pressure, growth rate and thickness.[Borras-Langmuir2010; 

ChemMater2008] In previous chapters, PVD has been applied to the fabrication of 

single crystalline organic nanowires, herein, we have utilized this method for the 

formation at room temperature of polycrystalline PtOEP thin films. 

On the other hand, we have also explored the growth of PtOEP layers by remote 

plasma assisted vacuum deposition (RPAVD). This methodology has been developed 

in recent years for the formation of nanocomposite organic films showing an advanced 

performance in applications as UV and gases sensors. In those previous references 

the precursor materials utilized comprises photonic functional organic molecules as 

rhodamines, flavonols and perylenes. In this chapter we include the first results on the 

fabrication by RPAVD of metal-organic small molecules. In a brief description, the 

protocol consists in the evaporation of the organic molecules in the afterglow region of 

a microwave plasma with the substrates facing the evaporation source and back to a 

microwave plasma discharge, i.e. in a downstream configuration (see details in 

Methods and Chapter 1). This procedure provides the formation of nanocomposite thin 

films where the functional molecules appear embedded in a polymeric matrix 

consisting on the molecular fragments formed by interaction with the plasma species.  

In this chapter we have extended this protocol, usually working under pure Ar 

plasmas, to the application of oxygen rich plasma gases in order to further control the 

microstructure and composition of the nanocomposite thin films.  

Microstructure, structure, composition and optical and electrical properties of the 

samples deposited and treated under different conditions have been thoroughly 

analysed.  

In situ XPS experiments have been included in order to study the mineralization of the 

PtOEP precursor films and oxidation state of the platinum outcome layers.  

As a proof of concept, the metallic Pt layers and nanocolumns have been tested as 

counter electrode in the fabrication of dye synthetized solar cells.  
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3.2. Objectives 
The specific objectives of this chapter appear detailed in the following list: 

 Fabrication and characterization of nanocomposite PtOEP thin films by remote 

plasma assisted vacuum deposition under Ar (RPAVD-Ar) and Ar/O2 (RPAVD-O2) 

plasmas. 

 Analysis of the soft plasma etching conditions required for the formation of Pt 

layers and columns. 

 Realization of XPS in situ experiments under different SPE conditions 

following the conversion from PtOEP to Pt layers. 

 Formation of Pt electrodes with desirable high transparency and conductivity. 

 UV-Vis and UV-VIS-NIR characterization of thin films and nanocolumns.  

 Electrical characterization of thin films and nanocolumns. 

 Implementation of the Pt layers and nanocolumns as counter electrode in a DSC 

and comparison with commercial available Platisol standard electrodes.  

3.3. Methodology 

3.3.1. Fabrication of the nanostructured platinum films 

PtOEP was purchased in Frontier Scientific and used as received. The compound was 

deposited by PVD and RPAVD on several substrates as n-doped Si (100), fused silica, 

ITO and FTO thin films on glass (CASA). The substrates were place in a vacuum 

chamber, previously pumped until reaching a base pressure of 2 x 10-5 mbar. PVD 

was carried out at 2 x 10-2 mbar of Ar, nominal growth rate settled in the QCM at 0.35 

Å/s and substrates at room temperature. Similar conditions were applied for the 

RPAVD-Ar, operating the plasma ECR-MW discharge at 300 W, and keeping fixed the 

plasma-to-substrate distance at 10 cm. RPAVD-O2 experiments with a gas mixture of 

80 % O2 / 20 % Ar were carried out at 600 W and growth rate 0.6 Å/s in the same 

conditions of pressure, temperature and sample-plasma distance. The post-treatment 

of the samples by soft plasma etching was produced in the same reactor with the 

samples facing down the plasma glow discharge. Treatment duration, substrate 

temperature and plasma composition were varied in order to obtain the full 

mineralization of the PtOEP and reduction of the platinum films. SPE (O2+Ar) label 
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corresponds to etching under 0.02 mbar (20% Ar / 80 % O2) at 400 W and SPE 

(O2+H2) to treatments at 0.02 mbar (50 % O2 / 50 % H2) at 600 W. A second post-

treatment consisting in annealing under constant gas flow of a mixture 95% Ar / 5% H2 

was carried out in a furnace. The temperature was set to 135ºC for 2 hours. 

In order to facilitate the exposition of results the labels of the samples specifically 

address the main experimental parameters varied during their fabrication. As an 

example: 

PVD (550nm) + SPE (O2+Ar) 180ºC 120min + Anneal (H2+Ar) 

Where (550nm) indicates the nominal thickness in the QCM, 180ºC and 120min the 

substrate temperature and treatment duration of the soft plasma etching step. Since 

the annealing conditions were always the same for simplicity the label not always 

includes this step and it is only expressed when comparing samples previous and after 

post-annealing.    

High-resolution SEM images of the samples deposited on silicon wafers were obtained 

in a Hitachi S4800 microscope, working at different acceleration voltages (1-5 kV). 

Cross sectional views were obtained by cleaving the Si(100) substrates. XPS 

characterization and in situ XPS experiments were performed in a Phoibos 100 DLD 

X-ray spectrometer from SPECS.  The spectra were collected in the pass energy 

constant mode at a value of 50 eV using a Mg Kα source. C1s signal at 284.5 eV was 

utilized for calibration of the binding energy in the spectra. The assignment of the BE 

to the different elements in the spectra corresponds to the data in reference 34. In situ 

XPS experiments were performed in a VG ESCALAB 210 spectrometer with a 

prechamber where all PtOEP depositions and treatments were carried out. The 

plasma source used for these experiments consisted of a quartz tube where the 

plasma was excited by means of a resonant cavity connected to a microwave 

generator. The power was 70 mW and the oxygen was supplied to the tube up to a 

pressure of about 2 x 10-1 mbar.  

3.3.2. Charactezitation 

X-ray Diffraction (XRD) and Glancing Angle X-ray Diffraction (GAXRD) were carried 

out in a Panalytical X'PERT PRO diffractometer. For GAXRD the incident angle was 

0.2 º. UV-Vis transmission spectra of samples deposited on fused silica slides were 

recorded in a Cary 100 spectrophotometer in the range from 190 to 900 nm. Electrical 

characterization was carried out following different procedures. In the first case, the 
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samples were grown on commercial available Pt electrodes (Figure 1a). These 

electrodes present an interdigitated array with 10 um separation and electrode 

thickness of 10 um. Conducting Atomic Force Microscopy (C-AFM) characterization 

was also carried out in the columnar films in the contacting mode in Pico Plus 

instrument from Molecular Imaging. DLC-cover tips with a diameter below 70 nm 

(Nanosensors) were utilized with the BIAS applied to the sample. In addition, four 

probes measurements (Figure 1 b) were also applied in particular cases in order to 

overcome plasma sheath issues in the deposition on the commercial electrodes (see 

Section 4.2). The contact between the electrically conductive tip and the sample was 

produced through a silver paste droplet cured in air during 20 minutes at room 

temperature. In these characteristics VM indicates the voltage measured by meter. 

Because sense current is negligible, VM = VR and the measured resistance is obtained 

through Equation 1.  

R = 
𝑽𝑴

𝐈
 = 
𝑽𝑹

𝐈
   Eq. 1 
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Figure 1. a) Normal view SEM micrograph of the interdigitated electrodes utilized for 
the electrical characterization of the samples. b) Schematics on the four probe 
measurements where VM indicates voltage measured per meter. 

In both cases the measurements were made with a 2635A system sourcemeter 

working in sweep voltage mode under ambient conditions. 

3.3.3. DSSCs fabrication, assembly and characterization 

Working electrodes. Prior to any deposition, the substrates were rinsed with acetone, 

isopropanol and absolute ethanol, and heated to 500 ºC for 1 hour. A blocking layer 
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was deposited on the FTO/glass substrates (Xop Glass, 12-14 Ω/cm2) by immersion in 

a TiCl4 (40 mM) solution at 70 ºC for 30 minutes and then dried in air. The active area 

consisted of 12 μm thick films made up of a layer of 8 μm of 20 nm TiO2 nanoparticles 

(Dyesol© paste) and a layer of 4 μm of 400 nm TiO2 particles (scattering layer), both 

deposited by the screen printing technique on the conducting glass substrates This 

electrodes were slowly heated up to 500 C (with a plateu of 15 minutes) and then 

immersed in a solution of TiCl4 (40 mM), heated to 70 ºC for 30 minutes and dried in 

air. A final heating cycle was performed at 500 ºC during 30 minutes and then allowed 

to cool down in air. The active area of the cells was 0.16 cm2 [Idígoras J., Phys. Chem. 

Chem. Phys. 2014]. The working electrodes were left overnight in a 0.5 mM solution of 

N719 dye in ethanol. Afterwards they were rinsed with an ethanol baker and dried in 

air. 

Counter electrodes. A small hole was drilled on them to allow for electrolyte injection 

at the end of the process. Later, they were cleaned just as the working electrodes. 

Platisol® Counterelectrodes. Distributed 6 μl of Platisol® all over the 

counterelectrode area and once dried added 6 μl more. Then, the counterelectrodes 

were put into the furnance at 400 ºC during 5 minutes with a 15 minutes heating ramp. 

Electrolyte solutions.  Two different electrolytes were tested. AN50 was purchased 

from Solaronix and used as received. 100% Pyr has the following formulation: 0.1M I2, 

0.05M LiI, 0.5M TBP, 0.1M GuSCN, 1M BMII, 1-butyl-00 ºC during 5 minutes with a 15 

minutes heating ramp. 1-methylpyrrolidiniumbis(trifluoromethanesulfonyl)imide  (Pyr). 

Pyr was purchased from Solvionic. 

Nanostructured electrodes. Two types of nanoelectrodes were tested: “RPAVD-Ar 

(420nm) SPE (Ar+O2) 210ºC 240 min + Anneal (O2+H2)” and “RPAVD-O2 (500nm) 

SPE (Ar+O2) 210ºC 240 min +Anneal (O2+H2)”.  

Sealing of the cells. A frame of a thermoplastic polymer (Surlyn, Solaronix) was 

placed on the perimeter of the active area and then sandwiched with the 

counterelectrode. The whole cell was heated to 140 ºC under slight pressure to ensure 

a proper sealing. After that the electrolyte was injected and the hole on the 

counterelectrode sealed with Surlyn and a cover slide glass. 

Characterization of DSSCs. The solar-cell devices were characterized using a solar 

simulator with an AM1.5G filter (ABET). A reference solar cell with temperature output 

(Oriel, 91150) was used for calibration. EIS measurements were performed under light 
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with perturbations in the 105-10-3 Hz. A LED LUXEON collimated (540 nm) source and 

an Autolab/PGSTAT302N potentiostat were used for EIS measuremets. Zview 

equivalent circuit modelling software (Scribner) was used to fit the EIS data, including 

the distributed element DX11 (transmission line model). 

3.4. Results and Discussion 

3.4.1. Microstructure, optical properties and chemical 

composition 

a) In situ plasma etching experiments. 

In order to state optimum conditions for the mineralization of the PtOEP into Pt 

we carried out preliminary in situ experiments by XPS. In these experiments a 

thin layer of PtOEP was sublimated and plasma post-treated in a prechamber 

attached to the XPS analysis chamber. Figure 2 gathers the main XPS peaks 

acquired during the experiments. In first place a nominal thickness of PtOEP 

was sublimated onto Si(100) substrates at room temperature (black line). This 

precursor layer was treated with an Ar/O2 plasma (see Methods) during different 

times at 175 ºC. Full decomposition of the platinum porphyrin is achieved after 

vanishing of the N1s peak (Fig. 2 c) for treatments longer than 20 minutes. Fig. 

2 a) shows the corresponding Pt4f peaks appear with binding energies values in 

good agreement with the formation of Pt(0).[nist] Interestingly, for short 

treatment periods (green line), the position of the Pt4f peak is also compatible 

with the partial oxidation of platinum. We will go back to these results in the 

following section.   
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Figure 2. In situ experiments following the soft plasma etching in O2+Ar (300W) at 

175ºC on 40 nm PtOEP sublimated film. Surface was sequentially exposed to plasma. 

In summary, the porphyrin is completely decomposed after oxygen plasma 

treatment at mild temperature giving rise to the formation of platinum metal 

clusters. However, equivalent experiments at room temperature demonstrated 

that prolonged treatment did not effectively oxidize the organic counterpart.  

The chemical composition of the samples as grown and after several post-treatments 

was evaluated by means of ex situ XPS (Table 1). The three first lines on Table 1 

correspond to the as-grown samples comparing the PVD layers with those formed 

under Ar and O2 plasma.  

Table 1. Atomic percentage obtained from the XPS peaks corresponding to the 

elements presented.  

Sample % Pt(0) % Pt(+2) % O % N % C 

PVD (550nm) - 2.7 5 6.8 85.5 

RPAVD-Ar (280nm) - 2.4 18.8 7.1 71.7 
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RPAVD-O2 (200nm) 6.4 8.3 52.6 1.9 30.8 

RPAVD-Ar (280nm) +SPE 
(O2+Ar) 180ºC 120min 

8.1 5.0 65.3 1.3 20.3 

RPAVD-Ar (280nm) +SPE 
(O2+Ar) 180ºC 120min + 

Anneal (H2+Ar) 
13.5 - 58.8 1.8 25.9 

RPAVD-O2 (200nm)+SPE 
(Ar+O2) 180ºC 140min + 

Anneal (H2+Ar) 
14.2 - 44. 7 1.9 39.2 

 

Results in Table 1 indicate that after the SPE treatments the metal organic molecule 

layers got enricher in metallic platinum as the percentage of nitrogen and carbon 

decreases. Oxygen contribution might be split by the silicon oxide substrate exposed 

after the SPE treatments and partial oxidation of the platinum under RPAVD-O2 

conditions.  

b) Microstructure and structure. 

Figure 3 to 7 present the ample variety on microstructure of PtOEP and Pt containing 

thin films layers obtained for the different deposition conditions and post-treatments. 

Fig. 3 gathers cross sectional and planar views of characteristics samples with the aim 

of showing an overview of the available microstructures.  

Samples fabricated by PVD conditions (Fig. 3a) grow as stacked columns of 

inhomogeneous shapes and thickness that increase in length with the increment in the 

deposition time. The microstructure of the PVD PtOEP layers is equivalent for the 

different reference substrates utilized in this research (Si(100) wafers, fused silica and 

commercial available FTO thin films on glass) for the experimental conditions 

selected.  

Samples formed under RPAVD-Ar experiments present a homogeneous and 

continuous cross section with a low roughness surface (Fig. 3 b) meanwhile samples 

deposited under oxygen plasma, i.e. RPAVD-O2, develops a 1D microstructure 

characterized by the formation of vertical columns of constant diameter (<100nm). The 

normal view of these samples (Fig. 7 a-b) show the columns are forming nanometer-

scale arrays by agglomeration of several columns in one clusters.  
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Figure 3. Cross section (a-c, d, f) and planar views (e, g-i) of characteristics samples 

as labelled. 
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Although same driving forces are far to be acting herein it is worth to mention that this 

behavior is similar to the obtained by nanocarpet effect, as consequence of capillarity 

forces induced by evaporation of a liquid droplet.[Macias-Montero-Langmuir2012]  

Microstructure of the samples is drastically affected by all the SPE treatments carried 

out. Fig. 4 shows the evolution of the PVD samples for several sample thicknesses 

after SPE(O2+Ar) treatments (see Fig. 3 d) and g) for results on SPE(O2+H2). The 

polycrystalline films have been converted into a highly porous of partially 

interconnected Pt particles. Samples present different coverage area dependently on 

the initial sample thickness and plasma treatment duration.  

 

Figure 4. Planar view SEM images at different magnifications of the Pt porous layer 

obtained after soft plasma etching of PtOEP films deposited by PVD with different 

thicknesses between 140 and 250 nm as labelled. 
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Thus, for thinner samples (140 nm), low magnification images present high coverage 

area (Fig. 4 a) meanwhile empty micrometer-size areas appear for thicker samples 

(Fig. 4 c and e). However, a closer look by high magnification SEM reveals the lower 

connectivity between the metal grains in the thinner samples. The percolation of the 

layers increases with the thickness of the precursor layers, showing anyhow 

mesopores of different sizes even for the thicker deposited sample (Fig. 4 d-f).   

A similar behavior is depicted by RPAVD-Ar post-treated samples (Fig. 3 e) and h), 

Fig. 5 and 6) with an important difference in the level of percolation of the platinum. In 

this case, even for thin layers (140 nm) the SPE produces highly interconnected 

dendritic features. Size of these grains increases with the thickness of the precursor 

layers producing platinum porous sheets extended in the plane with sizes in the order 

of several microns. These sheets percolate leaving also pores in the range of the 

micron for intermediate thickness (Fig. 5 b) and even below for thick samples (Fig. d). 

The cross section images in Fig. 5 c) and e) and high resolution SEM image in Fig. 6 

addresses the yet highly porosity of the percolated layers showing pores in the range 

of the mesopores (2nm < d < 50 nm).  

RPAVD-O2 samples keep their columnar microstructure after the SPE treatments but 

increasing enormously the roughness of the surface of such columns due to the 

formation of platinum nanoparticles.  

It is worth to mention the reduction in thickness of all the post-treated samples when 

compared with the as-grown layers. This reduction is more accused for PVD and 

RPVAD-Ar samples and for O2+Ar treatment than for O2+H2 treatments.   
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Figure 5. Planar view (left) and cross section (right) SEM images of the Pt porous 

layer obtained after soft plasma etching of continuous PtOEP films deposited with 

different thicknesses between 140 and 420 nm as labelled. 
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Figure 6. High magnification SEM image of the Pt porous layer obtained after soft 

plasma etching of a continuous PtOEP precursor film showing the mesoporous with 

diameters in the range of ten nanometers.  

 

 

Figure 7. Planar view (top) and cross section (bottom) SEM images of the columnar 

PtOEP precursor layers obtained by remote plasma assisted vacuum deposition in 

presence of oxygen for a 200 nm precursor layer as grown (a-c) and after a complete 

treatment of oxidation-reduction (b-d). 

 

 

100 nm

RPAVD-Ar (280nm) + SPE (O2+Ar) 180ºC 120min
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GAXRD and XRD analyses were performed in order to inquire about the crystalline 

condition of the samples. Figure 8 Top) gathers GAXRD patterns from the precursor 

layers, showing a pronounced peak at low angles alongside lower intensity peaks 

between 15º and 30º for the sublimated thin film (PVD (550nm)) according to its 

polycristalline character.[Borras Langmuir 2010] 

 

Figure 8. Top) GAXRD of the precursor layers formed by PVD and RPAVD under 

argon and oxygen plasma gases conditions. Bottom) XRD pattern of a platinum layer 

formed after plasma etching of a RPAVD-Ar (420nm) precursor film. 
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Patterns acquired for the samples grown by RPAVD presented no peaks 

independently on the plasma gas composition. This result is in good agreement with 

the smooth and homogeneous microstructure depicted by the samples RPAVD-Ar 

similar to the standard nanocomposite organic thin films deposited by this 

technique.[Aparicio-Adv.Mater.2011] In contrast, the post-treated samples all show 

well defined peaks corresponding to the planes (111), (200), (220), (311) and (222), 

which are characteristic of the FCC structure of Pt.[Leontyev-RSCAdv.2014; Mi-

ChemMater.2015] An average particle size of 12 nm was estimated from XRD pattern 

in Fig. 8 Bottom).  

 

c) Optical properties. 

One of the main motivations of this chapter is the fabrication of transparent and 

semitransparent nanoelectrodes based on platinum nanostructures. Figures 9 – 12 

show the UV-VIS-NIR (Fig. 9) and UV-VIS (Figs. 10-12) transmittance spectra of the 

samples deposited on fused silica substrates and post-treated under different 

conditions. Fig. 9 presents an overview of characteristics samples demonstrating the 

variety in the transmittance depending on the experimental conditions.  

In general, samples SPE treated present an almost constant transmissivity along the 

UV-VIS-NIR spectrum, with lower transmission values for thicker films. Annealing in 

H2+Ar gases does not significantly affect the optical properties of the samples, 

therefore, from now on we will discuss the results on annealed samples even though 

this label is not attached to all the samples denotations. Only in those cases where 

comparison between annealed and not-annealed samples is worthy, the label would 

indicate that post-treatment. 

It is interesting to stress the strong difference between the RPAVD-Ar and RPAVD-O2 

samples. In the first case, the spectra (black line in Fig. 9) yet depicts characteristic 

absorption band due to the presence of partially decomposed PtOEP molecules as we 

will demonstrate below. However, sample deposited under oxygen plasma present a 

strong absorption below 400 nm but not porphyrin related bands.  

Figure 10 – 12 show the comparison of samples as a function of the deposition 

method.  
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Figure 9. UV-VIS-NIR spectra of characteristic samples as labelled. 

 

Figure 10. UV-VIS spectra of PVD and PVD plasma treated samples as labelled. All 

the treated samples had undergone post-annealing in H2/Ar at 135 ºC. 

200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

100

                        PVD (190nm) 

     + SPE (O
2
+Ar) RT 40min

                        PVD (250nm) 

+ SPE (O
2
+Ar) 160ºC 40min

                        PVD (190nm) 

+ SPE (O
2
+Ar) 160ºC 40min

 

 

T
ra

n
s
m

it
ta

n
c
e
 (

%
)

Wavelength (nm)

PVD (140nm) +

SPE (O
2
+Ar) 160ºC 20min

                           PVD (550nm) 

+ SPE (H
2
+ O

2
) 180ºC 120min

PVD (550nm) 

132



Thus, Fig. 10 gathers the UV-VIS spectra of PVD as grown and post-treated samples. 

PVD samples present several strong absorption bands, the first one in the UV region 

at about 300 – 400 nm (Soret band) and the second double one in the visible part of 

the spectrum around 475 – 550 nm (Q and Q´bands). Soret band arises from the 

deeper π-levels → LUMO transition meanwhile the Q bands are attributed to the π – 

π* transition from the highest occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO) of the of the pi resonant system of the 

phthalocyanine.[Zhang-RSCAdv.2014]  

It is easily visible that SPE (O2+Ar) treatment at room temperature of the PVD samples 

(see gray line in Fig. 10) does not decompose the porphyrin efficiently as already 

mentioned regarding the in situ XPS experiments, even for thin layers with thickness 

below 190 nm. The corresponding line yet depicts the strong absorption bands related 

to the PtOEP molecules. The increment of the treatment temperature up to 160 ºC 

drastically affects to the layers composition. In fact, highly flat transmission curves are 

obtained for the SPE (O2+Ar) treatments at such temperature with transmission 

decreasing as a function of the sample thickness (compare orange, dark yellow and 

royal lines). It is worthy to mention again the extremely constant reflectivity of these 

samples that are comparable to results presented in the literature for complex metal 

and metal/CNTs networks.[Hu-MRSBulletin.2011] Transmission drops for the thicker 

sample treated under SPE (H2+O2) – 180 ºC conditions. In all these samples the small 

absorption below 250 nm is related to the fused silica substrate properties. 

Figure 11 summarizes main results regarding RPAVD-Ar as-grown and post-treated 

samples. As expected from previous results of RPAVD of organic molecules, 

[Aparicio-Adv.Mater2011, Aparicio-JMC-C.2014] samples deposited under this plasma 

conditions contain integer PtOEP molecules along with fragments formed after partial 

plasma etching of the molecule. For thinner layers the characteristic bands present a 

weaker absorption (comparison between black and orange lines). In good agreement 

with results extracted for PVD samples, SPE (O2+Ar) treatments of the samples 

induce the mineralization of the PtOEP vanishing the organic-related bands and giving 

rise to constant transmission spectra. In this case, treatment temperature needs to be 

higher than 160 ºC in order to produce the full decomposition of the molecule (see 

royal and green lines), even higher than 180 ºC for thicker samples (dark yellow line). 

Increasing the treatment duration and sample thickness also increases the reflectivity 

of the samples (compare blue and purple lines and purple and dark yellow lines). For 

similar thicknesses of the precursor layers, SPE (H2+O2) treatments provoke a fall in 

the transmission in comparison of equivalent SPE (O2+Ar) treatments (see gray and 
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wine lines). On the other hand, this figure shows the ample variety in light constant 

transmissivity of the sample that can be easily tuned by selecting the experimental 

parameters. 

 

Figure 11. UV-VIS spectra of RPAVD-Ar and RPAVD-Ar plasma treated samples as 

labelled. All the treated samples had undergone post-annealing in H2/Ar at 135 ºC. 

Figure 12 presents the UV-VIS spectra corresponding to as-grown and post-treated 

RPAVD-O2 samples. It is important to stress the peculiar behavior of the as-grown 

RPAVD-O2 in contrast to PVD and RPAVD-Ar samples. In this case, the spectra for 

the as-grown sample present a band-gap below 400 nm that strongly depends on the 

sample thickness (see orange and black lines). The presence of such a band-gap is in 

concordance with the XPS data regarding the formation of platinum oxide embedded 

nanoparticles. Although these results might be of highly relevance in the catalytic 

performance of these nanocolumns, in this chapter we cannot accomplish a full 

analysis of such properties due to time limitations.  
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Figure 12. UV-VIS spectra of RPAVD-O2 and RPAVD-O2 plasma treated samples as 

labelled. All the treated samples had undergone post-annealing in H2/Ar at 135 ºC. 

Once the SPE treatments are carried out on the samples, the transmittance spectra 

present a similar behavior than for the PVD and RPAVD-Ar post-treated samples. In 

this case, a substrate temperature about 180 ºC permits the conversion into platinum 

of the metal-organic porphyrin. It is worth to mention that the SPE (H2+O2) sample 

(wine line) presents the lowest transmittance of all the analyzed samples, i.e. 

transmission below 5 % in the full UV-VIS range. 
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3.4.2. Electrical characterization 

Figure 13 shows typical IV characteristics obtained for different as-grown and post-

treated samples measured by the four probe method (Fig. 13 a-b) and on the layers 

deposited onto commercially available electrodes separated 10 um (Fig. 13 c-f).  The 

comparison between Ar+H2 annealed and as prepared samples (Fig. 13 a) show an 

improvement of twice the conductivity of the samples, therefore in the rest of the 

panels the sample represented were annealed. As-grown samples present high 

resistivity even that increases and the sample thickness decrease. Best results 

regarding conductivity of the samples correspond to thick samples post-treated under 

H2+O2 oxygen, and, in general, the resistance decreases with the thickness of the 

samples. Table 2 summarizes the resistance and sheet resistance measure for the 

different samples.  

It is also interesting to mention that measurements carried out on the 10 um 

interdigitated electrodes shall present worse interconnection results because of the 

existence of zones of plasma shadow in close vicinity to the electrode itself. Thus, Fig. 

14 show SEM micrograph of the different precursor layers deposited onto the 

interdigitate electrodes evidence the inhomogeneities in the growth below the 

electrode. This issue is more pronounced in thin and in columnar layers. In order to 

circunvent such handicap we procedded to the evaluation of the resistance by four 

probe method in the case of the RPVAD-Ar samples and by conducting-AFM in the 

columnar layers (Figure 15). 
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Figure 13. IV characteristics of representative samples as labelled. a) Characteristics 

measured by the four probes method comparing the sample before and after 

annealing. b)-f) Curves obtained for the samples deposited on de interdigitated 

electrodes (10 um). In all the panels but a) the treated samples had undergone a 

posterior annealing in H2/Ar at 135 ºC. 
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Table 2. Resistance measured for characteristic samples in the interdigitated 

electrodes (ID) and for the four probe method in the case of the RPAVD-Ar samples. 

Note that all the post-treated samples presented herein were annealed in H2+Ar at 135 

ºC during 2 hours.   

Sample 10 um ID Four probes 

PVD (550nm) 275 MΩ  

PVD (140nm) + SPE (O2+Ar) 160ºC 20min 1890 MΩ  

PVD(250nm) + SPE (O2+Ar) 160ºC 40min 470 Ω  

PVD(550nm) + SPE (H2+O2) 180ºC 120min 53 Ω  

RPAVD-O2 (550nm) 50 MΩ  

RPAVD-O2 (200nm) 86 MΩ  

RPAVD-O2 (550nm) + SPE (H2+O2) 180ºC 
120min 

53 Ω  

RPAVD-Ar (140nm) 15.7 x 103 MΩ  

RPAVD-Ar (140nm) + SPE (O2
+Ar) 160ºC 

90min 
54 Ω 752 Ω.cm 

RPAVD-Ar (170nm) + SPE (O2
+Ar) 180ºC 

30min 
2046 MΩ  

RPAVD-Ar (170nm) + SPE (O2
+Ar) 180ºC 

120min 
66 Ω  

RPAVD-Ar (280nm) + SPE (O2+Ar) 180ºC 
120min 

63 Ω 286 Ω.cm 

RPAVD-Ar (420nm) + SPE (O2+Ar) 210ºC 
240min 

54 Ω 24 Ω.cm 

RPAVD-Ar (510nm) + SPE (H2+O2) 180ºC 
120min 

54 Ω  
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Figure 14. SEM micrographs of different samples deposited on interdigitated Pt 

electrodes as labelled; panel a) presents a low magnification view of the nanocolumns 

deposited showing the high homogeneity in the coverage; panels b-d) gather 

characteristic images of the growth at the boundary with the metal electrode, bringing 

out the important discontinuities formed under RPAVD-Ar conditions. 

Conducting-AFM characterization was carried out on the columnar samples deposited 

on commercial available ITO substrates. Main results on these analyses are presented 

in Fig. 5. The topography of the sample forming by clusters of columns is also visible 

by AFM. Bias applied to the tip produce an increment in the current emmited by the 

sample (Fig. 15 a-b). When a bias is applied between sample and tip, the sample 

ignitiates a current signal (recorded in Fig. 15 c-d). Conductivity maps in this figure 

were acquired for two different bias  showing an increment in the top current of an 

order of magnitude by increasing the bias voltage from 0.01V (Fig. 15 c) and (0.035V). 

It is as well possible to address the conducting properties of individual nanocolumns 

by situating the conductive tip on the top of the column and performance an IV curve. 

Fig. 15 e) and f) presents curves obtained in the brighter and darker spots in Fig 15 d) 

correspondently.  Current conducted by one of these columns is in the order of several 

nanometers. 
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Figure 15. Topography AFM (a-b) and Conducting AFM (c-d) images acquired at two 

different scales and sample bias on the “RPAVD-O2 (200nm) + SPE(Ar+O2) 180ºC 

140min” columns; I−V curves measured with the AFM tip placed on a position with a 

maximum (e) and minimum (f) conductivity. 
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3.4 .4. 1D and 2D transparent Platinum layers as counter 
electrode in a Dye Sensitized Solar Cell. 

Towards the implementation of both 1D (nanorods) and 2D (membrane) configurations 

in real devices, DSSCs using counter electrodes with vacuum deposited platinum 

have been fabricated and compared to classical FTO counter electrodes coated with 

commercial Platisol (Solaronix). In order to gather additional information of the 

influence of these platinum electrodes on the performance of DSSCs, A commercial 

low-viscosity electrolyte, namely AN50 (Solaronix), and a high-viscosity one made of 

pure ionic liquid (Pyr 100%) were tested. Fig. 15 shows the I-V curves for the three 

kinds of counter electrodes used in the study and for the two distinct electrolytes 

employed. For the low-viscosity electrolyte (AN50), a remarkable difference in the 

photovoltaic behavior was observed by altering the nanostructure of the deposited 

platinum. Both platinum nanorods and membrane outperform Platisol  in terms of the 

generated photocurrent and photovoltage, although the grid electrode had a 

noticeable superior performance. In the case of the high-viscosity electrolyte, all three 

counter electrodes behaved quite similarly, except for a higher photocurrent observed 

in the columnar one. 

 

Figure 16. I-V curves for the different counter electrodes and electrolytes employed. 

Table 3 presents the different parameters obtained for the fabricated solar cells with 

electrolyte AN50.  Along with the higher photocurrent and photovoltage given for the 

vacuum deposited platinum as mentioned above, a higher fill factor was observed for 
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these cells compared to the Platisol ones. These facts suggest that our electrodes 

allowed for a faster regeneration of iodide ions at the counterelectrode/electrolyte 

interface. 

Table 3. Characteristic photovoltaic parameters for the electrolyte AN50. 

AN50 (Solaronix) J
sc

 (mA·cm
-2

) Voc (mV) Fill Factor η (%) 

Platisol A 10.4 668 69 4.8 

Platisol B 10.7 671 68.9 5.0 

RPAVD-Ar (post-
treatment) A 

11.4 694 74.3 5.9 

RPAVD-Ar (post-
treatment)  B 

11.6 700 73.8 6.0 

RPAVD-O2 (post-
treatment)  A 

10.4 681 71.4 5.1 

RPAVD-O2 (post-
treatment)   B 

10.9 685 72.2 5.4 

 

For the high-density electrolyte, the photovoltaic parameters are much more similar to 

each other than for the case of the low-viscosity electrolyte. Only the nanorods counter 

electrodes exhibited a slight superior efficiency (on average) due to a higher 

photocurrent. The smaller efficiencies observed for Pyr are expected for such a 

higher-viscosity formulation.[Kubo-JPCB.2003; Kuang-AdvMater20017] The potential 

faster reduction of tri-iodide by our electrodes is expected to be more noticeable in 

cells with a higher photocurrent, since in this case a more rapid regeneration is 

required. Hence, if tri-iodide cannot diffuse fast enough to the counter electrode, it 

really does not matter whether its reduction rate is further increased. 

Table 4. Characteristic photovoltaic parameters for the electrolyte Pyr. 

100% Pyr* J
sc

 (mA·cm
-2

) Voc (mV) Fill Factor η (%) 
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Platisol A 4.5 644 57.4 1.7 

Platisol B 4.6 644 58.0 1.7 

RPAVD-Ar (post-
treatment) A 

4.6 652 58.1 1.8 

RPAVD-Ar (post-
treatment)  B 

4.5 644 57.0 1.7 

RPAVD-O2 (post-
treatment)  A 

4.7 647 57.6 1.8 

RPAVD-O2 (post-
treatment)   B 

4.9 649 56.1 1.8 

 

Electrochemical Impedance Spectroscopy (EIS) was carried out to get a further insight 

of the behavior of the electrodes. Fig. 17 presents the Nyquist plots for the DSSCs 

fabricated with AN50 (a) and Pyr (b).  It can be seen in Fig. 2(a) that Platisol gives rise 

to the lowest series resistance (onset of the impedance curve) and the platinum 

membrane originates the largest one, but the width of the first semicircle, 

corresponding to the Pt/electrolyte interface, decreases in the order Platisol > 

nanorods > membrane.  This is indicative of a decreasing charge transfer resistance at 

the Pt/electrolyte interface and is in agreement with the faster regeneration of the 

redox couple suggested and the higher photocurrents observed. It also contributes to 

a decrease of the voltage drop occurring at the same interface, which would explain 

the larger Voc.   
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Figure 17. Nyquist plot of DSSCs with AN50 (a) and Pyr (b) electrolytes. The voltages 

used for the measurements are indicated in the respective figure.   

By applying the transmission line model to the EIS data of the cells fabricated with 

AN50, different cell parameters were obtained (Fig. 18). Recombination resistances 

(Fig. 18 a) are slightly higher for the platinum grid and lower for Platisol. Electron 

lifetimes and capacitances are very similar, as expected, for all electrodes.  
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Figure 18. Impedance spectroscopy results of DSSCs fabricated with commercial 

TiO2 nanoparticles (Dyesol© paste) and AN50 electrolyte. Impedance parameters 

extracted from the fitting of the EIS spectra at various applied potentials: (a) 

Recombination resistance, (b) Electron lifetime and (c) Capacitance. 

All in all, platinum nanorods and columnar counter electrodes exhibited superior 

photovoltaic performance and parameters compared to the Platisol normally used in 

DSSCs when a low-viscosity electrolyte was employed. An additional advantage of 
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these vacuum deposited electrodes is the easy of production scalability, which could 

potentially reduce their overall cost .  

 

Figure 19. UV-Vis-NIR spectra of the different nanostructured Pt on real FTO/glass 

substrates.   

3.5. Conclusions 

A new plasma assisted methodology for the fabrication of transparent metallic 

electrodes has been developed. One- and two-dimensional metallic structures 

has been fabricated. *Remote Oxygen Plasma Etching decomposes the PtOEP 

molecule providing the formation of metallic Pt structures. *Thermal mobilization 

of the PtOEP molecules improves homogeneity and density of the Pt structures, 

reducing the SPE treatment duration.  

*Transmittance of the Pt layers and nanocolumns depends strongly on the 

thickness and post-treatment. UV-VIS and UV-VIS-NIR characterization reveals 

highly homogeneous transmittance in these wavelengths with an ample variety 

in the transmission range (from 10 % to 70 %).   

*Samples prepared under RPAVD conditions are amorphous meanwhile the 

post-treatment yields crystallization of the Pt. *Deposition conditions of the 

sacrificial PtOEP layers drastically affect to the final Pt nanoelectrode porosity 
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and microstructure UV-Vis transmission and XPS results indicated the total 

decomposition of the organic counterpart and formation of metallic Pt.  

*The Current vs Voltage current shows the high conductivity of the films able to drive 

stable currents of around 0.1 A.  

*Transparency and conductivity in 2D nanoelectrodes has been related with the 

thickness and microstructure of the sacrificial PtOEP. 
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4. 1D core@shell piezoelectric 

nanogenerators 

 

Abstract 

Multishell 1D nanogenerators based on crystalline ZnO are fabricated by 

means of a combination of techniques: magnetron sputtering, OPVD, 

RPAVD, PECVD and spin coating. The characterization of these systems 

is performed by a variety of techniques such as SEM, High-resolution 

TEM, HAADF-STEM and 3D EDX maps. The electrical behavior is 

evaluated as well and the piezoelectric effect of 1D and thin film systems 

is investigated. 
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4.1. Introduction 

4.1.1. Description of the piezoelectric effect 

 dielectric material is said to be piezoelectric if it can be polarized by both 

the application of an electric field or mechanical stress. Piezoelectric 

materials can be divided into two categories, polar (ferroelectrics) and non-

polar. The main difference between these groups is that the former presents 

spontaneous polarization, i.e. they possess a non-zero dipole moment per unit 

volume. One singular and useful characteristic of the piezoelectric effect is its 

reversible nature: when a piezoelectric is placed under mechanical stress, an external 

electric field is generated (direct piezoelectric effect), and if subjected to an external 

electric field, mechanical strain appears on the material (inverse or converse 

piezoelectric effect). 

When a piezoelectric is physically deformed, it undergoes a forced charge shifting and 

unbalance process, and depending on certain parameters like the dielectric capacity 

and crystal structure (orientation and symmetry*), charge separation may happen at 

the surface leading to the establishment of an electric field across the material 

boundary. 

The relationship between induced charges per unit area (Polarization) and the applied 

stress is usually considered to be linear and reversible within certain limits, and may 

be mathematically expressed as , where P is the polarization vector, σ the 

stress tensor and d is the so-called piezoelectric coefficient which is a measure of the 

piezoelectricity of a given material. The full electromechanical behavior of a 

piezoelectric is given by the coupled equations: 

 

 

Where s is the compliance, ε the permittivity, d the piezoelectric coefficient and d its 

matrix-transpose (converse piezoelectric effect). This constitutive matrix equations 

define the way in which a material´s strain (S), stress (T), charge-density displacement 

(D) and electric field (E) interact [Leprince-Wang Y., John Wiley & Sons 2015][Dakua 

I., Nanomater. Nanotechnol. 2013].   

A 
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* As mentioned below, the net polarization of an unstrained ZnO crystal is zero. 

 
 

ZnO is an increasingly popular piezoelectric material, mainly because unlike other 

regular piezoelectrics like PZT, it can be easily and cheaply produced by a wide 

variety of techniques and it does not represent a threat for human health or the 

environment []. Furthermore, while PZT has a much larger piezoelectric coefficient 

compared to several other piezoelectrics, ZnO has the highest piezoelectric tensor 

among tetrahedrally bonded semiconductors, which is of utmost importance in that 

technological applications requiring large electromechanical coupling [Lee J., Phys. 

Chem. Chem. Phys. 2015]. 

The most stable and common crystal structure of ZnO is hexagonal wurtzite, which 

belongs to the space group  P63mc and lacks an inversion center, a condition that is 

necessary, but not sufficient, for a material to be piezoelectric. Fig.1 shows the crystal 

structure of ZnO as hexagonal wurtzite. 

 

Figure 1. Representation of the crystal structure of ZnO as hexagonal wurtzite. 

Adapted from [Zinc oxide, Wikipedia]. 

It can be observed in Fig. 1 that positively charged Zn ions are located in one plane, 

(0001), alternating with negatively charged O planes, (000 ). In contrast to these polar 

planes, lateral ones such as (10 0) and ( 110) are non-polar planes.  This leads to an 

intrinsic polarization along the so-called c-axis*, which combined with the absence of 

central symmetry of the hexagonal wurtzite structure originates the piezoelectric 

characteristics of ZnO. 

One of the fundamental parameters associated to a piezoelectric material, and hence 

to a nanogenerator, is the piezopotential. The origin of this potential can be better 
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understood looking at Fig. 2: when a crystal of ZnO wurtzite is in an unstrained state, 

the charge center of the cations and ions in the structure coincide with each other 

leading to a null net polarization. However, when subjected to mechanical stress, such 

as compression along the c-axis, the structure is deformed shifting the charge-center 

of the ions and thus giving rise to an electric dipole and net surface polarization. As 

long as the strain is maintained and due to the fact that ions are fixed (cannot move 

freely to compensate this effect), the piezoelectric field and potential are preserved.      

 

Figure 2. Scheme of the atomic origin of the piezopotential in ZnO showing the effect 

of dynamic strain onto a ZnO wurtzite tetrahedral. 

To build a functional piezoelectric device it is necessary to at least incorporate the 

following elements: the piezoelectric material, metal contacts to collect the generated 

current, and a support. 

The electrical contact between semiconductor and a conductor can be of two types: 

Ohmic and Schottky. If the current-voltage characteristic (I-V curve) of the junction is 

linear, then the contact is ohmic. In this case, electron transport is symmetric at either 

forward or reversal bias due to a lack of potential barrier at the metal/semiconductor 

interface. In contrast, when a potential barrier is present at the interface, the metal-

semiconductor junction presents a rectifying behavior, making the device a Schottky 

diode. The Schottky-Mott rule helps to predict the kind of contact it will be form when 

joining a metal and a semiconductor together: 
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 is the work function of the metal, while  is the electron affinity of the 

semiconductor.  represents the Schottky barrier height and its sign determines 

approximately the type of contact. If , then the contact may be ohmic, 

otherwise it may be Schottky ( ). 

It is generally considered that a piezoelectric nanodevice must be constituted of at 

least one rectifying Schottky contact in order for these devices to operate correctly 

because such a junction acts as a switch for unidirectional current output [Wang Z. L., 

Science 2006][Shao Z., Physica E 2010]. However, the generation of piezoelectric 

potential has been demonstrated in ohmic-like contacts, but the piezoelectric response 

turned out to be noticeably weaker [Comjani F. F., Appl. Phys. Lett. 2014]. 

A lot of effort has been made to reduce the size of electronic or electromechanical 

devices, giving rise to unprecedented levels of energy efficiency and miniaturization of 

individual components which in turn opens up the possibility for the fabrication and 

implementation of fully functional highly-integrated systems [Manz A., Pure Appl. 

Chem. 2001][]. This has led to the development of portable or even wearable and 

wireless electronics, sensors or more complex and versatile Lab on a chip for 

chemical and biochemical analysis, microreactors, biomedical applications such as 

real-time health monitoring and life support, nanorobotics and micro-electromechanical 

systems, etc. [Cavallini A., Ieee Sens. J. 2015][Dagdeviren C, PNAS 2014][deMello A. 

J., Nature 2006][ Hu Y., Adv. Mater. 011]. Even though the progress made in 

microelectronics and nanotechnology has helped to greatly cut down the power 

consumption of these devices, they still require a small amount of energy to fulfill their 

function. This energy can be effectively provided by a piezoelectric generator 

integrated in the same chip, exploiting the movement of animals, humans, plants (due 

to wind), blood, muscles, organs, wind, water currents, sound, etc. and thus creating 

self-powered devices [Wang Z. L., Georgia I. T. 2011]. Among several nanostrucutres 

fabricated and studied, ZnO NWs seem to stand out due to superior piezoelectric 

properties, in addition to an effective increase of surface area compared to thin film 

ZnO; The piezoelectric coefficient of bulk (0001) ZnO value was reported to be 9.93 

pm/V, while that of NWs has been found to be two orders of magnitude higher, 1200 

pm/V [Wang Z. L. Adv. Func. Mater. 2008][Yang R., Nano Lett. 2009][Wang Z. L., Sci. 

Am. 2008][Lee J., Phys.Chem.Chem.Phys. 2015].  

Long and more or less ordered ZnO NWs are usually synthetized by solution-phase 

(template-free) procedures, such as electrochemical deposition and hydrothermal 

methods [Elias J., J. Electroanal. Chem. 2008][Tian J., Nanotechnology 2011][Baruah 
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S., Sci. Technol. Adv. Mater. 2009][Hu H., Mater. Chem Phys. 2007]. High quality ZnO 

NWs have also been extensively produced by dry methods governed by VLS or VS 

mechanisms like thermal chemical deposition (CVD), metal-organic chemical vapor 

deposition (MOCVD), pulse-laser-deposition (PLD), etc. [Singh D. P., Sci. Adv. Mater. 

2010]. In line with Chapter 2, here unique ZnO NWs have been grown by PECVD 

using ONWs as a template.    

In chapter 3, the fabrication of platinum in thin film from a metalorganic precursor by 

RPAVD was addressed. RPAVD technique is essential to obtain much more 

conformal samples compared to standard platinum evaporation when nonplanar 

substrates are used. The optical and electrical properties of the electrodes were 

explored towards their implementation in piezoelectricity and counter electrodes in 

DSSCs. In this chapter, the focus will be made in the fabrication of 1D Pt nanowires, 

using as a basis the acquired knowledge by the group in the field of production of Co 

NPs in CoPc NWs (Fig. 3).  

 

Figure 3. STEM micrograph of hybrid (a) Co NPs/CoPc NWs fprmed by oxygen 

plasma treatment and (b) magnified view of a decorated NW. [Alcaire M., Nanoscale 

2011].  

In order to increase the power output (per cm2) of the piezoelectric devices, the 

detailed fabrication of 1D nanogenerators is presented, placing special emphasis in 

their characterization. Finally, it is shown how to successfully transfer the entire 

fabrication process from rigid to flexible substrates.    

4.2. Objectives    
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The objectives pursued in this chapter are: 

 Development of the methodology for the preparation of 1D core@shell 

nanostructures compromising noble metals (Au and Pt) and ZnO. This includes 

the fabrication of full working devices on flexible substrates and infiltration of 

Poly(methyl methacrylate) for improved mechanical stability. 

 Electrical and structural characterization of the 1D nanostructures in order to gain 

knowledge about the influence of the different fabrication stages. 

4.3. Methodology 

4.3.1. Lateral Piezo 

PET coated with 130 nm ITO from Sigma-Aldrich was cut into pieces of 4.5 cm x 1 cm. 

HCl 8% was used to remove the ITO layer from half of the substrate surface and then 

rinsed with milli-Q water and absolute ethanol. By applying a mask with aluminum foil, 

gold was deposited on the clean side of the substrates leaving a gap of 2 mm between 

the ITO and Au. Next, masks were applied onto a portion of the Au and ITO contacts 

and 400 nm of ZnO was deposited by PECVD.  

4.3.2. 1D piezoelectric Pt@ZnO@Au 

The whole production procedure of 1D piezoelectrics can be splitted in two distinct 

stages: 

1) Fabrication of metallic nanowires.  

a) Deposition of metallic seeds by magnetron sputtering at 0.1 mbar employing and 

Emitech K550 sputter coater equipped with a gold target; 12.5 mA 15 s yielded 

adequate Au NPs both in density and size.    

b) Growth of Pc NWs by OPVD. The base pressure of the chamber was ~ 10-5-10-6 

mbar, the total pressure during deposition was 0.02 mbar of Ar, deposition rate of 0.45 

Å/s (measured by QCM), substrates temperature of 200-210 ºC and a sample-to-

evaporator distance of 6.5 cm. The thickness of the primary NWs was set to 3 kÅ 

(QCM). The evaporation source consisted of point source evaporator deposition 

source model LTE 01 supplied by Kurt J. Lesker.  

The formation of nanotrees consisted in the growth of secondary and tertiary Pc NWs 

by successive soft plasma etching and depositions. After the primary NWs were 
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grown, a first oxygen plasma treatment of 40 minutes at 300 W was applied. The total 

pressure was 0.02 mbar, the substrates were held at room temperature and the 

sample-to-plasma distance was set to 10 cm. The oxidative treatment was followed by 

the growth of secondary NWs just as in (b) but reducing the deposition time to 1 kÅ. 

The etching-NW growth cycle was repeated, reducing the time of plasma treatment to 

20 minutes.    

c) Formation of a PtOEP shell by RPAVD. Identical conditions to the NWs growth 

except that the deposition rate was reduced to 0.3 Å/s and a plasma is switched on 

during the entire process. An ECR microwave plasma source working at 2.45 GHz and 

300 W of power output was used for the conformal deposition of PtOEP. The sample-

to-plasma distance was fixed at 10 cm and the substrates were kept at room 

temperature.  

d) The oxidation of the shell was performed in the same chamber following the 

deposition of the PtOEP shell. Treatment time, substrates temperature, sample-to-

plasma distance and plasma power were adjusted to control the degree of oxidation of 

the shell. Gas pressure was maintained at 0.02 mbar using a gas composition of 80% 

O2 and 20% Ar. To obtain Pt NPs, 30 minutes at room temperature and 300 W of 

power were sufficient, while for the complete formation of Pt NWs treatment time 

ranged from 100 minutes for 1 kÅ thick PtOEP shells to 280 minutes for 3 kÅ shells. 

Moreover, the substrates had to be heated to 180 ºC and the plasma power increased 

to 600W to obtain Pt NWs. It must be stressed that the substrates were always facing 

down towards de evaporator and not directly bombarded by the plasma. 

The obtained Pt NWs were then reduced by soft H2 treatment in a furnace at 135 ºC, 

with a constant flux of 5% H2/Ar during 2 hours. 

A scheme with the different steps involved in the first stage is presented in Figure 4 

(excluding the reductive treatment). 
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Figure 4. a) Deposition of Au or Ag seeds by magnetron sputtering. b) Growth of the 

NWs. c) Formation of the shell by RPAVD. d) Formation of the metallic shell by 

plasma oxidation.  

2) Formation of the ZnO shell and deposition of the outer electrode. 

a) The deposition of a conformal ZnO is achieved by means of PECVD at room 

temperature. ZnEt2, purchased at Sigma-Aldrich and used as delivered, is employed 

as ZnO precursor and dozed into the chamber by means of a mass flow controller. 

The plasma is generated with a 2.45 GHz microwave ECR source working in a down-

stream configuration. At 8 sccm of ZnO flux and 400 W of plasma power, the 

deposition rate was around 4.2 nm measured by SEM. Oxygen was utilized as 

reactive gas. 

b)-d) Deposition of Au by magnetron sputtering (same equipment as in 1(a)). Different 

conditions were swept in order to achieve full Au shell percolation: 12.5mA 15s (a), 
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25mA 30s (b) and 25mA 45s (c). Figure 5 schematizes the distinct gold coverage 

stages. 

 

Figure 5. a) Growth of the ZnO shell by PECVD. Deposition of gold by magnetron 

sputtering: b) 12.5mA 15s, c) 25mA 30s, and d) 25mA 45s.  

Polished n-type Si(100) purchased from Topsil and fused silica  from Sico Technology 

GmbH were used in each preparation for characterization.  

4.3.3. Characterization of the nanostructures 

Characterization: SEM micrographs were acquired in a Hitachi S4800 working at 2 kV, 

while STEM (SEM) micrographs were acquired in a Hitachi S5200 working at 30 kV. 

The samples were dispersed onto Holey carbon films on Cu or Ni grids from Agar 

scientific for TEM characterization. HAADF STEM and HRTEM were carried out with 

both FEI Tecnai Orisis TEM/STEM 80-200 and FEI Tecnai G2F30 S-Twin STEM 

microscope also working at 200 kV. EDX maps were acquired with the former 

microscope working at 200 kV. Post-processing of EDX data was performed with the 
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open source Hyperspy software: hyperspy.org. EDX raw data was post-processed in 

to order to obtain more accurate compositional maps of the multishell system. The 

main reason for this post-treatment is an inadequate description of the Pt spatial 

distribution arising mainly from the fact that the microscope software mixes the signal 

of Pt Lα with Au Lα and it does not allow selection of other emission lines or any 

further spectral refinement, which is critical in this nanosized structures 

The crystal structure was analyzed by XRD in a Siemens D5000 spectrometer 

operated in the θ - 2 θ configuration and using the Cu Kα (1.5418 Å) radiation as an 

excitation source.  

UV-Vis analysis of the samples was done in a Cary 100 spectrometer from Varian. 

Electrical characterization of the piezoelectric devices 

I-V curves were recorded with a 2635A system sourcemeter working in sweep voltage 

mode. 

4.4. Results and discussion 

4.4.1. 1D nanogenerators 

Gold seeds produced by magnetron sputtering provided the required roughness for 

the growth of NWs in several substrates. This deposition technique is highly 

convenient for the fast, easy and controllable production of gold nanoparticles which 

act as nucleation sites. Using 12.5mA and 15s, irregular NPS with a mean area of 

135.5 nm2 and a maximum distribution between 50-100 nm2 were obtained (histogram 

in Fig. 6). By increasing the deposition time and current, Au thin films were readily 

obtained (Fig. 6). Furthermore, at 25mA 30s percolation was already achieved. 
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Figure 6. SEM images of several Au sputtering depositions. An histogram is attached 

for the Au NPs case and a cross section for the thickest film is shown as inset. 

Metal-free phthalocyanine (H2Pc) was chosen as the construction block molecule of 

the NWs due to its relatively high sublimation temperature (above 280 ºC) and lack of 

central metal cation, which may lead to an undesired source of contamination. By 

optimizing the deposition conditions, a high-density of H2Pc NWs was readily attained 

(Fig. 7). 

 

163



 
 

 
 

 

Figure 7. SEM image of approximately 10-12 μm long Pc NWs (3 kÅ in QCM). 

Nanotrees of H2Pc were also fabricated to study the feasibility of 1-D hyperbranched 

nanogenereators production and its potential implementation in piezoelectric devices; 

In theory, an increase in the active surface area of such a device should boost its 

power output. Figure 8 reveals the high degree of interconnection between NWs 10 

μm close that can be achieved with the nanotree concept. 
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Figure 8. SEM images in normal view of of Pc nanotrees ramified twice, 3 kÅ+1 kÅ+1 

kÅ. Low-magnification image of the nanotrees (a), and further magnified views (b-c). 

SEM cross section of the nanotrees (d). 

In order to fabricate nanotrees, it is mandatory to generate enough surface roughness 

on the primary NWs for the growth of secondary and subsequent NWs. This 

roughness can be effectively produced by soft plasma etching after the initial growth of 

NWs and may be regulated by varying the plasma parameters and substrate 

temperature.  In Fig. 9 a roughened H2Pc NW is shown, this is the appearance of a 

NW after 40 minutes of oxidative plasma treatment. 
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Figure 9. SEM image of a H2Pc NW subjected to an oxidative plasma treatment. 

The next step was the production of a PtOEP shell by RPAVD as conformal as 

possible, aiming to the fabrication of platinum nanoelectrodes. As observed in Fig. 10 

a), the achieved PtOEP shells are rounded at the tip and cylindrical along the along 

the axis, losing the squared shape of the Pc core.  In addition, in Fig. 11 b) the 

homogeneity and conformality of the PtOEP shell is highly noticeable, even for such 

considerably small shell thicknesses (0.6 kÅ in QCM). Quite remarkably, the thickness 

of the shell only varies two nanometers in 1.5 μm of NW length. 
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Figure 11. (a) SEM image of PtOEP shell of thickness 0.6 kÅ and (b) STEM 

micrograph of two Pc@PtOEP NWs. 

The thickness of the shell can be estimated from SEM working in BSE-STEM mode. 

For a 0.6 kÅ (QCM) PtOEP deposit, a shell of approximately 30 nm is formed (Fig. 

12).  
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Figure 12. BSE (STEM) image of H2Pc NWs@PtOEP. The difference in contrast 

arising from different organic materials, H2Pc and PtOEP molecules, allows for the 

estimation of organic shell thicknesses. 

Using the information from Chapter 3, the thickness of the resulting Pt shell after 

plasma etching may be approximately calculated. For a 30 nm wall thickness, a Pt 

layer of 16 nm would be expected, which is certainly quite thin and might not be 

enough to support a NW. With this in mind, thicker PtOEP were produced and treated.   

An increase in the shell thickness did not produce any morphological change in the 

nanostructure, just a substantial gain in diameter as observed in Figure 13 for the 3 kÅ 

case. 
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Figure 13. SEM image of 3 kÅ PtOEP shell (a) and a NW tip magnified by a factor of 

two (b). 

Depending on the thickness of the PtOEP layer and the conditions of the plasma 

etching, the post-treatment may be adjusted to be soft enough so as to yield 

unpercolated NPs. With only 30 minutes of treatment at room temperature, highly 

decorated NWs were achieved as observed in Figure 14. High-resolution TEM reveals 

the crystalline nature of the Pt NPs formed (inset in Fig. 14 a)), whilst carefully 

focusing the core, the original Pc molecular planes are still observable (Fig. 14 b)), 

proving that this soft etching condition has not compromised the integrity of the inner 

core. The Pt NPs had a mean diameter of 1.54 ± 0.019 nm according to Figure 14 b) 

and (c). It seems that much more NPs and smaller ones were formed in (c), but it is 

only due to the scale difference (the NW in (c) is much thicker). The NPs in (a) had a 

mean diameter of 2.18 ± 0.41 nm, noticeable bigger than in (b) and (c), but this might 

be explained by the smaller diameter of the NW, which adjacent NPs to joint more 

easily into smaller ones, or the High-resolution acquisition which can cause severe 

beam damage and NP growth.   
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Figure 14. High-resolution TEM (a) and HAADF STEM (b-c) images of a PtOEP 

NW@PtOEP/Pt NPs. The thickness of the shell was 0.6 kÅ and the plasma treatment 

was limited to 30 minutes. 
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When the etching process was prolonged to 60 minutes, i.e. twice the time for 

generating NPs, a semi-percolated Pt grid was obtained (Fig. 15).  

 

Figure 15. HAADF STEM image of a 0.6 kÅ PtOEP shell after undergoing 60 minutes 

of treatment. 

Highly porous and percolated platinum shells were also obtained by increasing the 

thickness of the PtOEP shell and by implementing a more severe etching treatment. 1 

kÅ Pt NWs (Fig. 16 a)) presented a great number of interconnections already, 

although the many of the NWs did not survive the treatment or just broke off due to 

their tiny diameter. In contrast, 3 kÅ NWs have withstood the whole process and their 

density and diameter certainly were much higher (Fig. 16 b)).     
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Figure 16. SEM images of highly interconnected Pt nanotrees, (a) 1 kÅ and (b) 3 kÅ. 

 

 

172



 
 

 
 

 

Figure 17. HAADF STEM image of a Pt NW, obtained from a 3 kÅ PtOEP shell. 

It must be mentioned that the formation of nanoparticles was carried out at relatively 

low plasma power (300 W), room temperature and short treatment time (1 hour 

maximum), while the formation of a platinum layer requires higher power (600 W), 

temperature (180-190 ºC) and  treatment time. 

The obtained platinum nanoparticles or shell are highly crystalline as confirmed by 

HRTEM in Figure 18. 

 

Figure 18. a) HRTEM image of a 3 kÅ Pt NW. b) Magnified view of the region selected 

in (a).  
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In the case of the magnified zone in Fig 19 b), two families of planes can be perfectly 

distinguished: (111) and (200), shown in Fig. ppt.  

Figure 19. Families of planes present in Figure 18 b) extracted from the digital 

diffractogram pattern.       

The formation of the metallic core was followed by the deposition of a conformal ZnO 

shell by PECVD. The fabrication and characteristics of this particular shell was already 

discussed in Chapter 2, but it is worth mentioning that by this particular method 

polycrystalline ZnO was obtained at room temperature (Fig. 20 b)). 

 

Figure 20. (a) Bright field TEM image of a Pt@ZnO NW. (b) SAED of the ZnO shell. 

In order to build a complete 1-D piezoelectric nanogenerator, it is mandatory to deposit 

a second electrode. In this case, gold was chosen for the outer electrode because it 

possesses an adequate work function when platinum is employed in the piezoelectric 
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device. Magnetron sputtering was used with that purpose in mind, mainly due to the 

speed of the technique (see Methodology) and ability to control quite precisely the 

quantity of deposited gold. Three different gold coverage stages were explored and 

are presented in Figure 21. For 12.5 mA 15 s, gold nanoparticles mainly localized on 

the top of the nanowire were obtained (Fig. 21 a) and b)), whereas by increasing the 

deposition time and current to 25 mA 30 s, a thin porous layer of gold was formed 

around the ZnO (Fig. gld (c) and (d)). Finally, with 25 mA 45 s a rather continuous gold 

shell was achieved (Fig. 21 e) and f)). 
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Figure 21. SEM (left) and HAADF STEM (right) images of Pt@ZnO@Au NWs with 

increasing quantities of gold deposited by magnetron sputtering: (a) and (b) 12.5 mA 

15 s, (c) and (d) 25 mA 30 s, (e) and (f) 25 mA 45 s. 
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To verify the extent of gold percolation observed by microscopy techniques, EDX was 

carried out on single nanowires. By performing the methods PCA/ICA on EDX data 

using Hyperspy software, it was possible to obtain the distribution of Au on single 1-D 

nanostructures, as shown in Figure 22. It is clear that with 25 mA 45 s of gold 

deposition, full percolation has been accomplished and the resulting gold layer turned 

out to be greatly conformal, which was not expected from a technique such as 

magnetron sputtering. Hyperspy was required to correctly isolate the signals of 

platinum and gold, otherwise identical for ordinary software at this scale. 

 

Figure 22. (Up) Intensity of Au Mα signal for deposition condition: a) 12.5mA 15s, b) 

25mA 30s and c) 25A 45s. (Down) Intensity of Pt Mα signal. 

UV-Vis.Near IR properties 

Depending on the thickness of the platinum shell, transparent to semi-transparent 

samples were obtained. Unlike common transparent conductors such as ITO and 

FTO, Pt NWs do no present strong absorptions in the UV and near IR regions. 

Moreover, the transmittance of these systems is relatively smooth in a wide range of 

wavelengths (Fig. 23). 
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Figure 23. Transmittance UV-Vis-near IR spectra for Pt NWs samples of different 

thickness. 

Electrical properties 

Four-point probe resistivity measurements were performed on samples fabricated on 

fused silica so as to check the degree of interconnection in nanotrees. In Fig. 24 a) it 

can be seen again that a soft H2 treatment dramatically decreases the resisitivity of the 

samples, while increasing the thickness of the PtOEP layer by three, and hence 

multiplying platinum content by three, produces a reduction of the resisitivy by a factor 

of 2.4. Despite 297.6 Ωcm seems somewhat high, it must be stressed that the 

electrical conduction in this samples is due to numerous contact points between NWs, 

which are not fused one to the other. Moreover, the resistivity of these systems does 

not scale linearly with length (see below). If lateral conduction is that good, vertical 

conduction (along the axis of the NWs) is expected to be excellent.  
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Figure 24. Four-point probe I-V graphs of a) as prepared and H2 treated 3 kÅ Pt NWs 

and b) 1 and 3 kÅ H2 treated NWs.  

Electrical measurements were also performed on commercial Pt electrodes separated 

by 10 μm (interdigitated) and 100 μm. Table 1 gathers the resistance values 

subtracted from the correpsonding I-V curves. 

Table 1. Resistivity of Pt NWs for different thicknesses and treatments. The values are 

in Ohms per length informed (10 μm or 100 μm). 

 
Treatment 

1 kÅ 2 kÅ 3 kÅ 

10 μm 100 μm 10 μm 100 μm 10 μm 100 μm 

As prepared 2.67E9 4.04E10 - - - - 

Plasma 
etching 

52 127 86 91 70.8 100.4 

Annealing in H2 51.7 118.8 60 125.5 54.9 102.8 

 

The untreated samples presented an immense resistance, as expected for an organic 

semiconductor such as PtOEP. Once fully oxidized, Pt NWs showed relatively low 

resistance values with no obvious trend at these scales, but it can be concluded that at 

such low lengths the amount of Pt does not change the electrical properties 

dramatically, the H2 treatment seems effective only in the 10 μm case but not for 100 

µm and that the resistance does not increase linearly with length. This last observation 

is further corroborated when comparing these values against the ones obtained for 1 

cm. 

In order to study the conductive and piezoelectric capabilities of PECVD ZnO, a first 

prototype was fabricated. 400 nm ZnO was laterally sandwiched between a gold and 

ITO electrodes (Fig. 25) and its I-V curve was recorded. Note that the measurements 
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correspond to lateral electrical characteristics of ZnO films, i.e. perpendicular to the 

ZnO crystals axis. 

 

Figure 25. Scheme of the lateral piezoelectric device 

The corresponding I-V curve for the lateral piezo can be observed in Fig. For the 

applied range of voltage, currents turned out to be significantly low, but the values 

were reasonable considering the fact that charge was passing through 2 mm of 

material and that in the lateral configuration employed electrons were forced to hop 

from crystal to crystal (inset in Fig. 26). Of outmost importance is that despite having 

chosen one of the toughest experimental conditions for the measurement, ZnO 

exhibited conductivity and rectifying behavior, validating the prepared PECVD ZnO.  

 

Figure 26. I-V curve of 400 nm ZnO measured in a lateral configuration. The inset 

represents the hopping mechanism responsible of conduction. 

The next step was to check the presence of piezoelectric effect in the as prepared 

polycrystalline ZnO thin films.  
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Finally, a full piezoelectric device was fabricated consisting of 4 electrodes as shown 

in Fig. 27. The idea behind this design was to test in a single device the conductivity 

between Au-Au and Pt-Pt electrodes and electrical behavior between Au-Pt 

electrodes. 

 

Figure 27. Scheme of the 4-electrode piezoelectric prototype. 

SEM images reveal that the nanostructures were not vertical but rather a tangle (Fig. 

28). This is mainly due to the formation of the 1D Pt electrodes from nanotrees and the 

etching of the inner Pc core, making the resulting nanostructures rigid. It does not 

mean that the inner core and flexibility cannot be preserved, just that the experimental 

conditions must be more carefully controlled if the integrity of the Pc core wants to be 

maintained. Furthermore, despite the non-verticality of the nanowires, ZnO has grown 

with an impressive degree of conformality, Figure 28 (down). 
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Figure 28. SEM Images of the piezo Pt@ZnO@Au. Formation of a tangle (up) and 

extreme conformality of ZnO (down). 

The I-V curves for the Au-Au, Pt-Pt and Au-ZnO-Pt are presented in Figure 29. At first 

glance, Pt exhibited the highest conductivity, while Au a noticeable lower conductivity 
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probably due to the low amount of material deposited. The conduction between Au 

and Pt did not show any rectifying characteristics and was considerably high, which 

indicates a short circuit in the device. The high diffusivity of sputtered Au added to a 

highly porous ZnO, is among the principal responsible for this undesired effect.  

 

Figure 29. I-V curves for contacts Au-Au, Pt-Pt and Au-ZnO-Pt. 

In order to address the issue of short circuits due to gold diffusion, six different devices 

with increasing complexity were fabricating, beginning with thin film ones until reaching 

1D piezoelectrics. 

Device I 

It comprised a relatively thick ZnO film of 2.4 μm (Fig. 30 a)) deposited on PET coated 

with ITO. The purpose of such a thick layer of ZnO was to avoid as far as possible any 

short circuit between the ITO and a copper tape placed on the ZnO. Another piece of 

copper tape was located at the ITO to ensure a better electrical contact (Fig. 30 b)). As 

shown in Figure 30 b), the device did present rectifying characteristics, besides, it is a 

good indication of absence of short circuits. 
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Figure 30. (a) SEM cross section of the ZnO thin film. (b) I-V characteristic measured 

between the Cu tapes located following the schematic in the inset for a ZnO thin film 

(2.4 μm) deposited at room temperature on FTO/PET substrates. 

The generation of piezoelectricity was verified by placing a slide of PDMS below the 

device and one on top of the copper contact attached to ZnO, and by exerting 

intermittent pressure with the index finger on top of the contact. It has been estimated 

that the maximum pressure was roughly 3 kg/cm2. It is clear from Figure 31 that the 

device indeed functioned as a piezoelectric (the spikes correspond to the moment 

when force was applied). 
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Figure 31. Output current obtained after vertical activation of the device through a 

PDMS button, situation A. Red line has been obtained by switching the polarity as 

represented in the schematics, situation B. 

To discard that the current response was due to an electrical artifcat arising from the 

force applied to the electrode, the PDMS section was moved from the copper contact 

to over the ZnO film (lateral position) and pressure was applied on it. As a result, 

current peaks were obtained again confirming that the previously observed response 

was not an artifact. However, by comparing the height of the current peaks in Figures 

31 and 32,  it may be noticed that in the lateral configuration the peaks got smaller, 

probably due to the better electrical contact in te vertical configuration. Moreover, a 

replica peak arose a few seconds after the applied force ceased (Fig. 32 b)), which 

could possibliy originate from the relaxation of the flexible device. 
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Figure 32. Output current obtained after lateral activation of the device through a 

PDMS button. Curve in b) is a zoom in showing a detail of the measured signal. 

The influence of applied pressure on the piezoelectric response was qualitatively 

studied by means of a mechanical oscillator which periodically touched the surface of 

the device generating an electrical response (Fig. 33 (Top)). While no efforts were 

made to quantify the force exerted by the oscillator on the surface, at least it was 

possible to observe qualitatively that a higher pressure gave rise to higher currents 

and ultimately to higher power outputs (Fig. 33 (Bottom)). The replica peaks were 

again present, but this time they looked much more symmetric with respect to original 

current response.  
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Figure 33. Top. Schematic of the measured device and output current obtained after 

lateral activation of the device by a mechanical oscilator with constant frequency and 

different loads. Bottom. Zoom in of each of the different zones: a) initial positioning of 
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the activator; b) output for mild load at ?? Hz; c) increment in load and deactivation of 

the vibration. 

 

Devices II and III 

In a second stage, the thickness of the ZnO layer was reduced to 900 nm (ZnO II) so 

as to check if the device could still work or if short circuits were evidenced. In the 

device labeled as II, the configuration was exactly the same as in the device I (inset in 

Fig. 34 a)), with the PDMS included, whereas in device III the ZnO layer was directly 

grown on copper tape. A piece of copper tape was used for the top contact and PDMS 

was also included as in device II (inset in Fig. 34 d)). In both cases the devices were 

tested in a lateral configuration.   

The I-V curves for devices II and III showed rectifying behavior (Fig. 34 a) and d)) with 

no evidence of short circuits. The I-V curve under a pressure of roughly 3 kg/cm2 

(denoted as load in Fig. 34 a)) demonstrated an increase in current for the same value 

of voltage as in the stress-free case. The piezoelectric response in both devices was 

quite similar (Fig. b-c) and e-f)), although a decrease in peak height was observed with 

respect to device I owing to a considerable thinner ZnO layer. 
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Figure 34. I-V characteristics (a, d) and output current for lateral activation (b, c, e, f) 

for two different devices as schematized in the inset with a piezo film of 900 nm 

deposited on ITO/PET (a-c) and on a Cu tape (d-f). The black line in panel a) 

corresponds to the characteristic acquired for a constant load.   

Device IV 

A lateral piezo was again fabricated but this time on paper. It consisted of two 

evaporated contacts, one of Au and the other of Au/Al, on 400 nm ZnO (Fig. 55 b)). 

Paper is a substrate with a high natural roughness due to the cellulose fibers which 

made up the material, but the conformallity of the deposition technique allows for the 

coverage of the very same fibers (inset in Fig. 55 a)). The I-V characteristics of the 

piezo reveal once more a Schottky contact, just as in the precious devices. Once 

more, the piezoelectric effect was observed, but this time by pressing, bending or 

stretching the paper (Fig. 55 e-f)). The highest power output was achieved in pressing 

mode. 
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Figure 55. a) SEM micrographs of the ZnO layer (400 nm) deposited on paper; b) 

Schematic of the mechanical activation and device architecture. Gold and Aluminum 

layers were deposited by magnetron sputtering and thermal evaporation 

correspondently on top of the ZnO thin film. c) IV curve showing the Schottky/Ohmic 

characteristic; d-f) Output current obtained by the different mechanical activation tests 

(pressing, bending, and stretching) as labeled.   

Devices V-VI 

The maximum level of complexity was achieved with the fabrication of 1D core@shell 

piezoelectric devices embedded in PMMA. Two variants were fabricated: 

 Device V: H2Pc core covered with a shell of ZnO. 

 Device VI: H2Pc core cover by a first shell of gold (inner shell) and a second shell 

of ZnO (outer shell). 
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In both cases a seed layer of 900 nm of ZnO was deposited previous to the growth of 

the NWs. In Figure 56 the whole system H2Pc@Au@ZnO may be appreciated, note 

that for the device V (without the gold shell) the aspect would be exactly the same. 

The inner gold shell can be perfectly distinguished (Fig. 56 d-e)) and the ZnO 

deposition oriented the nanostructures in a vertical fashion as already discussed in 

Chapter 2 (Fig. 56 a-c)).  

 

Figure 56. SEM (a-d) and BSE-SEM (e) micrographs of H2Pc@Au@ZnO nanowires 

deposited on a ZnO (900 nm) layer. a) Cross section showing the vertical alignment of 

the core@multishell nanowires as well as the seed layer. It is worthy to indicate the 

deposition of the gold shell provoked a short circuit of this piezo film. b)–c) Planar 
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views at different magnifications demonstrating the tips of the NWs. d-e) High 

magnification micrographs revealing the cross section of an individual NW where the 

core and two shells were easily addressable. 

The incorporation of PMMA to the samples was probably the most critical step in the 

preparation of the devices. There was no certainty that the solvent employed during 

the process (see methodology) would not attack the ZnO or if the PMMA would be 

able to diffuse towards the bottom of the samples. By inspection of Figure 57 a) and b) 

it can be concluded that PMMA effectively embedded the nanostructures, although not 

homogeneously in the case of the silicon substrate (Fig. 57 a)). 
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Figure 7. SEM normal view at different magnifications of H2Pc NWs@Au@ZnO 

embedded in PMMA (5% w/w) after annealing during 1 hour at 80 ºC; image in panel 

a) corresponds to the NWs deposited on ZnO/Si(100) and panel b) to the deposition 

on ZnO/ITO/PET. 

Finally, a rather short oxygen plasma treatment released the heads of the 

nanostructures from PMMA as seen in Figure 58. The duration and/or power of the 

plasma source may be varied in order to increase or decrease the exposed polymer-

free ZnO area, but this study has not been carried out in this work. It is worth 
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mentioning that the exposed ZnO seems reasonably intact, without obvious vestiges 

of degradation (Fig. 58 a)). 
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Figure 58. Normal (a) and cross section (b-c) SEM views showing the effect of the 

oxygen plasma treatment at room temperature of the Pc@Au@ZnO deposited on 

ZnO/Si(100) and embedded in PMMA. As it is demonstrated only part of the NWs 

were released of the polymeric sheath after the plasma treatment. The PMMA matrix 

improved the mechanical stability and distribution of the load.   
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The I-V characteristics of devices V and VI were remarkably symmetric for the positive 

and negatove bias. It is obvious that the device with a gold shell exhibited a much 

lower resistance compared to the one without it, which may be reasonably atributted to 

the fact that gold diffused throw the ZnO seed layer and contacted the ITO. In this 

particular case this turned out to be an advantage, besides, the contribution of the 

ZnO seed layer is cancelled (because it is short circuited).  

 

Figure 59. I-V characteristics measured for the two NWs devices deposited on 

ZnO/ITO/PET and contacted through Cu tapes.   

The piezoelectric behaviour of devices V and VI was quite similar, except for its 

magnitude. Interestingly, for the vertical configuration no replica current peaks were 

observed, but they did appear in the lateral configuration. Moreover, it seems that the 

power output was higher for device VI in vertical configuration, while in the lateral 

configuration the difference was much more apparent. This is in agreement with the 

previous result of the I-V characteristics. 

 

 

 

196



 
 

 
 

 

Figure 60. Output current obtained from the NWs devices deposited on ZnO/ITO/PET 

after vertical (a-c) and lateral (b-d) mechanical activation through a PDMS button. 

4.5. Conclusions 

The ZnO grown at room temperature by PECVD has proven to exhibit adequate 

electric and piezoelectric characteristics.  

The development of 1D core@shell nanostructures with application in the field of 

piezoelectricity has been addressed. It has been possible to generate and thoroughly 

characterize complete nanogenerators with the structure Pt NWs@ZnO@Au following 

a full vacuum fabrication approach. In spite of the fact that the fabricated device was 

short circuited, it does not mean that the system is not appropriate for its 

implementation in piezoelectric generators, but just that more care must be taken to 

avoid that issues (PMMA infiltration for example). Moreover, these nanostructures 

have proven to be excellent samples for the development and refinement of more 

powerful EDX mapping and analysis techniques, as exemplified in Appendix B. 

Thin film and 1D piezoelectrics have been successfully fabricated on flexible 

substrates. Despite not having performed quantitative studies, it has been 

demonstrated that the fabricated devices truly work as piezoelectrics, paving the way 

for more detailed studies.  
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5. Laser induced enhancement 

of dichroism in supported 

silver nanoparticles deposited 

by evaporation at glancing 

angles  

 
Abstract  

Silver nanoparticles (NP) depicting well defined Surface Plasmon 

Resonance (SPR) absorption are deposited on flat substrates by physical 

vapor deposition in a glancing angle (GLAD) configuration. The particles 

are then characterized by Scanning electron Microscopy (SEM) and 

Atomic Force Microscopy (AFM) and their optical properties examined by 

UV-Vis absorption spectroscopy using linearly polarized light. It is found 

that, depending on the amount of deposited silver and the evaporation 

angle, part of the “as prepared” samples present NPs characterized by an 

anisotropic shape and a polarization dependent SPR absorption and 

300 400 500 600 700 800 900
30

40

50

60

70

80

90
24

8 
kW

cm
-2

21
2 

kW
cm

-2 177 kWcm
-2

14
1 

kW
cm

-2

 

 

T
ra

n
s
m

it
ta

n
c
e
 %

Wavelength (nm)

0º

Original

300 400 500 600 700 800 900
30

40

50

60

70

80

90

 

 

T
ra

n
s
m

it
ta

n
c
e
 %

Wavelength (nm)

90º

x

y

a)

b)

c)

L-SPR

T-SPR

201



different colors when using polarized white light at 0º and 90º. Low power 

irradiation of these materials with an infrared Nd-YAG nanosecond laser 

in ambient conditions produce an enhancement in such dichroism. At 

higher powers, the dichroism is lost and the SPR bands shift to lower 

wavelengths as a result of the reshaping of the silver NPs in the form of 

spheres. The possible factors contributing to the observed changes in 

dichroism are discussed. 

These NPs deposited on melted silica are finally employed as substrates 

for Surface enhanced Raman scattering (SERS) to detect Rhodamine 6G 

in solution. The effect of laser treatment on SERS effect is also evaluated 

[Chapter 6].  
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5.1. Introduction 

etal nanoparticles (NPs) with Surface Plasmon Resonance (SPR) activity 

have been widely studied because of their applications for the fabrication of 

optical devices such as filters, non-linear optical components, Raman 

enhancers and others [Mertens H., Appl. Phys. Lett. 2006][Liang H. Y., Adv. Mater. 

2009][Giannini V., Chem. Rev. 2011][Rycenga M., Chem. Rev. 2011]. The dichroic 

activity of anisotropic metal aggregates has been exploited for the development of 

optical filters, new encryption processes, the fabrication of polarized light emitters or 

materials with enhanced IR luminescence [Fort E., Nano Lett. 2003][Suzuki M., J. 

Appl. Phys. 2005][Camelio S., Phys. Rev. B 2009][Cavallini M., Adv. Mater. 2009]. 

Dichroism, usually achieved by managing the shape and distribution of the metal 

aggregates along a preferential direction, can be produced by different methods. For 

example, by manufacturing assemblies of parallel stripes of NPs onto preformed 

surfaces presenting 1D periodic roughness [Fort E., Nano Lett. 2003][Suzuki M., J. 

Appl. Phys. 2005] or by more sophisticated approaches consisting of the application of 

soft lithographic techniques to accurately tailor the nanostructure of the materials 

according to asymmetric patterns [Camelio S., Phys. Rev. B 2009].  A well-known soft 

lithographic technique widely used to modify the shape and structure of NPs relies on 

the use of laser scanning [Wenzel T., Appl. Phys. B 1999][Kaempfe M., Appl. Phys. 

Lett. 2001][Link S., Phys. Chem. B 1999][Zijlstra P., Nature 2009][Sanchez-Valencia J. 

R., Plasmonics 2010] either by in situ [Wenzel T., Appl. Phys. B 1999] or ex situ 

[Kaempfe M., Appl. Phys. Lett. 2001][Link S., Phys. Chem. B 1999][Zijlstra P., Nature 

2009][Sanchez-Valencia J. R., Plasmonics 2010] treatments.  

Not long ago, memebers of the Nanotechnology on Surfaces group have prepared 

dichroic structures of silver by sputtering of this metal onto SiO2 thin films consisting of 

bundled arrangements of SiO2 nanocolumns (i.e., Ag/SiO2 systems) prepared by 

glancing angle deposition (GLAD) and a posterior treatment with nanosecond laser 

[Sanchez-Valencia J. R., Adv. Mater. 2011][Nouneh K., Alloys and Comp. 2011]. In 

that case an anisotropic distribution of silver in the form of stripes was induced by a 

surface template effect of the nanocolumns bundles existing in the SiO2 GLAD thin 

films. The anisotropy was enhanced by the partial melting and agglomeration of the 

silver aggregates under the action of laser irradiation. Principal achievements of that 

work were the tuning of the SPR along the visible range and the demonstration of the 

applicability of system for optical nano-patterning applications. Enhancement of 

dichroism by laser irradiation in deposited silver by laser is rather unusual since most 

M 
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common behaviour of deposited NPs consists of the agglomeration of the smaller 

particles into spherical and bigger ones [Ebothé J., Mat. Chem. Phys. 

2009][Cattaruzza E., Appl. Surf. Sci. 2011][Tawfick S., Adv. Mater. 2012].  

In the present work, the preparation of silver NPs by direct evaporation at glancing 

angles (GLAD-PVD) by evaporation of silver in high vacuum conditions from a 

punctual source has been essayed. As it will be demonstrated below the technique 

provides a straightforward way to the formation of asymmetric nanoparticles with 

different plasmon-wavelengths associated to their shape.  The growth of such 

particular NPs is due to the specific geometry of the deposition. Different experiments 

shown in this work demonstrate the relation between the geometry of the deposition 

and the morphology and, therefore, optical properties of the nanoparticles. Meanwhile 

in the previous references [Sanchez-Valencia J. R., Adv. Mater. 2011][Nouneh K., 

Alloys and Comp. 2011] the silver deposition was carried out by a plasma related 

technology, sputtering dc from a silver thread in Ar pressure. The isotropic character of 

the DC sputtering produces at low thickness rounded nanoparticles. On other hand, 

references [Sanchez-Valencia J. R., Adv. Mater. 2011] and [Nouneh K., Alloys and 

Comp. 2011] show the formation of elongated silver nanoparticles using a SiO2 

template fabricated by GLAD. Therefore, main differences between this protocol and 

the previous ones are: 1) methodology for the preparation of the nanoparticles; 2) this 

new methodology allows us to further control the optical properties of the starting 

material, i.e. before the laser treatment; 3) this is a template-free protocol, meaning 

the interesting results on control of the dichroism and plasmon resonance wavelength 

that has been previously demonstrated can be applied in a one-step routine. 

This technique has been widely used for the preparation of nanocolumnar porous thin 

films of metals [Messier R., J. Vac. Sci. Technol. 2000][Gonzalez-Garcia L., Mater. 

Chem. 2010] oxides [Hawkeye M. M., J. Vac. Sci. Technol. A 2007][Sanchez-Valencia 

J. R., Langmuir 2009][Alvarez R., J. Phys. D: Appl. Phys. 2011] or semiconductor [Van 

Kranenburg H., Mater. Sci. and Eng. R 1994][Hodkinson I., Adv. Mater. 2001][Chaney 

S. B., Appl. Phys. Lett. 2006] materials. Silver nanocolumnar films have been also 

obtained by this method [Bloemer M. J., Phys. Rev. B 1998][Liu Y., Appl. Phys. Lett. 

2006][Zhao Y. P., J. Appl. Phys. 2006][Horcas I., Rev. Sci. Instrum. 2007]. Herein, the 

deposition process has been stopped before the development of the nanocolumns and 

obtained discrete silver NPs at the initial stages of growth. It is shown that these metal 

nuclei have an elongated shape and present a dichroic optical behaviour that can be 

enhanced by laser irradiation. Besides dealing with the preparation of the silver 

deposits and studying their optical behaviour before and after the laser treatment, the 
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implications of the GLAD geometry for the fabrication of anisotropic silver NPs on flat 

substrates and the factors that contribute to increase their anisotropy by laser 

irradiation are discussed. 

5.2. Methodology 

Silver evaporation was carried out in an electron bombardment evaporator by using a 

crucible with silver as a target. Pieces of a Si (100) wafer with a size of 2.5 x 2.5 cm2 

were used as substrates for the SEM characterization of the as-grown samples. 

Simultaneous evaporation was also carried out on glass and quartz plates that 

thereafter were examined by UV-Vis absorption spectroscopy and underwent the laser 

treatments. Deposition was performed at room temperature in vacuum (i.e., 10-6 Torr) 

by placing the substrates at different glancing zenithal angles α from 60 to 85º. The 

layer thickness was controlled by monitoring the evaporation process with a quartz 

crystal monitor (QCM) previously calibrated by comparing its response with the 

thickness of Ag films prepared at normal geometry. When the text refers to the amount 

of evaporated silver, the data always indicate the nominal thickness measured by the 

(QCM) place at normal geometry. Therefore, the typical cosine rule should be applied 

to estimate the amount of silver actually deposited on the substrates placed at 

glancing angles with respect to the source.  For comparative purposes, samples were 

also prepared at normal configuration (α=0º) or at glancing angle while rotating the 

substrate. In the text, samples will be named by indicating their nominal thickness 

followed by the deposition angle (e.g., 50nm/85º means a sample with a nominal 

thickness of 50 nm prepared at 85º zenithal evaporation angle). The samples were 

fabricated at deposition rates comprised between 0.5 and 1.5 Å/s in all cases. The as-

prepared samples were kept in a desiccator under controlled conditions until their use.  

Laser post-treatment was performed at room temperature with a 20 W diode-pumped 

Nd:YAG (Powerline E, Rofi n-Baasel Inc.) unpolarized laser emitting at 1064 nm with  

a 100 ns pulse width and a 20 kHz repetition rate. The samples were scanned with a 

ks on a silver thick film at the working 

distance (Fig. 1), at 100 mm s−1 speed with one pulse per spot fired into the material. 

The maximum energy fluence applied in these experiments is 21.2 Jcm-2 and was 

calculated as the ratio energy per pulse to area. Full width of the beam at half its 

maximum intensity (FWHM) supplied by the constructor is 10 nm. UV-Vis absorption 

spectra were recorded at normal incidence in a Cary 100 spectrophotometer at normal 

incidence and in the [220 – 900 nm] range with a 1 nm monochromator step 

spectrometer by using linearly polarized light at 0º and 90º. 
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Figure 1. SEM image used for the estimation of the laser mean diameter measured at 

the working distance on a silver thick layer (  750 nm). 

The particle size and shape of the silver NPs evaporated on a silicon wafer was 

analysed by Field Emission Scanning Electron Microscopy (FESEM) in a Hitachi 

S4800 microscope by examining both their surfaces and cross sections. The surface 

topography of the deposited particles was analysed by Atomic Force Microscopy 

(AFM) in a Dulcinea microscope from Nanotec (Madrid, Spain) working in tapping 

mode and using high frequency cantilevers. AFM images, taken on a 1 x 1 µm2 

surface area, were processed with the WSxM free available software from Nanotec 

[Ferraris M., Mater. Chem. Phys. 2010]. Besides to a conventional analysis of the 

surface topography, Fast Fourier Transforms (FFTs) of the images were calculated to 

assess both the shape and particle size distribution of the deposited silver. 

5.3. Results and Discussion 

5.3.1. Evaporation of silver at glancing angles 

Evaporation of silver at glancing angles on a glass or any other transparent substrate 

leads to the formation of optical layers characterized by either a wavelength 

widespread mirror reflectance or a localized SPR feature. The transition from one 
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regime to the other depended on the amount of evaporated silver and on the zenithal 

evaporation angle. Figure 2 illustrates this behavior for silver deposits of 10 and 50 nm 

nominal thickness prepared at zenithal angles α=0º, 65º, 70º, 80º, 85º. It is apparent in 

this figure that the layers fabricated at the higher zenithal angles depict a defined 

absorption band located between 500 and 600 nm that it is attributed to the SPR 

absorption of silver NPs [Mertens H., Appl. Phys. Lett. 2006][Liang H. Y., Adv. Mater. 

2009][Giannini V., Chem. Rev. 2011][Rycenga M., Chem. Rev. 2011]. At low zenithal 

evaporation angles, particularly at normal evaporation (i.e., α=0º), the layer behaves 

as a mirror without any defined absorption feature.  

 

Figure 2. Absorbance spectra recorded for silver layers with a) 10 and b) 50 nm 

nominal thickness deposited on a glass slide at zenithal angles of 0º, 65º, 70º, 80º and 

85º. The inset in panel a) shows the changes of the absorption maxima with the 

deposition angle. 
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A similar tendency was found for silver layers of intermediate nominal thicknesses of 

20, 30 and 40 nm (Fig. 3). The broad absorption between 200 and 320 nm presented 

in all the curves can be related with both, light scattering in the interface with the 

substrates [Ehrenreich H., Phys. Rev. B 1962] and the combination of the SPR with a 

minimum at ~310 nm which is characteristic of the silver systems. At such wavelength 

the real and imaginary parts of the dielectric function of silver almost vanish in relation 

with interband transitions [Linnert T., J. Amer. Chem. Soc. 1990]. Different authors 

have also reported two absorption bands at 305 and 350 nm associated with the 

presence of Ag+ and elemental Ag atoms correspondently [Mitchell C. E. J., Surf. Sci. 

2001][Chiaretta D., Non-Crystal. Sol. 2006]. In this case, besides the strong SPR 

absorption hamper the resolution of bands due to metal ions [Ehrenreich H., Phys. 

Rev. B 1962], the possibility of silver oxide presence has been discarded by following 

the absorption after an oxidation/reduction cycle, noticing a displacement and 

narrowing of the surface plasmon resonance related to a rearrangement of the silver 

clusters (data non shown) as the main modification of the spectra. 

 
Figure 3. Absorbance spectra recorded for silver layers with 20, 30 and 40 nm 

nominal thickness deposited on glass at the zenithal angles of 0º, 65º, 70, 80 and 85º. 

The formation of isolated silver particles at the highest zenithal angles could be 

confirmed by SEM observation. This analysis showed that silver deposited under 
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these conditions aggregates in the form of small NPs with a morphology that 

depended on the angle of evaporation and the amount of evaporated silver.  Figure 4 

gathers a series of normal and cross section SEM micrographs showing the 

characteristics of the silver grains formed in samples 50nm/85º and 10nm/85º. This 

figure clearly demonstrates that silver evaporated at zenital angles forms small 

particles without completely covering the substrate. The histogram included in the 

figure shows that the average particle size increases with the amount of evaporated 

silver, as expected for a progressive percolation and agglomeration of the initial silver 

nuclei into bigger particles. This assessment of the evolution of particle sizes also 

proved for other deposition angles and equivalent thicknesses, comply with an ample 

series of results in literature reporting that evaporation of small amounts of silver at 

normal deposition angles leads to the formation of discrete particles [Lee M. H., Thin. 

Sol. Films 1992][Yang K. Y., Appl. Phys. Lett. 2009][Siozios A., Nanolett. 2012]. For 

higher amounts of evaporated silver, i.e., the conditions where a mirror like behavior 

was found (cf. Figure 2), a homogenous and completely percolated metal film could be 

observed by SEM (Fig. 3 d)).  

 

Figure 4. Normal (a, b) and cross section (c, d) SEM micrographs of samples 

10nm/85º (a) and 50nm/85º (b, c, d). Arrows inserted in the micrographs indicate the 

direction of arrival of silver flux during the preparation of the samples. Coordinate axis 

defined with respect to this direction are also included for clarity. The insets in a) y b) 
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show an enlargement of the micrograph for a better view. Cross section micrographs 

(c, d) have been taken by turning the 50 nm sample during analysis as indicated by 

the coordinate axis in the figure. The histograms in e) show the particle size 

distributions obtained from images a) and b) for each studied sample. 

A close look to the cross section images in Figure 4 c) and d) and to the shape of the 

NPs in the normal images (a, b) reveals that, even if irregular, they present a certain 

elongation perpendicular to the direction of evaporation. This asymmetry had a critical 

influence on the optical properties of these deposited particles. From now on the 

following notation will be used when indicating absorption for linear polarized light: 

linear polarized light perpendicular/parallel to the flux direction (x)/(y), i.e. in the 

long/short axis growth of the nanoparticles (Fig. 3 a and b), will be denoted as 0º/90º 

and the corresponding SPR as longitudinal/transversal. Figure 5 shows the absorption 

spectra of samples 10nm/80º and 50nm/85º under linear polarized light. In the two 

cases, the most significant feature was the difference in the wavelength position and 

width of the plasmon absorption band when turning the polarizer 90º. This optical 

dichroism must result from the excitation of distinct plasmon resonances along the 

nanoparticles (longitudinal plasmon L-SPR) and perpendicularly to them (transverse 

plasmon T-SPR). The different plasmon wavelengths of the two bands indicate that 

the electromagnetic coupling along the nanoparticle longest dimension is stronger 

than along the perpendicular direction. For the two samples, the L-SPR depicts a red 

shift by, respectively, 56 and 84 nm accompanied by a broadening in the shape. 

Similar wavelength modifications and broadenings, although to a different extent 

depending on the sample, were also found for the samples that depicted a clear 

plasmon absorption band as seen in Table 1. 
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Figure 5. Absorption spectra recorded with linearly polarized lights at 0º and 90º for 

samples 10nm/80º (a) and 50nm/85º (b). 

Table 1. Wavelength difference (dichroism) between L-SPR and T-SRP maxima of the 

synthesized samples by recording the spectra with linearly polarized light at 0º and 

90º. The cells in blank correspond to samples depicting a mirror like behavior where 

no well-defined SRP could be observed.  

                Angle                     

Thickness   
65º 70º 80º 85º 

10 nm 46 nm 62 nm 56 nm 25 nm 
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20 nm 84 nm 40 nm 13 nm 16 nm 

30 nm - - 14 nm 44 nm 

40 nm - - 109 nm 51 nm 

50 nm - - - 84 nm 

  

At this point it is worthy of note that samples prepared by GLAD while rotating the 

substrate or by normal evaporation and a small nominal thickness were characterized 

by small and rather symmetrical  silver NPs and did not present any significant 

difference in their absorption spectra when examined with polarized light at 0º and 90º 

(Fig. 6). This result further supports that the optical anisotropy depicted in Figure 4 has 

to be associated with the elongated shape of the silver NPs prepared in a GLAD 

configuration. 

 

Figure 6. UV-vis absorption spectra recorded with linearly polarized light at 0º and 90º 

for samples prepared at a GLAD geometry by rotating the substrate (left) and by 

deposition of the silver at normal geometry (right). 

5.3.2. Laser post-treatment of silver NPs prepared by GLAD 

A well-known phenomenon observed when deposited silver NPs are laser irradiated is 

their coarsening and agglomeration into particles of bigger size [Ebothé J., Mat. Chem. 

Phys. 2009][Cattaruzza E., Appl. Surf. Sci. 2011][Tawfick S., Adv. Mater. 2012]. For 
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the anisotropic particles prepared here by GLAD, this should normally lead to the 

overlapping of the L-SPR and T-SPR and therefore to the decrease of the dichroism. 

Figure 7 shows a series of normal SEM micrographs taken for sample 50 nm/85º 

exposed to laser illuminations with increasing laser irradiances in the range between 

141 and 424 kWcm-2. This set of micrographs reveals a progressive modification of the 

particles from an elongated to a spherical shape and, to a first glance, the formation of 

bigger particles when the irradiance is progressively increased. A closer look to the 

particle morphologies in the sample irradiated with the maximum power of the laser 

(see the high magnification SEM image in Fig. 7 f)) shows that together with the big 

spherical NPs (diameters between 40 to 100 nm) there are also very small spherical 

NPs (diameters below 10 nm), thus defining a kind of bimodal (an even trimodal) 

distribution of particle sizes. For intermediate or the lowest irradiance conditions (i.e. 

141 and 212 kW/cm2), although a small number of spherical NPs can be devised in 

the image, most of them continue having an irregular and elongated shape. 
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Figure 7. Normal view SEM micrographs of sample 50 nm/85º subjected to 

increasingly higher laser irradiances as indicated in the images from a) to f). Panel f) 

shows a higher magnification micrograph to better devise the heterogeneous 

distribution of particle sizes present in the sample after treatment at the highest 

irradiance conditions. 

Unfortunately, the characterization of these samples by high resolution SEM in cross 

section mode is hampered by charging problems associated to the use of fused silica 

as substrate for the laser treatments. Nevertheless, a deeper look to the 

characteristics of the particles after the different irradiation experiments is achievable 

by AFM.  The topographic images and fast Fourier transforms (FFTs) for sample 

50nm/85º presented in Figure 8 confirm the previous assessment on the evolution of 

particle size and shape derived from the SEM analysis. Thus, the evolution of the 
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topography of the samples (see the intensity scale in panels a) to c) and the 

histograms in panel e)) agrees with an increase in the particle height associated with 

the formation of cylindrical and/or rounded particles of bigger size. Meanwhile, the 

histograms included in the same figure clearly indicate that both the average particle 

size and the width of the particle size distribution increase with the irradiance, in 

agreement with the SEM observation of these samples in Figure 7.  The RMS 

roughness values collected in Figure 8 d) confirm these tendencies. Similarly, the 

FFTs included in the figure provide additional evidences of the coarsening of the silver 

NPs when subjected to laser irradiation.  For the original sample the FFT diagram, is 

characterized by a relatively large and rectangular area which agrees with the 

presence of small particles with elongated shape. Increasingly higher laser irradiances 

produce a decrease in the size of the FFT diagram and its transformation into a 

symmetric pattern, both features agreeing with the formation of spherical silver 

particles. Thus, the height histograms demonstrate the increment in the height out of 

plane of the NPs with the laser treatment, meanwhile the FFT devoted to the in-plane 

features show the transformation into rounder nanoparticles.   

 

Figure 8. a)-c) AFM topographic images and Fourier transforms (FFTs) as insets of 

sample 50nm/85º as prepared by GLAD and after being subjected to increasingly 

higher laser irradiances as indicated; d) RMS roughness as a function of the laser 

irradiance; e) height histograms of the representative images in a)-c). 

The changes experienced by the morphology and size of the silver particles upon 

laser irradiation had a direct correlation onto the optical behavior of samples. A first 
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effect is observed in the wavelength position of the L-SPR maximum that could be 

tuned along the visible range as a function of the irradiance parameter. A direct 

consequence of such a tuning for a given sample was the modification of its dichroism. 

A clear example of this effect is reported in Figure 9 showing the transmittance 

spectra recorded with linearly polarized light at 0º (L-SPR) and 90º (T-SPR) for sample 

50 nm/85º subjected to increasingly higher laser irradiances.  The as-grown sample 

present a L-SPR at  570 nm that splits into two peaks, one well defined at higher 

wavelengths (720 nm) and a another one at  550 nm. The former is also observed 

with very little intensity in the T-SPR spectrum that, otherwise, remained almost 

unmodified. A similar effect was described and modeled in a previous work regarding 

the ns-laser treatment of silver nanostripes deposited on SiO2 nanocolumns [Nouneh 

K., Alloys and Comp. 2011]. At medium irradiances from 177 to 248 kWcm-2, the 720 

nm band in the L-SPR spectrum shifted to the red and merged with the component at 

around 550 nm. Except for the removal of the shoulder at 720 nm, little changes can 

be observed in the T-SPR spectra for this range of irradiances.   Treatment under 

higher irradiances from 318 to 424 kWcm-2 progressively transformed the plasmon 

contributions recorded with the two polarizations of light into a unique complex band 

appearing at around 400 nm for the maximum power of the laser. In this final band, up 

to three different features can be distinguished in the spectra recorded either at 0º or 

90º polarizations. 

Resulting from these changes in the absorption spectra, the color appearance of the 

sample illuminated with polarized white light changed as a function of both the laser 

irradiance and the polarization of light as reported in Fig. 9 c). Turning the polarizer, 

the full color scale (0º) obtained when exciting the L-SPR turns almost monochromatic 

at 90º. The wide variety of colors and its dependence on the polarization of light opens 

the possibility to create a full pallet of polarized dependent colors based on the 

Plasmon absorption of silver NPs. Due to the focusing properties of the laser, the 

previous colors could be produced according to given patterns and be used for optical 

encoding [Van Kranenburg H., Mater. Sci. and Eng. R 1994][Han R., Appl. Phys. Lett. 

2011]. 
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Figure 9. Transmission spectra recorded with linearly polarized light at 0º a) and 90º 

b) for sample 50 nm/85º subjected to laser treatments with increasing irradiances 

between 141 and 424 kW/cm2. Color code is the same in both graphs; c) color 

photographs taken for the same samples illuminated with polarized (0º and 90º) white 

light showing the production of a color scale when exciting the longitudinal plasmon. 

The behavior of sample 50nm/85º described in Figure 8 was similarly reproduced by 

all the samples where an optical anisotropy was already apparent in the “as prepared” 

films (Table 1). In all cases, irradiation at the minimum laser irradiance produced a 

shift to longer wavelengths in the position of the plasmon band recorded with the 0º 

polarized light. As a consequence, the difference in the SPR position recorded with 0º 

and 90º polarized lights increased, leading to a maximum difference in the SPRs and, 

hence, in the color appearance of the samples when examined with white light (cf. 

Figure 8 (right)). Laser irradiation at intermediate powers produced in all cases a 

progressive diminution of the plasmon shift that decreased smoothly to zero at the 

maximum irradiances.  A maximum shift of 200 nm was obtained for sample 
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50nm/85º. To summarize the effect of laser on the different samples, Figure 10 shows 

a plot of the magnitude of the plasmon shifts between the SPR maxima obtained with 

0º and 90º linearly polarized lights when the different samples were subjected to laser 

irradiation at increasingly higher irradiances. It must be noted that practically no 

anisotropy enhancement was obtained for samples prepared at normal evaporation or 

by rotating the substrate during evaporation in a GLAD configuration that, as 

previously indicated, did not present a noticeable anisotropy in the “as prepared” state. 

 

Figure 10. Evolution of the SPR shift between the UV-Vis spectra recorded with 0º 

and 90º polarized lights for the different studied samples treated with increasingly 

higher laser irradiances.   

5.3.3. GLAD formation of silver NPs 

Growth of silver nanocolumns by glancing deposition is known to yield a very 

interesting optical phenomenology, widely studied since the eighties of the last century 

[Bloemer M. J., Phys. Rev. B 1998][Liu Y., Appl. Phys. Lett. 2006][Zhao Y. P., J. Appl. 

Phys. 2006][Horcas I., Rev. Sci. Instrum. 2007]. By contrast, the initially formed 

particles deposited at glancing angles and their modification by laser irradiation has 

not deserved much attention. Our results have shown that silver NPs prepared by 

evaporation in a GLAD configuration present optical anisotropy likely linked with their 

elongated shape with the longest dimension perpendicular to the direction of 

evaporation. Asymmetric growth of GLAD microstructures is a common phenomenon 

in thin films that sometimes becomes apparent by the agglomeration of the individual 

nanocolumns in the form of “bundles” [Yang K. Y., Appl. Phys. Lett. 2009][Rycenga 
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M., Chem. Rev. 2011]. The asymmetric NP shape obtained here must be a first 

indication of this tendency to form anisotropic structures, already at the initial 

nucleation steps. Our results have also shown that a plasmonic structure appears for 

certain angles of evaporation and relatively low amounts of evaporated metal. For 

other preparation conditions with a higher amount of silver, the silver layer presents a 

mirror like behavior where no SPR can be devised. We attribute this result to the 

percolation of the silver into a continuous structure where no isolated particles can be 

differentiated. We have found that the elongated particles prepared at GLAD present a 

dichroic behavior when examined with linearly polarized light that is not found when 

evaporated at normal geometry [Lee M. H., Thin. Sol. Films 1992][Yang K. Y., Appl. 

Phys. Lett. 2009][Siozios A., Nanolett. 2012]. This dichroism and its evolution upon 

laser irradiation must be a result of the change of the morphological characteristics of 

the NPs.  

5.3.4. Laser irradiation of elongated silver NPs 

In general, deposited silver NPs subjected to laser irradiation tend to agglomerate into 

bigger particles with spherical shape [Ebothé J., Mat. Chem. Phys. 2009][Cattaruzza 

E., Appl. Surf. Sci. 2011][Tawfick S., Adv. Mater. 2012], producing a red shift in the 

position of the plasmon. The observed optical behavior found when our samples were 

subjected to low laser irradiances was more complex and resulted in an enhancement 

in the optical anisotropy when using polarized light. In the “as deposited” state the NPs 

prepared at glancing angles appear to be rather flat (c.f., Figure 4c) and elongated in 

the direction to the arrival of the incoming flux of silver during evaporation. This 

morphology must be the cause of the different shape of the L-SPR and T-SPR spectra 

and the observed shift in their maxima. According to the literature [Link S., Phys. 

Chem. B 1999][Zeng J., Chem. -Eur J.], among the factors contributing to the red shift 

in the position of the plasmons, the elongated aspect ratio, the interaction with the 

substrate and the irregular shapes with relatively sharp corners in these NPs can be 

quoted. 

Laser irradiation produces a progressive change in both the T-SPR and L-SPR modes 

that must be accounted for by some modifications in the morphology of the NPs. The 

pictorial model presented in Figure 11 tries to illustrate the morphological changes of 

the silver NPs evidenced by the SEM and AFM analysis of the original and laser 

irradiated samples (c.f., Figures 7 and 8). According to it, evaporation at glancing 

angles leads to the growth of elongated particles of different sizes and shapes but with 

a preferential orientation of their longest dimension perpendicular to the evaporation 
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direction (Figure 11a). The actual averaged anisotropy of the evaporated particles 

depend on both the amount of evaporated material and the zenithal angle of 

deposition as supported by the Plasmon shifts reported in Table 1. According to the 

optical characterization results summarized in this table, when the deposited amount 

of silver increases, percolation of the NPs takes place (Figure 11b) and the SPR 

absorption becomes substituted by a continuous and intense reflection behavior. Our 

results have also shown that the rather scattered distribution of particle sizes 

characteristic of the GLAD samples (c.f. Fig. 4 b) can be modified by laser irradiation. 

At the lowest irradiance values, the initial broad L-SPR band splits into two, one of 

them shifted to longer wavelengths (c.f., Figure 9a). According to Figure 11c, these 

changes may be attributed to the preferential merging of the smallest particles along 

the largest axis of the biggest ones and to a change in the edge sharpness and likely 

the planarity of the resulting particles. The sum of all these effects would produce an 

additional increase in the optical anisotropy of the system and lead to an enhancement 

of the dichroism. 

At medium irradiance values the T-SPR and L-SPR maxima shifts continuously to 

shorter wavelengths while the optical anisotropy is progressively lost with the value of 

this parameter (c.f., Figures 9a and 9b).  In the final situation, the irradiated samples 

have lost their optical anisotropy and their spectra are characterized by a complex 

band at around 400 nm where up to three different components can be differentiated. 

This progressive change can be attributed to a progressive detachment of the particles 

from the surface and the adoption of a spherical shape (Figure 11d). A partial melting 

of the silver aggregates, in line with previous studies on ns-laser interaction with 

metallic silver [Yang K. Y., Appl. Phys. Lett. 2009][Link S., Phys. Chem. B 1999] can 

be claimed to justify these results. In agreement with Figures 7e and 7f, this final 

situation would be characterized by a wide distribution of quasi spherical particles 

sizes, thus accounting for the three features observed in the transmission spectra of 

the highly irradiated samples.  It is worth stressing that even if on average no large 

variations in particle sizes exist between the “as prepared” and the highly irradiated 

samples, large changes in the SPR maxima and  the development of dichroism 

appear in the GLAD grown and mildly laser treated NPs. The aforementioned factors 

of NP high aspect ratio, interaction with the substrate and/or the development of sharp 

corners [Rycenga M., Chem. Rev. 2011][Zeng J., Chem. -Eur J.] would be the factors 

contributing to both the initial enhancement of dichroism at low laser irradiances and 

its removal and red shift in the position of the Plasmon maxima after irradiating with 

high laser powers. 
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Figure 11. Scheme showing the evolution of particle size and shapes upon laser 

irradiation of the silver NPs prepared under GLAD configuration. a) Elongated silver 

NPs grown by GLAD. b) Percolation of the NPs to form a continuous granular film. c) 

Effect of low laser irradiances on the NP size and shapes. d) Effect of high laser 

irradiances on the NP size and shapes.  

5.4. Conclusion 

In the previous results and discussion it has been shown that silver NPs prepared by 

evaporation at glancing angles depict a strong dichroism that can be enhanced by a 

mild laser irradiation. These optical effects were attributed to the formation of flat and 

elongated NPs when the evaporation is carried out along this geometry and to the 

modification of these morphological characteristics when the prepared samples are 

treated with laser. By controlling the amount of deposited material, the evaporation 

angle and the laser irradiance, it has been possible to successfully prepare a large set 

of dichroic color patterns. The simplicity of the method, not requiring of any template or 

1D periodic roughness effect of the substrate or the use of complex lithographic 

techniques and its compatibility with any kind of substrate material are some of the 

most advantageous features of the procedure. Its use for optical encoding by moving 

the laser beam along certain predefined patterns is likely one of the applications of the 

developed technology with more potentiality. 

a) b)

c) d)
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6. 1D Photonic Sensors 

 

 

 

Abstract 

The fabrication of large area substrates for SERS of Rh6G is addressed 

by two distinct vacuum approaches. In one case, Ag NPs deposited by 

GLAD on fused silica are treated with a Nd:YAG laser and their SERS 

effect compared. In the second approach, Ag NPs of three nominal 

thicknesses are deposited on nano-TiO2 NTs of two different wall 

thickness, achieving highly hydrophobic and adequate SERS surfaces. 

The Raman enhancement factor is calculated in all the cases and 

correlated to the samples characteristics. 

An oxygen photonic sensor based on the excitonic luminescence of ZnO 

NTs is devised and tested. 
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6.1. Introduction 

6.1.1. 1D TiO2 NTs decorated with Ag NPS for SERS 

he ideal analytical technique should have at least the following characteristics 

[Skoog D. A., Saunders College Publishing 1998]: 

 

 High sensitivity and wide dynamic range: Extremely low detection limits, i.e. 

single molecule detection, should be feasible.  The technique should allow 

the determination and analysis of the whole concentration range of the 

analyte, from one molecule to 100% concentration. In order to avoid 

saturation of the detector employed, dilution is frequently done, but it slows 

down the process. 

 High accuracy and precision: no systematic bias and high reproducibility. 

 Suitable for both quantitative and qualitative analysis. 

  Noninvasiveness and Nondestructiveness: It is desirable to recover the 

sample intact, without being subjected to any chemical or physical changes.  

 Great flexibility: any substrate should be appropriate and sample preparation 

should not be necessary. 

 Lack of interferences: absolute selectivity; capacity to distinguish between 

two almost identical analytes. 

 Fast, highly automatized and low cost: high throughput, little or no personnel 

required, inexpensive overall operation, no tedious calculations, etc. 

 Compactness and Portability (optional): ideal for field analysis and not limited 

to fixed locations.  

 

Obviously, there is not still an analytical tool that satisfies all these requirements. 

However, last decades advancements in many instruments components and the 

introduction of new and more powerful methods for analysis have pushed the 

boundaries of many analytical techniques, which now comply many of the above 

mentioned characteristics.  This is especially true for Raman spectroscopy, a non-

destructive technique, with negligible or no sample preparation, unprecedented high 

specifity, high flexibility, rapid, adequate for quantitative and qualitative analysis, and 

even with portable equipment available (there are plenty of portable Raman 

spectrometers manufacturers) [Schmitt M., J. Raman Spectrosc. 2006]. 

T 
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*Stokes Raman scattering is by far the strongest of the two inelastic scattering 

processes 

 

Given its versatility and non-destructive nature, Raman spectroscopy is currently 

applied in broad range of fields [Das R. S., Vib. Spectrosc. 2011]: 

 Forensic science: applied to the analysis of explosives, drugs, fibers, body 

fluids, lipsticks, paints, etc.  

 Biology and diagnosis: useful living cells/tissue biochemical information 

without the need of markers, strains or fixatives. Evaluation of the quality of 

natural food. Mapping of the components presents in cells. Analysis of 

biomedical materials and disease diagnosis. 

 Environmental monitoring: Hazardous agents in trace amount in 

environmental samples can be safely monitored on-line.  

 Crystalline studies: Raman is sensitive to the degree of crystallinity and 

orientation in a sample. However, a quantitative measure of crystallinity 

requires comparison and calibration with other techniques. 

  Materials science: highly adequate for the characterization of 

superconductors, semiconductors, carbonaceous materials, polymers, 

archaeological materials, nanomaterials, etc. 

 Pharmaceuticals: characterization of drugs formulations, detection of 

counterfeit medicines, investigation of kinetic processes and even the ability 

to discern enantiomers of chiral substances and to determine the absolute 

configuration of small molecules (Raman optical activity spectroscopy) 

[Parchaňský V., RSC Adv. 2014][Kiefer J., Analyst 2015]. 

 

Basic principles of Raman spectroscopy 

Upon irradiation of a molecule with monochromatic radiation, three distinct 

phenomena can occur: absorption, reflection or scattering of incident light. There are 

two types of scattering, elastic and inelasric illustrated in Figure 1. In the former, the 

incident photon does not suffer any change in its frequency or energy (Rayleigh 

scattering), whereas in the latter the photon can gain vibrational energy from the 

molecule increasing its frequency (anti-stokes Raman scattering), or it can lose energy 

by interaction with the molecule resulting in a lower frequency photon (stokes Raman 

scattering)*. These shifts in frequency of the inelastically scattered light are 

characteristic of the nature of each bond (vibrations) present in the molecule, providing 

with structural and chemical information. Moreover, not all vibration modes associated 
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with a bond are observable; according to a gross selection rule a mode will be Raman 

active if it involves a change in the polarizability of the molecule [Das R. S., Vib. 

Spectrosc. 2011][Atkins P., Oxford 2010]. 

 

 

Figure 1. Mechanism of Raman scattering. 

One the key aspect of Raman spectroscopy is the high selectivity of the technique. 

Almost identical compounds usually present well differentiated features in the Raman 

spectrum that can be used as a “fingerprint” of every molecule. As a representative 

example, Figure 2 shows a series of Raman spectra of saturated fatty acids (only 

differing in the number of carbon atoms in the chain) and unsaturated fatty acids (with 

differences in the position and number of the double carbon bonds), that present 

features which allow to differentiate them [Wu H., PNAS 2011]. This aspect of the 

Raman spectroscopy is very attractive since it has potential applications as for 

instance in medicine, since it allows to detect “a priori” unknown substances in the 

blood or cells.  

Ground electronic state

Excited vibrational states

Virtual state

Excited electronic state

E=E0-hν E=E0 E=E0+hν

Stokes Raman

scattering

Rayleigh

scattering

Anti-Stokes 

Raman scattering

231



 

 

Figure 2. Raman spectra of representative saturated and unsaturated fatty acids. The 

saturated fatty acids differ in the number of carbons and the unsaturated fatty acids in 

the position and number of the carbon double bonds [Wu H., PNAS 2011].  

Raman spectroscopy usually requires high intensity lasers. The photons from the laser 

are absorbed from the molecules (even if the molecules do not possess any electronic 

transition at the laser energy), exciting the electrons to a virtual energy state. This 

transition is highly unlikely and only around 10-6 of the incident photons are scattered, 

hindering the detection of molecules present at low concentrations. This lack of 

sensitivity (conversion efficiency of the Raman effect) is one of the major drawbacks 

associated to Raman spectroscopy. The conversion efficiency of the Raman effect can 

be enhanced for what is known as “resonance conditions”, that occur when the 

incident laser energy is close to a real electronic transition of the molecule. 

The relatively low intensity of Raman signals can be enormously enhanced by several 

orders of magnitude by taking advantage of a strengthening effect present in the 

proximity of metallic nanostructrures, known as Surface Enhanced Raman Scattering 

(SERS). The interaction between light and the surface electrons of the conduction 

band of a metal nanoparticle (MNP) causes their collective oscillation with a resonant 

frequency dependent on their identity and composition, size, geometry, dielectric 

environment and particle-to-particle distance of the MNPs. This phenomenon is 

saturated fatty acids

unsaturated fatty acids
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generally known as surface plasmon resonance (SPR) and is manifested in transition 

metal nanoparticles as an absorption peak in the visible range. 

As already mentioned, only a small fraction of incident photons are inelastically 

scattered, making the technique unsuitable for trace analysis. The intensity of Raman 

scattering, and thus the intensity of Raman signals, is proportional to the scattering 

cross-section, the intensity of the radiation source and the amount of analyte. The light 

source intensity can be augmented, but it might probably entail degradation of organic 

samples. The amount of analyte is something one would like to minimize, so the most 

convenient signal enhancing mechanism must involve the cross-section (σ). In SERS, 

the Raman signal of molecules adsorbed to or between MNPs is increased due to two 

distinct enhancement mechanisms: electromagnetic (EM) and chemical. The EM 

factor arises from the coupling of the EM field of the conduction band of a MNP and 

coulombic fields of a near or adsorbed molecule, distorting its electronic structure and 

thus its polarizability (α). Due to the fact that σ is proportional to the square of α, the 

intensity suffers a dramatic increase. The chemical mechanism also affects α by 

means of more subtle chemical interactions between the NPs and the adsorbate. The 

EM mechanism is considered to have a much higher enhancing factor over the 

chemical one, of around two orders of magnitude, and it can influence molecules up to 

circa 10 nm away from the NP [Petryayeva E., Anal. Chim. Acta 2011]. 

When the distance between adjacent MNPs is much smaller than the wavelength of 

light, their transient dipoles couple and their EM fields interfere coherently, giving rise 

to the so-called hot spot regions (Fig. 3). This is the reason behind even higher 

Raman signal enhancement factors compared to single or isolated MNPs. 
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Figure 3. Evolution of SERS enhancement factor as a function of the relative position 

in hot spot [Petryayeva E., Anal. Chim. Acta 2011]. 

One of the main drawbacks for the fabrication large area SERS sensors is the 

homogeneus dispersion of those “hotspots” on the samples, since they are usually 

synthesized by electron-lithography, which requires expensive equipment and time. 

One alternative is to create nanoparticles with different shapes such as nanorods, 

cubes prisms or stars [Yang Y., Nanotechnology 2006][Rycenga M., J. Phys. Chem. 

Lett. 2010][Mulvihill M. J., J. Am. Chem. Soc. 2010], which provoke an enhancement 

of the electromagnetic field in the vicinity of the edges. For example, the dispersion of 

colloidal solutions of silver particles with different shapes on a glass slide has shown a 

very high SERS activity for detecting organic molecules [Yang Y., Nanotechnology 

2006][Rycenga M., J. Phys. Chem. Lett. 2010][Mulvihill M. J., J. Am. Chem. Soc. 

2010]. The effect of the “hotspot” regions produced by elongated silver particles 

fabricated in the previous chapter by GLAD has been tested in terms of the SERS 

efficiency to detect very diluted solutions. 

To fabricate highly efficient SERS-based sensors, an additional property needs to be 

taken under consideration: the water contact angle, in particular hydrophobicity. TiO2 

is very well known to be hydrophobic, with water contact angles that depend strongly 

on the microstructure, porosity and crystallinity. The hydrophobic surfaces allows to 

concentrate molecules a certain micro-area, which can be even reduced to nano-

areas for superhydrophobic surfaces (with WCA>175º). The idea behind is simple: for 

the sensing of a very diluted solution of a certain analyte, a very small volume drop 

needs to be placed at the proximity of the metal nanoparticles. This is easily 
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achievable by spreading the metallic nanoparticles on a surface, and drying the 

required drop on it. Although the principle is easy, the drops are spread on the 

surface, covering areas that can range from cm to nm sizes (depending on the volume 

of the initial drop). The radius (r) of the liquid- solid interface (remember it contains the 

required analyte molecules) follow the equation of the Figure 4, where R is the radius 

of the spherical drop prior to the deposition on the surface and θ is the water contact 

angle [De Angelis F., Nat. Photonics 2011]. In the examples of the figure, 

superhydrophilic (θ=0.4º) and superhydrophobic (θ=179.8º), for a small volume drop of 

5 μL (Radius, R=1.06 mm), the liquid-solid area would change from 295 to 4.3x10-5 

mm2, respectively.  

 

Figure 4. Liquid-solid relative radius with respect to the spherical water drop prior to 

deposition on the surface (black line) and area covered by a 5μL water drop (red line).   

This effect for superhydrophobic surfaces (that differs eight orders of magnitude which 

respect to superhydrophilic) brings the area covered by the liquid to the sub-squared 

microns range, and therefore enhances significantly the surface concentration of the 

analyte. This concentration effect has been recently used to enhance the detection 

limit of SERS based sensors to the femto- and atto- molar range, extremely close to 

single molecule detection [De Angelis F., Nat. Photonics 2011]. Although these 

authors reached the ultimate detection limit (single-molecule), the methodology to 

fabricate these sensors is based in electronic lithographic techniques, which are very 
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expensive and do not allow the fabrication of big areas. Some of the 

superhydrophobic-SERS-based sensors are presented in Figure 5, where it can be 

observed the complexity of the nanopilars, whith metallic nanoantennas with conical 

shapes and concentric resonators [De Angelis F., Nat. Photonics 2011]. The state of 

the art in SERS still lacks the production of cheap and big areas sensors, to detect 

ultralow concentrations of unknown compounds. 

 

Figure 5. Examples of nanopillars and silver nanoantenas fabricated by electron beam 

lithography for hydrophobic SERS applications [De Angelis F., Nat. Photonics 2011]. 

In this chapter we have followed two strategies for the fabrication of SERS-based 

sensors. Both sensors, although based in the SERS amplification provoked by silver 

nanoparticles, intended to take advantage of different film properties: 

1. In an attempt to increase the amount of “hotspot” regions in the sample, 

elongated silver nanoparticles were deposited by the Glancing Angle 

Deposition (GLAD) technique. The idea was to enhance the Raman signal at 

the proximity of the elongated particles to detect low concentration of 

molecules. 

2. The second strategy was based on the hydrophobicity of silver nanoparticles 

deposited on top of TiO2 NTs. The hydrophobicity of the samples linked to the 

SERS effect inherent to metallic nanoparticles made possible their use as 

ultra-sensitive sensors for detection of low concentrated solutions.  
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Due to the limitation of the two laser sources available in the laboratory, the molecule 

Rhodamine 6G was chosen as reference analyte, since it possesses an absorption 

band at 530 nm, very close to the 532 laser wavelength accessible in the laboratory. 

This allowed us to work under resonance Raman conditions, and therefore 

augmenting the SERS effect of the sensors. All of these effects (SERS, hydrophobicity 

and resonance) were joined together to increase the sensitivity of the sensors to the 

maximum. 

The ultimate detection limit achievable by SERS is one molecule and outstanding 

achievement that has already been realized in 1997 [Lee E. C., Annu. Rev. Phys. 

Chem. 2012]. However, it must be emphasized that the devices used to achieved such 

detection limits tend to be quite complex and expensive to fabricate, thus making them 

completely inadequate for the development of a SERS array. Here, the intention was 

not to attain extremely low detection limits, but rather to fabricate larger area SERS 

devices suitable for the production of arrays. 

6.1.2. ZnO Nanotubes-Based Photonic Sensor 

ZnO thin films and nanostructures have been widely applied as gas and volatile 

organic compounds sensors through both conductometric and optical approaches 

[Zhang Y., J.  Phys.  Chem.  C 2009][Cho S., Sens. Actuat. B 2012][Sanchez-Valencia 

J. R., J. Phys. Chem. C 2014].  In a recent article of the Nanotechnology on Surfaces 

research group [Sanchez-Valencia J. R., J. Phys. Chem. C 2014], the fabrication of a 

photonic oxygen sensor based on the excitonic luminescence of ZnO polycrystalline 

films prepared by PECVD was presented. The material exhibited a high sensibility to 

oxygen present in the environment or dissolved in water. Herein, the same concepts 

have been applied to the realization of a reversible oxygen photonic sensor based on 

the UV emission quenching of the ZnO NTs.  

6.2. Objectives 

 Fabricate high-density hydrophobic 1D TiO2 nanotubes decorated with Ag NPs 

evaporated in two different manners: thermal evaporation and e-beam 

evaporation at glancing angles, both in vacuum. 

 Characterize these nanostructures by electron microscopy techniques: SEM, 

HAADF-STEM y HRTEM. 
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 Test the SERS capabilities of these samples for different thicknesses of NT walls 

and amount of deposited Ag. In the case of GLAD Ag, study the effect of laser 

treatment for two irradiances on SERS effect. 

 Produce samples large enough for the analysis of an analyte array. 

6.3. Methodology 

6.3.1. 1D TiO2 NTs decorated with Ag NPS for SERS  

a) Substrates preparation 

Samples were fabricated on n-type Si(100) from Topsil semiconductor materials. The 

substrates were cutted in different sizes, ranging from 2.5x2.5 cm to 5x2.5 cm, rinsed 

in acetone and dried with a flux of dry nitrogen. Fused silica from Sico Technology 

GmbH was cleaned in the same manner and employed as reference.  

b) Samples fabrication 

An initial layer of approximately 200 nm of mesoporous TiO2 was deposited by PECVD 

to provide the substrates with certain roughness. The deposition conditions were: 

plasma source operating at 650 W, substrates at room temperature, total pressure in 

the chamber was around 8.6x10-3 mbar, and oxygen was employed as reactive gas. 

Pc was purchased from Fluka and used as received. Pc NWs were grown by OPVD 

under the following conditions: Ar pressure of 0.02 mbar, substrate temperature of 180 

ºC and growth rate of 0.4 Å/s (measured by QCM). The final thickness was set to 1.2 

kÅ in QCM, which corresponds roughly to 2-3 μm long NWs.  

Nano-TiO2 was deposited with two different thicknesses, 200 nm and 400 nm. The 

deposition conditions were as follow: plasma source operating at 650 W, Ar and O2 

were used in a relation of 9:1, while keeping the total pressure close to 6x10-3 mbar. 

Again, the deposition was carried out at room temperature. The samples were later 

heated in air at a temperature of 350 ºC to fully with a ramp of 2ºC/min to evacuate the 

Pc resulting in highly dispersive hollow nanostructures. A higher annealing to 400ºC 

was also performed. 

Silver NPs were deposited by two different techniques: 

I) PVD under vacuum at a base pressure of 10-5 mbar. Three different nominal 

thickness were tested, 1, 2 and 3 nm. 
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II) GLAD, see Chapter 5 (Methodology section). The silver nominal thickness was 1 

nm and the evaporation angles used were: 65º and 85º.  

c) Analyte rhodamine 6G solutions 

Rhodamine 6G was purchased from Sigma-Aldrich and used as received. The 

solutions were prepared with ultrapure Milli-Q water immediately before use. In order 

to prepare all solutions, only successive dissolutions of 1:10 or 1:100 were made.  

d) Characterization 

Structural characterization. SEM micrographs were acquired in a Hitachi S4800 

working at 2 kV. The samples were dispersed onto Holey carbon films on Cu or Ni 

grids from Agar scientific for TEM characterization. HAADF STEM was carried out with 

a FEI Tecnai Orisis TEM/STEM 80-200 and a FEI Tecnai F30 S-Twin STEM 

microscopes operating at 200 kV . 

Micro-Raman spectroscopy. All measurements were carried out in LabRAM Horiba 

Jobin Yvon spectrometer equipped with a confocal microscope with a 100X objective 

and a green laser of 532 nm wavelength. The measurement conditions are mentioned 

in the results section for each case. 

6.3.2. 1D ZnO sensor 

a) Samples fabrication  

A thin layer of columnar SiO2 (300 nm) was deposited by glancing angle deposition 

(GLAD) as described elsewhere [Sanchez-Valencia J. R., Langmuir 2009], which has 

no fluorescence under the UV light excitation employed. ONWs of MePTCDI were 

then grown by PVD, which were ultimately covered by a 200 nm ZnO shell as 

described in chapter 2 and emptied after heating in vacuum at 350 ºC for 3 hours. 

Reference thin film sensors were also fabricated.   

b) Characterization  

SEM micrographs were acquired in a Hitachi S4800 working at 2 kV. UV-Vis analysis 

of the samples was done in a Cary 100 spectrometer from Varian. Fluorescence 

spectra were recorded in a Jobin Yvon Fluorolog-3 spectrofluorometer using an 

excitation wavelength of 280 nm and scanning the emission spectra between 350 and 

750 nm with a 2 nm monocromator step. 
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6.4. Results and discussion 

6.4.1. GLAD of silver for the fabrication of SERS sensors 

The elongated silver nanoparticles illuminated with laser at different powers fabricated 

by GLAD in the previous chapter were tested here in terms of the Raman 

enhancement to detect the organic molecule Rh6G in water solutions. 

The original silver deposited at 65º and 85º with a nominal thickness of 10 nm present 

slightly different water contact angles of 105 and 97º as it is shown in Figure 6. The 

laser illumination at low powers of the 65º deposited GLAD sample increases the 

WCA, reaching a maximum of 115º at 188 kWcm-2. By contrast, the illumination at 550 

kWcm-2 drastically decreases the WCA to 94º. The GLAD at 85º presents an initially 

lower WCA, which decreases slowly with the laser power, reaching a minimum of 88º 

for the illumination at 942 kWcm-2. As it was detailed in the Figure 4 of the 

Introduction, the WCA determines the area of the liquid-solid area and therefore it can 

alter significantly the surface concentration of the analyte sensed. By contrast, the 

relatively low changes in the WCA would not change dramatically this liquid-solid area, 

which is indicated in the Figure 6 for some representative laser powers.  

 

Figure 6. Evolution of the Water Contact Angle as a function of the Laser Illumination 

Power. A picture of a water drop of 1uL deposited on top of some representative 

samples are included together with their corresponding liquid-solid area. 
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For the evaluation of the SERS effect, drops of 5 μL of water solutions of Rhodamine 

6G (Rh6G) at 10-6, 10-8 and 10-10 M were utilized. The evaporation of the drops was 

performed under ambient conditions and was completed in around 30-35 minutes. The 

GLAD samples deposited at 65º of evaporation angle present a relatively high intensity 

of the SERS signal, which allows the detection of concentrations as low as 10-8 M. It 

needs to be remarked that the bands in the spectrum correspond to the Rh6G Raman 

bands, easily recognizable by the intense narrow bands at 612, 1306, 1362 and 1506 

cm-1. The intensity of the Rh6G signal decreases for laser illuminated samples, making 

impossible to detect concentrations of 10-8 M samples for powers higher than 565 

kWcm-2. This behavior is reasonable at high powers, since the model proposed in the 

previous chapter assumes that the elongated nanoparticles get more rounded. By 

contrast, for low laser powers the dichroism reported in the previous chapter was 

enhanced, indicating that the aspect ratio of the nanoparticles increases. But this 

effect occurs at the expense of reducing the number of them by fusion of close 

particles. The results of Figure 7 indicate that the SERS signal of these samples 

cannot be enhanced by laser illumination, obtaining a monotonous decrease of the 

sensitivity of the sensor. 

By contrary, the GLAD samples at 85º, which initially present a very poor sensitivity, 

present an intensification of the SERS signal for low laser power illumination (see 

Figure 7 bottom). It can be easily observed in the Figure 7 that the illumination at 188 

and 424 kWcm-2 enhances significantly the signal, although not enough to allow the 

detection of 10-8 M. In addition, the illumination at higher power (942 kWcm-2), 

decreases the SERS signal, in concordance with the model proposed in the previous 

chapter.  
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Figure 7. Raman spectra of 5uL drop of a solution Rh6G/water at the indicated 

concentrations dried at the surface of silver deposited by GLAD at 65º (top) and 85º 

(bottom) treated with different laser powers. 
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The results support that the increase/decrease in the aspect ratio of the nanoparticles 

can be used to tune the sensitivity of the SERS based sensor. To quantify this 

behavior the Enhancement Factor (EF) is often used, that is defined as: 

   (Equation 1) 

Where ISERS and IR are the Raman intensities measured on the SERS and non-SERS 

samples (fused silica slide), respectively, divided by the number of molecules probed 

by the Raman microscope in every case (NSERS and NR). The Enhancement Factors 

are calculated assuming that the molecules are homogeneously distributed over the 

liquid-solid area (discussed in the introduction), which depend on the WCA shown in 

Figure 6. Figure 8 shows the enhancement factors calculated from the Raman signal 

for the silver elongated particles deposited by GLAD as well as the laser treated 

samples at different laser powers. The initial Enhancement Factor for GLAD at 65º 

depicts a relatively high value of 5350. This EF decreases drastically for laser 

illuminated samples, reaching a minimum of EF=800 for the sample treated with 565 

kWcm-2. By contrast, the EF for GLAD silver at 85º presents a very low value of 90, 

which increases for low laser powers, reaching a maximum of 780 for 424 kWcm-2. For 

higher illumination powers, the EF decreases to a minimum of 165 for 942 kWcm-2. 

The low values of EF observed for the original GLAD 85 in comparison with the GLAD 

65 can be understood taking into consideration the different silver amount for both 

samples. The evaporation rate in GLAD is proportional to the cosine of the deposition 

angle, meaning that for a 10 nm of nominal thickness (measured at 0º), the silver 

deposited at 65 and 85 degrees is 4.2 and 0.9 nm, respectively. To take into 

consideration this effect, the Figure 8 also shows the Enhancement Factors for 1 and 

2 nm silver thin films deposited at a normal configuration. These two samples present 

a different EF of 1120 and 270 for 2 and 1 nm silver thickness, respectively.  
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Figure 8. SERS Enhancement factors calculated for the silver deposited by GLAD at 

65º (black) and 85º (red) treated with different laser powers. For comparison, a 2 nm 

and 1 nm silver film deposited under a perpendicular angle (0º). 

Although the enhancement factors obtained by means of Eq.1 are not very high 

compared to NPs deposited at normal geometry (dashed lines in Figure 8), the results 

indicate that the geometrical modification of silver elongated particles by laser 

irradiation can be used to tune the Surface Enhanced Raman signal.  

6.4.2. TiO2 NTs / Ag NPs for the fabrication of SERS sensors 

The second type of SERS-based sensor devices fabricated are based in TiO2 

Nanotubes. The fabrication procedure is depicted in Figure 9 and comprises several 

steps which can be divided in 4 stages: 

I) Formation of a thin layer of mesoporous TiO2 by PECVD which provides 

the necessary roughness for the growth of PC NWs by OPVD. 

II) Growth of the nano-TiO2 shell by PECVD and empty of the 

nanostructures by heating in air (not shown). 

III) Deposition of Ag NPs by PVD in high vacuum. 

IV) Deposition of the analyte solution drops, dry in air and sensing with 

Raman spectroscopy. 
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Figure 9. Fabrication of a SERS-based sensor device: I) formation of the NWs, II) 

growth of the TiO2 shell, III) deposition of Ag NPs, and IV) analyte deposition and 

measurement. 

 

The PECVD of nano-TiO2 shells was accomplished by employing a deposition 

atmosphere highly rich in Ar and with a minority of O2 [Borrás A., J. Electrochem. Soc. 

2007]. The surface of the prepared shells is relatively smooth with no mesopores, 

presenting good characteristics to act as a 1D substrate for Ag NPs. In addition, the 

amorphous TiO2 (as well as silver nanoparticles) has no Raman activity and therefore 

it will not produce any interference with the analyte signal. 
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Furthermore, as seen in Figure 6 a)-b), with only 200 nm of TiO2 most of the tips are 

pointing upwards, although the rest of the NW might be oriented randomly. With 400 

nm, Figure 10 c)-d), the orientation of the tips and the NWs body is much more 

evident. Moreover, the high density of NTs that has been achieved with this process is 

demonstrated in Figure 10 e), where a relatively large area was scanned. The tips of 

the 400 nm NTs present tiny pores as a consequence of postheating (Fig. 10 d); the 

internal NW pressure generated as a consequence of Pc sublimation is released 

through that pores. 
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Figure 10. SEM images of nano-TiO2 shell of 200 nm (a) and 400 nm (c). Magnified 

view of 200 nm (b) and 400 nm (d) nano-TiO2 NWs. Panel (e) is a SEM cross section 

with a tilt angle of 15º of the sample with a 400 nm shell. 
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Figure 11 shows the homogeneous microstructure and smooth surface formed under 

the TiO2-nanoporous conditions (Fig. 11 a). In this case, the shell presents a 

continuous cross section (Fig. 11 c) with non-appreciable pores (it has not been 

annealed, so the organic material is still inside). In previous articles it has been 

demonstrated that these experimental conditions lead to the formation of microporous 

thin films with a relative high volume of pores. Nano-TiO2 shells are amorphous since 

the fabrication process has been carried out at room temperature. 

 

Figure 11. Nano-TiO2 Nanotubes. HAADF-STEM (a-c) characterization of nanotubes 

formed by continuous nanoporous TiO2 walls. Panel a) presents the smooth surface 

characteristic of this TiO2 deposited by PECVD at RT under argon/oxygen plasma. 

The wall is a continuous layer showing no visible pores by HAADF-STEM. Snapshots 

of the HAADF-STEM 3D reconstruction show the homogeneous thickness of the TiO2 

wall (b) and the squared cross section of the core of the nanotube (c). 

By controlling the deposition rate and time, Ag NPs of different size distribution were 

obtained by PVD in high vacuum. The SEM picture of Figure 12 shows the Ag NPs 

obtained by deposition of 2 nm of Ag (nominal) on Si (100). The nanoparticles are 

rounded with an average NP area of 78.4 nm2 calculated with ImageJ, resulting in a 

surface plasmon resonance absorption situated at 430 nm. 
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Figure 12. SEM image of 2 nm (nominal) Ag NPS on Si (left) and its corresponding 

UV-Vis spectrum on fused silica (right). 

Nano-TiO2 NWs were then decorated with Ag following the same methodology, 

obtaining the hierarchical nanostructures observed in Figure 13 for a 400 nm NW and 

1, 2 and 3 nm Ag NPs. The sample with 1 nm nominal thickness presents a very few 

amount of silver nanoparticles at the tip of the NTs while the sample with 3 nm Ag 

possesses very big nanoparticles. By contrast, it can be noticed a quite uniform 

distribution of Ag NPs all over the TiO2 NWs for the sample with 2 nm of nominal Ag 

thickness For a very efficient SERS-based sensor, a compromise must be reached 

between the surface density of NPs and their size. There is an optimal diameter value 

for Ag NPs situated around 30-50 nm where the enhancement factor is maximum and 

tens of nanometers in size difference lead to orders of magnitude of difference in 

Raman intensities [Stamplecoskie K. G., J. Phys. Chem. C 2011]. Comparing the SEM 

pictures with the literature, the sample with 2 nm of silver thickness has a very high 

potential for SERS. 
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Figure 13. SEM images of 1 (a,b), 2 (c, d) and 3 nm (e,f) nominal Ag NPS on 400 nm 

nano-TiO2 NTs at two different magnifications.  

The crystallinity of the Ag NPs may be appreciated in the HRTEM micrograph of Fig. 

10 a) and even with atomic-resolution detail when zooming in one NP just as in Fig. 10 

b). The Ag NP digital diffractogram pattern (DDP) corresponds to the [011] zone axis 

of the cubic phase of Ag.  
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Figure 14. High-Resolution TEM micrograph of 130 nm (nominal) Ag NPS on 400 nm 

nano-TiO2 NWs (a) and a magnified view of one Ag NP (b). The DDP of the selected 

NP is presented in the inset. 
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As it has been mentioned in the introduction, the water contact angle is crucial for an 

improved sensitivity of the sensor since the hydrophobic samples present a reduced 

liquid-solid contact area that concentrates the analyte molecules as the water drop is 

drying. The water contact angle of the studied samples depends on the thickness of 

silver deposited. Figure 15 presents a series of pictures showing the evaporation of a 

5uL drop of water on top of TiO2 NTs with different silver thickness of 1 (left), 2 

(middle) and 3 nm (right). Figure 16 shows the fitted WCA at different times of the 

evaporation process for the different samples investigated, where it can be 

appreciated that the WCA of 1nm Ag thickness is lower than the 2 and 3 nm. The 

Initial WCA also affects to the evaporation time since the higher the initial WCA, the 

lower evaporation time for the three samples investigated. One important 

characteristic of the evaporation process is that the liquid-solid area is not significantly 

altered during the evaporation process. To visualize this effect, higher magnification 

pictures have been taken at different evaporation times for TiO2 NT with 1 nm Ag 

sample (see Fig. 15 right). The initial contact diameter (top) is approximately the same 

than the one taken at 35 min (bottom). This measured diameter is around 1.87 mm, 

meaning a solid-liquid contact area of 2.75 mm2, very close to the theoretical one 

calculated in the Figure 4, 2.6 mm2 for an initial WCA of 125º (see Figure 16). This is a 

very important aspect of the evaporation process, since the assumed area where the 

analyte is distributed is the theoretically calculated from the initial WCA and therefore 

the subsequent calculations of the Enhancement Factors will be valid.  
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Figure 15. Left) Pictures of the evaporation process of a 5uL water drop deposited on 

top of TiO2 NTs samples with different thickness of silver at different times. Right) a 

higher magnification image showing the liquid-solid diameter contact. 
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Figure 16. Water Contact Angle evolution of the evaporation process for a 5uL water 

drop deposited on TiO2 NTs samples with 1, 2 and 3 nm thickness of silver. 

One of the most important aspects of the sensors proposed in this chapter is that they 

can be fabricated over big areas with a very high homogeneity. Figure 17 shows some 

pictures of samples deposited on 2x3 cm silicon substrates, although samples bigger 

than 10x10 cm can be fabricated in the laboratory. The a-c) pictures of the figure show 

how an array of drops can be deposited on the samples and after their evaporation 

(d,e) can be easily located with the Raman microscope. The Figure 17 e) shows an 

enhanced contrast area indicated by a red square in d), where it can be observed the 

three drops evaporated area. The fact that the dried drops can be observed to the 

naked eye makes the subsequent Raman measurement much easier. 
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Figure 17. a-c) Pictures of the SERS samples with 5uL drops of Rh6G/water at 

different concentrations. d) Picture of a TiO2 NT with 2nm Ag after the drop 

evaporation. e) Same picture than d) with enhanced contrast to make visible the 

evaporated drops. 

In order to optimize the Raman signal, a preliminary study was performed to optimize 

several aspects of the sensor. First the annealing temperature used for the evacuation 

of the phthalocyanine: the sublimation temperature of the Pc molecules is very close 

to the crystallization temperature of the TiO2. The crystallization to anatase (it needs to 

be reminded that is performed prior to the silver deposition), that in principle is not 

unfavorable for SERS, showed a very poor Raman signal at low Rh6G concentrations. 

This effect can be observed Figure 18 (green curve for the sample annealed to 

400ºC), where the measurement of a 5 μL droplet of Rh6G/water at 10-10 M does not 

show any band apart from the three anatase peaks at 399, 520 and 643 cm-1.The 

second aspect studied for the SERS sensor optimization was the TiO2 shell, where 

two different thickness of 200 and 400 nm were fabricated. It can be easily recognized 

that the thicker shell of 400 nm presented an improved sensitivity. 
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Figure 18. Raman spectra of a 5 µL drop of a solution Rh6G/water at 10-10 M dried at 

the surface of TiO2 NT with 2 nm of silver nominal thickness. The difference between 

the samples are the TiO2 shell thickness (black and green curve 400 nm, red curve 

200 nm ) and the temperature used in annealing step to remove the Pc (black and red 

curve 350ºC, green curve 400ºC). 

Once that the effect of the TiO2 Nanotubes has been studied, the next step is the 

optimization of the silver thickness. For the evaluation of the SERS effect, drops of 

5uL of water solutions of Rhodamine 6G (Rh6G) at 10-6, 10-8, 10-10 and 10-12 M were 

utilized. As it is shown in Figure 19, the amount of silver deposited on the TiO2 NTs 

completely modifies the SERS spectra. The sample with 1 nm of nominal thickness 

presents a very poor Raman signal where the minimum concentration detected was 

10-8 M.  The same behavior can be observed for the sample with 3 nm of silver 

thickness although with a higher intensity than the case of 1 nm. The Raman spectrum 

measured for the case of a dried drop of 10-6 M has been also added for comparison. 

By contrast, the sample with 2 nm of thickness presented a very high SERS signal, 

where it was possible to detect down to 10-12 M. Taking into account the volume of the 

drop (5 μL), only 3 millions of molecules have been deposited over an area of ca. 1.3 

mm2 (liquid-solid area of Figure 4 for a WCA of 143º). 
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Figure 19. a-c) Raman spectra of 5 µL drops of Rh6G/water solutions at the indicated 

concentrations dried at the surface of TiO2 NT with 1 (a), 2 (b) and 3 nm(c) of silver 

thickness. In b) also the Raman spectrum of 2 nm silver deposited on an equivalent 

TiO2 thin film was added for comparison. d) SERS Enhancement factors calculated for 

the three silver thicknesses investigated and the TiO1 thin film reference with 2 nm Ag. 

 

The calculation of the Enhancement Factor was performed in the same way than for 

silver deposited by GLAD. Figure 19 d) shows the enhancement factors calculated for 

the 1, 2 and 3 nm silver thicknesses. It can be observed that the 1nm Ag present a low 

Enhancement Factor (EF=5000), in the same order of magnitude than the 2 nm of 

silver deposited on an equivalent TiO2 thin film (EF=2800). The deposition of 2 nm of 

silver thickness over the TiO2 NT increases drastically the Enhancement Factor, 

reaching a very high value of 2x107. This EF is consistent with the sensitivity limit of 

10-12 M shown in Figure 19 b). By contrast, the deposition of higher silver amount (3 
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nm), decreases the EF to 4x105. The very high sensitivity obtained together with the 

compatibility for big area deposition, open a new and very promising way for the 

utilization of TiO2 NTs decorated with silver NP for future SERS based nanosensoric 

applications. 

 

6.4.3. 1D ZnO Nanotubes-Based Photonic Sensor 

Figure 20 shows the photoluminescence spectra of a reference nanocolumnar 

polycrystalline ZnO film and ZnO NTs sample. These two samples were deposited 

simultaneously on fused silica substrates, for the sake of comparison. The 

polycrystalline ZnO emission spectrum is dominated by a sharp and intense exciton 

ultraviolet (UV) emission at ~380 nm and a broad and low intense visible emission in 

the region 450-700 nm. The ZnO visible emission is attributed to defects as zinc 

vacancies (blue emission) and oxygen vacancies (green emission) [Sanchez-Valencia 

J. R., J. Phys. Chem. C 2014]. In the present case, the level of such defects is low, as 

addressed by the low intensity of the visible emission what has been attributed to a 

suppression of band-gap electronic defects by hydrogen species from the plasma 

during the synthesis.  

The photoluminescence spectra of the ZnO NTs samples show a defect related visible 

emission that is even of lower intensity than the reference film. This proves that the 

deposition on the 1D nanostructured substrates do not increase the number of defects 

in the resulting conformal oxide network. However, the PL spectra of both samples are 

not equivalent. Thus, while the PL band of the reference peak is sharper and centered 

at 378 nm, being originated by recombination of free excitons, the emission of ZnO 

nanotubes is broader and red-shifted, which indicates the domain of lower energy 

phonon replicas components [Romero-Gómez P., J. Phys. Chem. C 2010]. These 

results are congruent with the higher stress, smaller crystallite size and lower texture 

development of the ZnO NTs sample with respect to the reference sample as 

discussed in Chapter 1. These factors likely explain the observed shift and overall 

shape of the UV PL of the ZnO NTs. Moreover, a certain additional contribution to the 

observed red-shift of the UV PL band due to the anisotropic character of the oriented 

ZnO NTs emission cannot be discarded [Gao M., J. Phys. Chem. C 2010]. The 

excitonic emission of the ZnO NTs is a function of the oxygen concentration in the 

environment.  
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Figure 20. Room temperature luminescence emission spectrum of the ZnO NTs 

deposited on fused silica compared with the poly-crystalline thin film reference 

deposited in the same experimental conditions. The excitation wavelength was 280 

nm. 

Figure 21 plots the luminescent emission intensity for thin film and NTs at 384 nm 

during several cycles of vacuum and oxygen up to atmospheric pressure. The 

luminescence intensity decreases and increase reversibly in both cases with the 

partial oxygen pressure. This behavior has been recently reported in thin films and 

was found to be associated to a high surface to bulk ratio. Furthermore, the 

nanostructuration of this material in the form of NTs enhances its sensing properties, 

as it has been just demonstrated with the fabrication of a photonic sensor, allowing its 

implementation in multifunctional devices.  
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Figure 21. Evolution of the ZnO NTs exciton photoluminescence intensity when 

successively exposed to cycles of vacuum and oxygen at atmospheric pressure. The 

experiment in each cycle was stopped when a 70% of the intensity change was 

measured before reaching the steady state. The excitation wavelength was 280 nm. 

6.5. Conclusions 

Two approaches have been followed for the fabrication of SERS based sensors. 

The approach based on the GLAD of silver showed relatively small enhancement 

factors and consequently low sensitivity when comparing to silver nanoparticles 

deposited at normal geometry. By contrast, the illumination with a commercial 

nanosecond pulsed laser allowed to tune the SERS signal. In this way, the most 

elongated nanoparticles (deposited at the glancing angle of 85º) presented an 

increase of the EF for low illumination powers. This behavior is consistent with the 

model proposed in the previous chapter, where the aspect ratio of the NPs is 

increased and therefore enhancing the “hotspot” effect. By contrast, the irradiation with 

high powers decreases the EF, also consistent with the model where the elongated 

particles get more rounded.  

On the other hand, the second approach based in a multistep process to obtain TiO2 

NTs decorated with silver NPs showed very high enhancement factors. The TiO2 NTS 

with 2 nm nominal thickness of silver presented a very high EF of 2x107. The very high 

sensitivity obtained together with the compatibility for big area deposition, open a new 

and very promising way for future SERS based nanosensoric applications. 
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Even though no quantitative studies have been undertaken, the oxygen sensor based 

on ZnO NTs has proven equal or improved capabilities as its thin film counterpart. 
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7. Enhanced performance of 

phthalocyanine nanowires 

conductometric sensors by heat 

and light activation 

 

Abstract 

Nanotrees of metal-free phthalocyanine (H2Pc) are generated directly on 

commercial electrodes with the aim of fabricating conductometric oxygen 

gas sensors. The effect of temperature and light on the device 

performance is evaluated. The behavior of these 1D nanosensors is 

compared with the classical thin film one so as to study the role of 

surface are.  
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*Selectivity: it refers to the extent to which a method can determine (a) 
particular analyte(s) in a complex mixture without the interference from 
other components in the mixture. 
Specificity: it is defined as the ultimate selectivity, i.e. 100% selectivity (no 
interferences). [Vessman J., Pure Appl. Chem. 2001]  
 

7.1. Introduction 

he necessity for low-cost, low-power, flexible and reliable sensors which could 

potentially be integrated into modern electronic gadgets and wearables has 

drawn considerable attention to the field of organic semiconductors. Moreover, 

due to the strong dependence of their properties on ambient conditions, they are 

appropriate for the fabrication of a wide range of sensors such as temperature, 

radiation, pressure, radiation, chemical, etc. [Belghachi A., J. Phys. D: Appl. Phys. 

1988][Moiz S. A., Jpn. J. Appl. Phys. 2005][Manunza I., Appl. Phys. Lett. 

2006][Roberts M. E., PNAS 2008][Agostinelli T., J. Appl. Physiscs 2009][Roberts M. 

E., Org. Electron. 2009].They can be used either to monitor vital internal body 

parameters related to healthcare [Lochner C. M., Nat. Commun. 2014][Zang Y., Nat. 

Commun. 2015] or external ones such as environmental agents (both hazardous and 

vital ones) [Liao F., SENSOR. ACTUAT. B CHEM. 2005][Das A.,SENSOR. ACTUAT. 

B CHEM. 2009][Knopfmacher O., Nat. Commun. 2014], opening the possibility for a 

truly full sensing ecosystem. Among the different types of possible sensors, organic 

gas sensors pose as an attractive near future and more realistic possibility towards 

their implementation in commercial devices. 

Some gas sensor requirements are [Sberveglieri G., Springer 1992]: 

(1) Reversible adsorption of gas species. 

(2) High sensitivity while maintaining weak interactions with the gas species 

(ease of reversibility, 1). 

(3) High selectivity, ideally specificity* for a given gaseous agent. 

(4) Short response and recovery time. 

(5) Stability of the sensing material. 

(6) Inexpensive. If aimed to portable devices, then it should have a low power 

consumption and a relatively small size.   

Some of the major drawbacks associated with the use of organic semiconductor 

molecules are their chemical degradation (stability) against some gaseous agents and 

long-term reliability issues [Potje-Kamloth K., Crit. Rev. Anal. Chem. 2002][][]. In 

contrast to their inorganic counterparts, organic molecules offer an enormous degree 

of structural flexibility and diversity through molecular engineering, which along with 

T 
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improved device fabrication, offers the chance to overcome these problems. 

Moreover, they can exhibit considerably higher sensitivity and selectivity*, lower 

operation temperature (even room temperature operation), shorter response and 

recovery time than commonly used metal oxides [Miasik J. J., J. Chem. Soc., Faraday 

Trans. (1) 1986][Nalwa H. S., Academic Press 2001][Tanese M. C., Nuovo Cimento 

Soc. Ital. Fis., C 2008][Marinelli F., SENSOR. ACTUAT. B CHEM. 2009]. 

Due to their good chemical and thermal stability, unpolimerized phthalocyanines have 

been one of the most studied families of organic semiconductors in the field of gas 

sensing. They can be readily vacuum deposited on almost any substrate by thermal 

evaporation to produce high-quality amorphous or crystalline films [Sadaoka Y., J. 

Mater. Sci. 1990], which facilitates even further the fabrication of sensing devices. The 

conductance of films made up of phthalocyanines (the great majority are p-type 

semiconductors) at room temperature and exposed to air is quite low, but when 

temperatures are raised above 100 ºC, the conductivity tends to increase significantly 

[Miasik J. J., J. Chem. Soc., Faraday Trans. (1) 1986][Bohrer F. I, J. Am. Chem. Soc. 

2007].  

Upon exposure of metallophthalocyanines (MPcs) to electrophicilic gases such as 

NOx, Cl2, F2, BF3, O2, etc. an increase in the conductivity is produced due to the 

formation of charge-transfer complexes, which leads to the injection of holes into the 

film and a consequent increase in conductivity. On the other hand, reducing gases, 

such as NH3, tend to decrease the conductivity owing to an speculated electron 

donation from the reducing gas to trap charge carriers [Miasik J. J., J. Chem. Soc., 

Faraday Trans. (1) 1986]. The chemisorption of oxygen by a metallophthalocyanine 

follows the formation of a charge-transfer complex as schematized in Figure 1, where 

a superoxide adduct of MPc is also depicted [Zwart J., J. Mol. Catal. 1979][Yahiro H., 

Micropor. Mesopor. Mat. 2005]. 
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*Even though a porphyrin has been used for that study, they are structurally 
related to phthalocyanines. 

 

Figure 1. Scheme of the adsorption of oxygen to the metal of a generic 

metallophthalocyanine. Adapted from [Bohrer F. I, J. Am. Chem. Soc. 2007]. 

In the case of metal-free phthalocyanine (H2Pc), it seems that electrophilic species, 

including oxygen, are adsorbed to the compound by weak interactions with the four 

meso-nitrogens of H2Pc or by hydrogen bonds to the two inner hydrogens, leading to a 

slight conductivity increase, although not as pronounced as in MPc [Wright J. D., Prog. 

Surf. Sci. 1989][Gould R. D., Coord. Chem. Rev. 1996][Kudo K., Jpn. J. Appl. Phys. 

1997][Guillaud G., Coord. Chem. Rev. 1998]. 

The adsorption of analytes to phthalocyanines is considered to occur exclusively at the 

very surface of the films due to steric hindrance related to the tightness of 

phthalocyanines crystal structure [Bohrer F. I, J. Am. Chem. Soc. 2007][Contour J. P., 

J. Catal. 1973]. In this sense, phthalocyanine nanowires (NWs) should pose a unique 

opportunity to enhance the sensing properties of these compounds owing to the larger 

surface area exposed to the analyte compared to the usual thin film approach. 

Interestingly, almost all studies devoted to phthalocyanines as gas sensors are 

restricted to thin films [Liu C. J., SENSOR. ACTUAT. B CHEM. 1998][Bohrer F. I, J. 

Am. Chem. Soc. 2007][Yang R. D., J. Chem. Phys. C 2009][Paoletti A. M., sensors 

2009]. As a previous step to the fabrication of a gas sensor based on phthalocyanine 

ONWs, it is worth quoting the work from reference [Wang F., J. Mater. Chem. C 2013]. 

In that work, zinc octaethylporphyrin (ZnOEP)* NWs were grown, transferred to 

prepatterned electrodes and their photoresponse evaluated. 
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In this work, the direct growth of H2Pc NWs on commercial electrodes at relatively low 

temperature has been addressed, avoiding any transference process. In order to 

increase the organic semiconductor specific area even further, nanotrees were 

generated as previously discussed in Chapter 4. The devices oxygen-sensing 

capabilities were examined at room temperature, 50 ºC, 100 ºC and under the 

presence of UV irradiation, red and green light, by conductometric measurements. 

Finally, the impact of combined irradiation and heating on the sensors response was 

evaluated. 

7.2. Objectives 

The main goals associated to this chapter are: 

 Fabrication of an oxygen sensor based on phthalocyanine (H2Pc) nanotrees 

without the need of subsequent transference processes. 

 Study of the electrical properties and response behavior of the sensors to oxygen. 

 Evaluate the influence of temperature and light irradiation on the sensor 

performance at a maximum temperature of 100 ºC. 

 Evaluate the response at 100 ºC to more discrete light sources such as 

LEDs. 

 Comparison of the sensor response with its thin film counterpart. 

7.3. Methodology 

Sensors fabrication. Commercial electrodes purchased from Micrux® with 15 pairs of 

interdigitated microelectrodes separated by 10 µm were used as received. Prior to the 

sublimation of H2Pc, gold seeds were deposited so as to provide the necessary 

roughness for the growth of NWs. The deposition of metallic seeds was done by 

magnetron sputtering at 0.1 mbar employing and Emitech K550 sputter coater 

equipped with a gold target; to avoid the slightest possibility of conduction through the 

NPs, the deposition was performed at 12.5 mA 10 s (below the usual 15 s normally 

used, see Chapter 2), observing no conduction. The growth of nanotrees was carried 

out just as described in the methodology section of Chapter 3 or Appendix A, but with 

only one step of ramification of 1.5 kÅ (QCM).  

Sensors characterization. The electrical characterization of the sensors and their 

response evaluation were performed with a 2635A system sourcemeter working in 

sweep voltage mode for the I-V curves and in sweep current mode at a fixed potential 

of 5V for the sensor response. The devices were mounted in a chamber with argon 
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(características) and oxygen (características) inlets, and a small melted-silica window 

for light irradiation experiments. The samples were fixed to a heateable sample holder 

with an attached K-type thermocouple. 

7.4. Results and discussion 

7.4.1. Fabrication of the 1D organic semiconductor-based 

sensors 

With the methodology developed for the growth of nanotrees, it has been possible to 

attain an ultra-high density “nanoforest” of H2Pc NWs directly grown on commercial 

electrodes at relatively low temperatures (< 200 ºC), as demonstrated in Figure a-b). It 

is worth mentioning that this procedure avoids additional transference steps between 

substrates while providing an extreme density unlike a previous work [Wang F., J. 

Mater. Chem. 2013] 
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Figure 2. (a) SEM image of a nanoforest of H2PC nanotrees on Micrux® electrodes. (b) 

Amplified zone of a) showing the highy interconnected network. 

7.4.2. Electrical characterization of the sensors  

I-V curves between -5 V and 5 V were registered for the sensors under different 

temperatures and constantly flowing argon. It was observed that the resistance of the 

sensors was diminished by a factor of 5 when the temperature of the device was set to 

50 ºC. After increasing to 100 ºC, the resistance dropped by nearly 100 times with 

respect to the room temperature situation. This respectable change in conductivity of 

the sample with temperature is expected from such an organic semiconductor. Despite 
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the values of resistance might seem high, it must be kept in mind that the conduction 

in these devices is achieved throw a hopping mechanism between NWs.   

 

Figure 3. I-V curves for nanotrees on Micrux® at different temperatures and under 

constant argon flux. 

By resgistering the I-V curves at 100 ºC and switching the gas flux into the chamber 

from Ar to O2, after 30 minutes of stabilization time before recording the curves, an 

appreciable change in conductivity was observed (Fig. 4). In spite of the fact that this 

behavior has been reported already [Kudo K., Jpn. J. Appl. Phys. 1997], it should be 

barely noticeable, whereas in this study the current has increased by nearly an order 

of magnitude. This may attributed to the much higher surface area exposed by the 

nanotrees, which could be maximizing the doping effect of oxygen.    
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*Near infrared radiation (NIR) was not eliminated from the light source, 
however it should not affect the measurements due to the higher band gap 
of H2Pc. NIR did not produced any significant change in temperature during 
measurements as evidenced by the thermocouple. 

 

Figure 4. I-V curves for nanotrees on Micrux® at 100 ºC under argon (black) or oxygen 

(red) atmosphere. 

7.4.3. Oxygen sensing 

The response of the sensors to oxygen was evaluated at different working 

temperatures and under combined irradiation, imposing in all cases a bias of 5 V to 

the sensors. As it can be noticed in Figure 5 for the room temperature case, by 

alternating between oxygen an argon a saw-like current response was obtained, but  

with no obvius effects on conductivity, something which could be masked by the 

noticeable drift in the curve (marked with an arrow in Fig. 5). Upon visible* light 

irradiation, the current increases by three orders of magnitude, denoting and 

enhanced sensor response due to light activation. Above the H2Pc band gap of 1.88 

eV [Kumar G. A., J. Mater. Sci. 2000], which corresponds roughly to 659.5 nm,  (659.5 

nm), it is expected that the conductivity rises due to the semiconductor nature of these 

molecules. On the other hand, UV+visible* (denoted by UV in Fig. 5) light does not 

produce any further conductivity changed compared to visible light only. 
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Figure 5. Sensor response at room temperature to oxygen and argon at room 

temperature under no irradiation (black), visible light (green) and UV+visible light (red). 

Rising the temperature to 50 ºC augments the current of non illuminated sensors by 

one order of magnitude, but it did not increase even more the response when 

subjected to illumination (Fig. 6). A zoom of the non irradiated curve reveals that the 

saw-like features of the curves were much more defined at 50 ºC (marked with an 

arrow in Fig. 6) compared to the room temperature situation, making clear again the 

role of temperature in sensor performance.  
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Figure 6. Sensor response at 50 ºC to oxygen and argon at room temperature under 

no irradiation (black), visible light (green) and UV+visible light (red). 

Finally, the response to oxygen was evaluated at 100 ºC, observing one more time no 

significant changes in the conductivity of the irradiated samples with regard to room 

temperature and 50 ºC cases. However, the current of the non irradiated scenario has 

augmented one order of magnitude again and the drift seems to have vanished 

completely. 

The electrical measurements at a slightly higher temperature and under UV+visible 

light were also carried out, observing that at 115 ºC the photoresponse has improved 

compared to 100 ºC. However, no further studies were performed ath higher 

temperatures beacuse one of the objectives in this chapter was to stay below 100 ºC. 
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Figure 6. Sensor response at 100 ºC to oxygen and argon at room temperature under 

no irradiation (black), visible light (green) and UV+visible light (red). 

The reason why irradiaton with UV+visible light did not present significant changes 

compared to visible light may be due to the tiny difference in power density of the 

visible and UV+visible radiation, which was roughly 73 mW/cm2 (Table 1).  

Table 1. Power densities for the Xenon lamp with no filters (UV+Vis) and with a 

methacrylate filter (Visible). Values are expressed in mW/cm2 

Light source UVA+UVB 

(280-400) 

Vis+NIR 

(400-2500) 

UV+Vis+NIR 

(280-2500) 

Xenon lamp 

(UV+Vis) 

42.8 1730 1772.8 

Xenon lamp 

(Visible) 

0 1700 1700 

 

Irradiation experiments at 100 ºC were also carried out using a series of three LEDs: 

red, green and blue (Fig. 7). This time the flux of oxygen was kept inenterrupted during 

the whole experiment, switching instead the light source. It may be appreciated that 

once the LEDs were turned on, the current jumped instantly, and when turned off the 

current dropped immediately. Note that the current changes were not marked in this 
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case, but it was only due to the low power of the LEDs employed as observed in Table 

2. 

Table 2. Power density of the different light sources employed expressed in mW/cm2. 

The measurements were done at the same working distance than the sensors 

irradiation experiments, 5 cm for the LEDs and 15 cm for the Xenon lamp.  

Light source UVA+UVB 

(280-400) 

Vis+NIR 

(400-2500) 

UV+Vis+NIR 

(280-2500) 

Xenon lamp 42.8 1730 1772.8 

RED LED 0 5.38 5.38 

GREEN LED 0 2.93 2.93 

BLUE LED 0 2.89 2.89 

 

 

Figure 7. Sensor response at 100 ºC to oxygen under intermitent irradiation with red, 

green or blue LEDs 

The aim of working with LEDs instead of conventional broad-irradiation spectrum light 

sources was to discard any thermal effect associated to the irradiation source and to 

study the influence on the sensor behavior when irradiated with a discrete light source. 

It was expected to observe noticeable changes in the reponse to oxygen owing to 
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preferential absorption of different LED lights by the molecule, i.e. if the LED light falls 

into an absorption band of H2Pc, and the LED power density (Table 2). According to 

the UV-Vis spectrum of H2Pc in Figure 8 and Table 2, the red LED should have given 

the highest response to oxygen and the green LED the lowest one, but this has not 

been the case (Fig. 7). The low power density of the LEDs originated a small increase 

in the current, so the trends could be perfectly masked by the drift of the sensor. 

 

Figure 8. (Up) UV-Vis spectrum of H2Pc and (Down) emission spectrum of red, green 

and blue LEDs. 

7.5. Conclusions 
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The fabrication of H2Pc Nanotrees-based sensors has been successfully addressed, 

producing an ultra-high density nanoforest with two simple vacuum deposition 

methods, magnetron sputtering for the seeds and OPVD for the nanotrees, on 

commercial substrates and at mild temperatures (< 200 ºC). Against expectations (due 

to a low sensitive molecule), the response to oxygen was evident even at 

temperatures below 100 ºC., which could probably be attributed to the high specific 

area of these 1D nanostructures. Moreover, the enhancement in the oxygen response 

by irradiation turned out to be quite spectacular. Finally, the experiments with LEDs 

were somewhat inconclusive, suggesting that more powerful LEDS should be used 

before arriving at any conclusion. 
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8. General conclusions 
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The fabrication of new 1D hybrid and heterostructured nanomaterials has been 

studied and optimized for different applications. These novel nanostructures 

have been succesfully implemented in different devices: solar cells based on 

inorganic nanotubes of ZnO, TiO2 and multishell ZnO@TiO2; transparent 

conductive electrodes based on platinum nanostructures; piezoelectric 

nanogenerators based on 1D core@shell heterostructures consisting in ZnO 

and gold and platinum metallic contacts; tunable dichroic optical filters based on 

glancing angle deposited silver nanoparticles; Surface enhanced Raman based 

sensors comprising silver deposited by GLAD and silver nanoparticles 

decorating TiO2 NTs; oxygen photonic sensor based on the excitonic 

luminescence of ZnO NTs; oxygen conductometric sensors activated by heat 

and light based on phthalocyanine nanotrees. 

Chapter 2 

1) A reliable full vacuum methodology for the fabrication of semiconducting 

nanotubes made of ZnO and TiO2 with single and multishell configurations has been 

presented. The versatility of the plasma techniques such as PECVD and dc-sputtering 

for the growth of metal nanoparticles and metal oxide layers has been exploited here 

for the formation of nanostructured nanotubes with tailored shells in terms of 

microstructure, porosity, structure and thickness on an ample variety of substrates 

ranging from FTO supports to metal nanoparticles. 

2) The procedure provides hollow’s cross sections in the form of square or rectangle 

keeping memory of the flat surface of the organic single crystal used as templates.   

The performance of the ZnO and anatase nanotubes as photoanodes in DSSC has 

been analyzed as a function of the shell thickness, finding an increase of efficiency 

with this parameter.  In the case of multi-shell nanotubes, mixed results were obtained 

for amorphous and crystalline TiO2, however, it has been found that the addition of a 

thin TiO2 shell turned out to be detrimental for the performance of the cells. 

Chapter 3 

1) A new plasma assisted methodology for the fabrication of transparent 

metallic electrodes has been developed. One- and two-dimensional metallic 

structures has been fabricated. *Remote Oxygen Plasma Etching decomposes 

the PtOEP molecule providing the formation of metallic Pt structures. *Thermal 
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mobilization of the PtOEP molecules improves homogeneity and density of the 

Pt structures, reducing the SPE treatment duration.  

2) Transmittance of the Pt layers and nanocolumns depends strongly on the 

thickness and post-treatment. UV-VIS and UV-VIS-NIR characterization reveals 

highly homogeneous transmittance in these wavelengths with an ample variety 

in the transmission range (from 10 % to 70 %).   

3) Samples prepared under RPAVD conditions are amorphous meanwhile the 

post-treatment yields crystallization of the Pt. *Deposition conditions of the 

sacrificial PtOEP layers drastically affect to the final Pt nanoelectrode porosity 

and microstructure UV-Vis transmission and XPS results indicated the total 

decomposition of the organic counterpart and formation of metallic Pt.  

4) The Current vs Voltage current shows the high conductivity of the films able to drive 

stable currents of around 0.1 A.  

5) Transparency and conductivity in 2D nanoelectrodes has been related with the 

thickness and microstructure of the sacrificial PtOEP. 

Chapter 4 

1) The ZnO grown at room temperature by PECVD has proven to exhibit adequate 

electric and piezoelectric characteristics.  

2) The development of 1D core@shell nanostructures with application in the field of 

piezoelectricity has been addressed. It has been possible to generate and thoroughly 

characterize complete nanogenerators with the structure Pt NWs@ZnO@Au following 

a full vacuum fabrication approach. In spite of the fact that the fabricated device was 

short circuited, it does not mean that the system is not appropriate for its 

implementation in piezoelectric generators, but just that more care must be taken to 

avoid that issues (PMMA infiltration for example). Moreover, these nanostructures 

have proven to be excellent samples for the development and refinement of more 

powerful EDX mapping and analysis techniques, as exemplified in Appendix B. 

3) Thin film and 1D piezoelectrics have been successfully fabricated on flexible 

substrates. Despite not having performed quantitative studies, it has been 

demonstrated that the fabricated devices truly work as piezoelectrics, paving the way 

for more detailed studies.  
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Chapter 5 

1) In the previous results and discussion it has been shown that silver NPs prepared 

by evaporation at glancing angles depict a strong dichroism that can be enhanced by 

a mild laser irradiation. These optical effects were attributed to the formation of flat and 

elongated NPs when the evaporation is carried out along this geometry and to the 

modification of these morphological characteristics when the prepared samples are 

treated with laser.  

2) By controlling the amount of deposited material, the evaporation angle and the laser 

irradiance, it has been possible to successfully prepare a large set of dichroic color 

patterns. The simplicity of the method, not requiring of any template or 1D periodic 

roughness effect of the substrate or the use of complex lithographic techniques and its 

compatibility with any kind of substrate material are some of the most advantageous 

features of the procedure. Its use for optical encoding by moving the laser beam along 

certain predefined patterns is likely one of the applications of the developed 

technology with more potentiality. 

Chapter 6 

1) The approach based on the GLAD of silver showed relatively small enhancement 

factors and consequently low sensitivity when comparing to silver nanoparticles 

deposited at normal geometry. By contrast, the illumination with a commercial 

nanosecond pulsed laser allowed to tune the SERS signal. In this way, the most 

elongated nanoparticles (deposited at the glancing angle of 85º) presented an 

increase of the EF for low illumination powers. This behavior is consistent with the 

model proposed in the previous chapter, where the aspect ratio of the NPs is 

increased and therefore enhancing the “hotspot” effect. By contrast, the irradiation with 

high powers decreases the EF, also consistent with the model where the elongated 

particles get more rounded.  

2) On the other hand, the second approach based in a multistep process to obtain 

TiO2 NTs decorated with silver NPs showed very high enhancement factors. The TiO2 

NTS with 2 nm nominal thickness of silver presented a very high EF of 2x107. The very 

high sensitivity obtained together with the compatibility for big area deposition, open a 

new and very promising way for future SERS based nanosensoric applications. 
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3) Even though no quantitative studies have been undertaken, the oxygen sensor 

based on ZnO NTs has proven equal or improved capabilities as its thin film 

counterpart. 

Chapter 7 

1) The fabrication of H2Pc Nanotrees-based sensors has been successfully 

addressed, producing an ultra-high density nanoforest with two simple vacuum 

deposition methods, magnetron sputtering for the seeds and OPVD for the nanotrees, 

on commercial substrates and at mild temperatures (< 200 ºC). 

2) The response to oxygen was evident even at temperatures below 100 ºC., which 

could probably be attributed to the high specific area of these 1D nanostructures. 

Moreover, the enhancement in the oxygen response by irradiation turned out to be 

quite spectacular. Finally, the experiments with LEDs were somewhat inconclusive, 

suggesting that more powerful LEDS should be used before arriving at any conclusion. 
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Appendix A. Growth of organic 

nanowires 
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The intention of this appendix is to summarize the optimal conditions found for the 

growth of several (metal) organic nanowires (NWs) on different substrates. Not all of 

the organic  and metalorganic molecules included here were employed in previous 

chapters, but they have been used during the Ph.D. thesis period for other 

applications. 

The sample holder employed for the depositions is depicted in Fig. 1a. It is comprised 

of two drilled stainless steel sheets (1) sandwiching the heating element, sample fixing 

clip (2), electrical connections for the heater (3), type K thermocouple for accurate 

temperature measurement (4) and drilled holes to fix the sample holder inside the 

chamber (5). The heating element consists of nichrome wire coiled around a macor 

ceramic and sandwiched between two more macor ceramics. 

 

Figure 1. Representation of the sample holder used to grow nanowires and its 

individual components (left) and a photograph of a real sampleholder (right). 

Numerous different molecules have been successfully grown into NWs, including 

perylenes, porphyrins and phthalocyanines. Columnar thin films of metal oxides 

produced by PECVD were found to be the most adequate substrates for obtaining 

NWs in high density. Otherwise stated, all metal oxides were fabricated by PECVD on 

Si or fused silica (Q). GLAD refers to columnar thin films fabricated by glancing angle 

deposition and Au NPs refers to gold nanoparticles produced by magnetron sputtering 

(Emitech K550 sputter coater), using generally 12.5 mA 15 s for Si or Q and 10 mA 15 

s for micrux electrodes (to avoid shortcircuits). Gold may be replaced by silver 

nanoparticles (Ag NPs) deposited on Si or Q with a housemade chamber; the 

deposition condition for attaining Ag NPs was: 15 minutes, 1 mbar of Argon pressure 

and 400 V of applied potential [Sánchez-Valencia J. R., Advanced Materials].  
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The evaporator-to-sample distance has always been fixed to 6.5 cm and the gas 

chosen for the experiments was Argon otherwise stated. 

It is worth mentioning that not only rigid and conventional substrates for NWs were 

employed, but also flexible ones such as polydimethylsiloxane (PDMS), 

polytetrafluoroethylene (PTFE) and Indium tin oxide coated PET (ITO/PET). 

2,9-DIMETHYL-ANTHRA(2,1,9-DEF,6,5,10-'E'F')DIISOQUINOLINE-

1,3,8,10-TETRAONE  (MePTCDI) 

Substrates: ZnO, TiO2, SiO2 

Substrate temperature: 110 ºC – 120ºC 

Growth rate (QCM): 0.3 Å/s 

Pressure: 0.02 mbar 
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Figure 2. SEM image of MePTCDI on ZnO (PECVD)/Si (up) and its corresponding 

UV-Vis spectrum on TiO2 (PECVD) 

Octaethylporphyrin (OEP) 

Substrates: ZnO, TiO2, SiO2 

Substrate temperature: 80-85 ºC 

Growth rate (QCM): 0.40-0.45 Å/s 

Pressure: 0.02 mbar 
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Figure 3. SEM image of OEP on SiO2 (PECVD)/Si (up) and its corresponding UV-Vis 

spectrum on Q. 

Platinum Octaethylporphyrin (OEP) 

Substrates: ZnO, TiO2, SiO2, Ag NPs on PDMS 

Substrate temperature: 90-100 ºC 

Growth rate (QCM): 0.40-0.45 Å/s 

Pressure: 0.02 mbar 
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Figure 4. SEM image of PtOEP NWs on TiO2 (PECVD)/Si (up) and its corresponding 

UV-Vis spectrum on Q. 

Phthalocyanine (H2Pc) 

Substrates: ZnO, TiO2, SiO2 (both GLAD and PECVD), Au NPs on Si, Q, micrux, 

PTFE and ITO/PET 

Substrate temperature: 170-200 ºC 

Growth rate (QCM): 0.45-0.50 Å/s 
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Pressure: 0.02 mbar 

 

Figure 5. SEM image of H2Pc NWs on Au NPs/(ITO/PET) (up) and its corresponding 

UV-Vis spectrum on SiO2 (PECVD)/Q. 

Cobalt, nickel, zinc and copper phthalocyanines (CoPc, NiPc, ZnPc 

and CuPc) 

Substrates: ZnO, TiO2, SiO2 (both GLAD and PECVD), Ag NPs on Si and Q 

Substrate temperature: 180-220 ºC 

296



Growth rate (QCM): 0.3-0.45 Å/s 

Pressure: 0.02 mbar 
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Figure 6. SEM micrographs of CuPc Nws on Au NPs/ITO (up), long CoPc NWs on 

TiO2 (middle) and their corresponding UV-Vis spectrum on Q. 
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Fluorinated copper phthalocyanine (F16CuPc) 

Substrates: TiO2, micrux, Ag NPs on Si and Q 

Substrate temperature: 165-180 ºC 

Growth rate (QCM): 0.45 Å/s 

Pressure: 0.02 mbar 

 

Figure 7. Figure 8. SEM image of F16CuPc NWs on Ag NPs/Si (up) and its 

corresponding UV-Vis spectrum on Q. 
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* Evaporated under high-vacuum conditions. 
 

Iron phthalocyanine (FePc) 

Substrates: Al*/Si, Al foil, Cu (GLAD) on Si, thick Cu foils, TiO2 

Substrate temperature: 220 ºC 

Growth rate (QCM): 0.4 Å/s 

Pressure: 0.02 mbar 

 

Figure 8. SEM image of FePc NWs on Al/Si (up) and its corresponding UV-Vis 

spectrum on TiO2/Q. 
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* Evaporated under high-vacuum conditions. 
 

Chlorinated iron phthalocyanine (ClFePc) 

Substrates: Al*/Si, Cu (GLAD) on Si, thick Cu foils 

Substrate temperature: 210 ºC 

Growth rate (QCM): 0.4-0.45 Å/s 

Pressure: 0.02 mbar

 

Figure 9. SEM image of ClFePc NWs on Al/Si (up) and its corresponding UV-Vis 

spectrum on TiO2/Q. 
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Chlorinated silicon phthalocyanine (Cl2SiPc) 

Substrates: Al, Si, SiO2 on Si and Q 

Substrate temperature: 200 ºC 

Growth rate (QCM): 0.1-0.15 Å/s 

Pressure: 0.3 mbar

 

Figure 10. SEM image of Cl2SiPc NWs on SiO2 (GLAD)/Si (up) and its corresponding 

UV-Vis spectrum on SiO2 (GLAD)/Q.  
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Nanotrees 

The methodology developed by Borrás and Alcaire et al. to produce highly connected 

NWs [Borrás A. I., Adv. Materials][Alcaire M., Nanoscale 2011] has been extended to 

other non-metallic molecules to generate hyperbranched NWs, giving rise to highly 

dense nanoforests. The technique consists in a three step process: deposition of the 

primary NWs, plasma etching and deposition of the secondary NWs. The last 2 steps, 

namely the ramification process, can be repeated as many times as wanted in order to 

attain a higher number of ramifications and thus density. Fig. 11 is an example of Pc 

nanotrees were the ramifications are clearly visible (note that no UV-Vis spectrum is 

shown due to nearly 100% light absorption in that region) . 

 

Figure 11. SEM images of a H2Pc nanoforest. 

The experimental conditions for the fabrication of the nanotrees were as follows: 

Substrates: TiO2, SiO2, ZnO, Ag or Au NPs on Si, Q, micrux, ITO/PET. 

NWs growth 

Substrate temperature: 160-180 ºC 

Growth rate (QCM): 0.45 Å/s 

Pressure: 0.02 mbar 

Plasma etching 
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Substrate temperature: RT 

Plasma-to-substrate distance: 10 cm 

Plasma power: 300 W 

Gas composition: 20% Ar, 80% O2 

Pressure: 0.02 mbar 

Plasma duration: 20 minutes for NWs up to 1 kÅ and 40 minutes for NWs of 

around 3 kÅ. 
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Abstract 

This appendix presents a novel 3D method to correct for absorption in 

energy dispersive X-ray (EDX) microanalysis of heterogeneous 

samples of unknown structure and composition. By using STEM-based 

tomography coupled with EDX, an initial 3D reconstruction is used to 

extract the location of generated X-rays as well as the X-ray path 

through the sample to the surface. The absorption correction needed to 

retrieve the generated X-ray intensity is then calculated voxel-by-voxel 

estimating the different compositions encountered by the X-ray. The 

method is applied to a core/shell nanowire containing carbon and 

oxygen, two elements generating highly absorbed low energy X-rays. 

Absorption is shown to cause major artefacts of in reconstruction, in 

the form of an incomplete recovery of the oxide and an erroneous 

presence of carbon in the shell. By applying the correction method, 

these artefacts are greatly reduced. The accuracy of the method is 

assessed using reference X-ray lines with low absorption. 

1. Introduction 

EDX microanalysis in the transmission electron microscope (TEM) is a 

valuable technique for materials characterisation [1-4]. Until recently, 

the technique has been limited by poor collection efficiency, and hence 
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relatively long acquisition times [4,5]. With the advent of larger, silicon 

drift [6] and multiple detectors [7], modern systems offer higher 

acquisition rate for a lower dose.  EDX chemical mapping has 

benefited greatly from this technological breakthrough, especially in 

helping the extension to (quantitative) 3D mapping, as observed 

recently with a wider range of applications [8-15] compared to the early 

work of the pioneers [16-18]. 

In a scanning electron microscope (STEM), 2D imaging can be 

extended to three-dimensional (3D) imaging by using tomography. 

Electron tomography (ET) is nowadays a well-established technique in 

the physical sciences, especially using high angle annular dark field 

(HAADF) imaging [19-21]. To be suitable for tomographic 

reconstruction, the electron-specimen interaction should satisfy the 

“projection requirement”: the signal should vary at least monotonically 

with thickness and composition [22]. When detecting secondary 

signals, such as an X-rays for EDX, the interaction with the specimen 

needs to be considered as well. To illustrate the interactions of primary 

electrons and secondary X-rays with the specimen, two electron paths 

through a core/shell nanowire are considered (see the arrows in Fig. 1). 

The generated X-ray intensities along these symmetric paths are 

identical. However, as the path towards the EDX detector for the right-
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hand position is longer (and goes through the core), X-rays are more 

likely to be absorbed in the specimen, yielding a lower X-ray intensity. 

Variations due to absorption or changes in specimen composition may 

be indistinguishable when absorption is significant, as typically 

observed for low energy X-rays or/and thick samples. This paper aims 

to correct for the absorption effect in order to retrieve the monotonicity 

of the EDX signal and improve the reliability of the 3D EDX-STEM 

reconstructions.  It is worth noting that other phenomena, beyond the 

scope of the current work, might also break the monotonic behaviour of 

the EDX signal, such as channelling effect [23] and detector shadowing 

by the sample holder and the sample grid [13]. 

X-ray absorption is one of the most important limitations for 

quantitative EDX analysis, even with thin specimens. Goldstein et al. 

[24] proposed to correct for the absorption in the Cliff-Lorimer 

approach (CL) [25] by multiplying the intensity by a correction factor 

(A). This factor is derived from Beer's law and requires a measurement 

of the mass-thickness. To overcome the complications arising from 

external measurement of thickness and density, several approaches 

have been proposed: for instance by using the difference in absorption 

between two emitted X-ray lines [26], or measuring spectra at different 

tilt angles [27] or sample thicknesses [28]. A more recent approach, the 
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ζ-factor method [29], solved this problem in a more general way by 

measuring the current. All these approaches were established for thin 

films and aim to measure an accurate absorption correction factor A, 

supposing a homogeneous specimen where X-rays are generated and 

absorbed. To apply this approach to a sample with a heterogeneous 

structure, such as the core/shell nanowire of Fig. 1, the structure has to 

be known to predict the X-ray generation as a function of depth as well 

as the X-ray path to the surface through different materials. This 

problem can be addressed with 3D EDX-STEM tomography since 

information about X-rays generated from each voxel and their path 

through all the encountered voxels to reach the surface becomes 

available.  

The present work introduces a novel “3D absorption correction” 

approach: An example of artefact-free EDX-STEM tomography is 

presented, using a core/shell nanowire as test sample. The accuracy of 

the absorption correction method is assessed using X-ray lines with 

significant absorption and high energy X-ray lines with relatively low 

absorption as a reference. 

2. Materials and Methods 

2.1. Core@multi-shell nanowire 
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The sample used for the present investigation is an organic/inorganic 

core/multi-shell 1-D nanostructure, with potential applications in 

photonics and as nanogenerators. A HAADF-STEM image of the 

nanowire tip is shown in Fig. 2(a) and a description of the different 

elements present in the sample is schematized in Fig. 2(b). The PtOEP 

core is grown from silver nanoparticle seeds by physical vapour 

deposition and is composed of platinum, nitrogen and carbon. The first 

shell of the 1-D nanodevice is generated by soft plasma etching of the 

PtOEP to yield platinum. An unexpected AgPt phase is present in the 

core and forms a thin layer around it. The second shell is formed of 

ZnO grown by plasma enhanced chemical vapour deposition [30]. The 

external shell is fabricated by conformal deposition of a thin layer of 

gold by means of DC sputtering at room temperature.  

2.2. EDX-STEM tomography 

The ET experiment was performed on an FEI Osiris TEM (FEI 

company) operating at 200kV and equipped with a high brightness X-

FEG gun and a Super-X EDX system comprising 4 detectors. Each 

detector has an active area of 30 mm
2
, achieving 0.9 sr solid angle in 

total. As shown in Fig. 3, the 4 detectors are arranged around the 

electron beam axis. The elevation angle (for the centre of each detector) 

is 22° and the azimuth angles are 45°, 135°, 225° and 315° for detector 
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1, 4, 3 and 2 respectively. The signal from different detectors is 

summed before amplification and cannot be separated through post-

processing. The NWs were dispersed on a commercial TEM grid 

possessing a 5 nm-thick carbon film on a thicker 30 nm holey carbon 

film (Pacific Grid Tech), which was mounted on a Fischione 2020 

single-single tomography holder (Fischione Instruments, USA). A NW 

oriented parallel to the rotation axis was selected, and the tilt series was 

acquired manually, from -60˚ to +70˚ with a 10˚ tilt increment. At each 

tilt angle, a HAADF-STEM image with frame size of 1024 x 1024 and 

a pixel size of 1.09 nm was acquired, followed by an EDX map of a 

selected region, with a map size of 80 x 92 and a pixel size of 4.5 nm. 

The beam current was 600 pA. To reduce beam damage, a dwell time 

of 40 ms was used, corresponding to an acquisition time of 5 min per 

map. Depending on the acquisition geometry, some of the X-rays rays 

emitted from a region of interest are obstructed by surrounding objects 

such as the sample holder and supporting grid. As the elevation angle is 

low, the shadow cast onto the detectors varies rapidly with tilt angle 

around 0°. To minimize the effect of shadowing, only the two detectors 

facing the sample were used during the tilt series; i.e. detector 1 and 2 

for positive tilt (including 0° tilt) and detector 3 and 4 for negative tilt.  
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The sum of all spectra of the tilt series is plotted in Fig. 4 with a solid 

curve. The energy range between 3.5 and 7 keV is not displayed, as it 

contains no X-ray lines of importance. X-ray lines for the six elements 

that composed the core/shell nanowire (C, O, Zn, Pt, Au, Ag) are 

observed. Carbon and oxygen have only one resolved line, the O Kα 

and C Kα, respectively, which have the lowest energy of the analysed 

X-ray lines. Cu Kα and Ni Kα peaks are spurious X-rays generated 

from the supporting nickel grid and the sample holder. The Si and Cl 

signals are likely due to contamination from volatile organosilicon 

compounds used in the desiccator where the silver seeds were storage. 

Also in Fig. 4, the mass absorption coefficients μ/ρ of X-rays absorbed 

in PtC25 and ZnO, two compositions chosen to approximate the 

nanowire core and shell respectively, are plotted as a function of energy 

with red and blue curves. The jumps in the curves are the X-ray 

absorption edges, corresponding to the ionization energy of inner shell 

electrons. These edges are situated at slightly higher energy than the 

corresponding X-ray lines; for instance the centre of Zn Lα peak is 

slightly left of the corresponding jump on the blue curve. Zn Kα and Pt 

Lα have a μ / ρ about two orders of magnitude lower than the three 

most highly absorbed X-rays (C Kα, O Kα, Zn Lα), making the Zn Kα 
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intensity a suitable internal reference, with low absorption compared to 

the Zn Lα intensity.  

The EDX maps were acquired using the software TIA (FEI company) 

and exported for post-processing. Apart from alignment, all data 

processing were done with python packages. Hyperspy, a python-based 

software for hyperspectral data processing [31], was used as a central 

data processing platform and to implement the absorption correction 

procedure. The data were de-noised using singular value decomposition 

(SVD) for principal component analysis (PCA) [32]. X-ray intensities 

were extracted from EDX spectra by fitting (peaks and background) of 

experimental spectra using an EDX-specific model [33]. TomoJ was 

then used for alignment by automatic feature tracking [34]. The 

reconstructions were performed using the simultaneous algebraic 

reconstruction technique (SART) algorithm [35], and the obtained 

volumes rendered using Mayavi [36]. Elemental compositions were 

quantified using the quantification method by CL [25] and the k-factors 

provided by the EDX manufacturer Bruker. A total variation 

minimisation (TV) algorithm from Chambolle [37] was used to 

improve the signal-to-noise ratio in the obtained reconstructions. One 

iteration of the absorption correction, including the reconstruction of all 

X-ray intensities, takes about 24 minutes on a standard computer (one 
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processor of 3.4 GHz). The slower parts of the process were 

parallelised and the time per iteration was reduced to 6 minutes with 8 

processors. 

3. Calculation 

In the classical CL approach, the composition C is related to the X-ray 

intensities I measured from a thin film [25]. With two elements A and 

B, the CL approach can correct for the absorption using [24]: 

 
𝐶𝐴

𝐶𝐵
= 𝑘𝐴𝐵

𝐼𝐴𝐼𝐴

𝐼𝐵𝐼𝐵
, (1) 

where k is the CL factor, also known as the k-factor, and A is the 

absorption correction factor. The more recent ζ-factor method 

incorporates the total dose during acquisition De, obtaining in this way 

a measurement of the composition and the mass-thickness ρt as: 

 𝐶𝐴 =
𝜁𝐴𝐼𝐴𝐼𝐴

𝜁𝐴𝐼𝐴𝐼𝐴+𝜁𝐵𝐼𝐵𝐼𝐵
, (2a) 

 𝜌𝑡 =
𝜁𝐴𝐼𝐴𝐼𝐴+𝜁𝐵𝐼𝐵𝐼𝐵

𝐷𝑒
, (2b) 

where ζ is the ζ-factor [38]. Both k-factors and ζ-factors can be 

determined theoretically and experimentally.  
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The X-ray absorption in a material is predicted by Beer's law: the X-ray 

intensity I emerging from a thin film of thickness t is: 𝐼 =

𝐼0exp⁡(−
𝜇

𝜌
𝜌𝑡), where Io is the primary X-ray intensity, μ/ρ is the mass 

absorption coefficient and ρ is the density. With φ(ρz) the depth 

distribution of the generated X-rays in the sample, and assuming a 

homogeneous X-ray absorption along the path z to the surface, the 

absorption correction factor A is obtained by integrating Beer's law as 

follow: 

 𝐴 =
𝐼0

𝐼
=

∫ 𝜑(𝜌𝑧)𝑑(𝜌𝑧)
𝜌𝑡
0

∫ 𝜑(𝜌𝑧)exp⁡(−
𝜇

𝜌
𝜌𝑧⁡ csc𝛼)𝑑(𝜌𝑧)

𝜌𝑡
0

, (3) 

where α  is the take-off angle and z csc α is equal to the distance from 

the generation point to the surface. A uniform generation of X-rays 

along the depth can be reasonably assumed within the thin film: φ(ρz) is 

equal to unity and Eq. 3 is simplified to (Philibert [39]) : 

 𝐴 =

𝜇

𝜌
𝜌𝑧⁡ csc𝛼

1−exp⁡(−
𝜇

𝜌
𝜌𝑧⁡ csc𝛼)

, (4) 

This expression for A is used in both the CL and ζ-factor methods [24, 

38]. 

Correcting the absorption in 3D allows us to refine the approximation 

of a constant generation and of a homogeneous X-ray path by 
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considering the X-ray generation in each voxel and the different voxels 

encountered in the X-ray path to the surface. The X-ray generation is 

thus assumed to be constant in each voxel and the X-ray path is 

assumed to be homogeneous within each voxel encountered.  

In Fig. 5(a), a section through the x-z plane of the 3D matrix of 

elemental composition C is represented with a grid. A precipitate is 

represented with a darker grey than a surrounding matrix. The X-ray 

path, represented by the arrow, has a different length in each 

encountered voxel. In a standard reference frame, the z axis is parallel 

to the electron beam as shown in Fig. 5(a). In Fig. 5(b), a new reference 

frame x
*
, y

*
 and z

*
 is defined with x

*
 axis parallel to the detector 

direction. The composition matrix in this reference frame (C
*
) is 

obtained by rotating C by the elevation angle, the sample tilt and the 

azimuth angle of the detector. In each encountered voxel of the matrix 

C
*
, the X-ray path has the same length (the voxel size Δx), thus 

simplifying the calculation of the absorption correction factor A
*

j of 

voxel x
*
 = j. 

An X-ray intensity I0 is generated in voxel j from a particular element 

and an X-ray intensity Ij is emitted from voxel j before entering voxel 

j+1, as defined in Fig. 5(b). The ratio Ij over I0 can be obtained by 

integrating over the voxel, as in Eq. 3. Since Δx is small, the integral is 
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approximated by the function itself, ∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(
Δ𝑥

2
)Δ𝑥

Δ𝑥

0
, and Eq.3 

becomes: 

 
𝐼𝑗

𝐼0
⁡≈ exp {−(

𝜇

𝜌
)
𝑗
𝜌𝑗

Δ𝑥

2
}. (5) 

The final intensity I, emitted from voxel x
*
 = nmax at the surface of the 

sample, is calculated by applying to Ij the absorption correction factor 

obtained with Eq. 5, of each subsequent voxel x
*
 = j + n encountered 

along the X-ray path: 

 
𝐼

𝐼𝑗
= exp {−∑ (

𝜇

𝜌
)
𝑛
𝜌𝑛Δ𝑥

𝑛𝑚𝑎𝑥
𝑛=𝑗+1 } ⁡. (6) 

The absorption correction factor A
*

j is obtained by combining Eq. 5 and 

6: 

 
𝐼

𝐼0
=

1

𝐴𝑗
∗ = exp {−(

𝜇

𝜌
)
𝑗
𝜌𝑗

Δ𝑥

2
− ∑ (

𝜇

𝜌
)
𝑛
𝜌𝑛Δ𝑥

𝑛𝑚𝑎𝑥
𝑛=𝑗+1 } ⁡⁡.

 (7) 

The final absorption correction matrix A is obtained by calculating the 

factors A
*
 for all elements and all voxels x

*
, y

*
 and z

*
, and rotating 

them into the standard x, y, z reference frame. 

In the acquired data, two detectors were used and the individual 

detector signals cannot be separated. The directions to the two detectors 
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are approximated by a single mean direction; for example the detectors 

1 and 2 with 45° and 315° (-45°) azimuth respectively (see Fig. 3) are 

approximated with 0° azimuth.  

In Eq. 7, a value of density is needed for each voxel. With the ζ-factor 

method, the density can be obtained from the measured mass-thickness 

(Eq. 2(b)). With the CL method, the density can be estimated from the 

matrix of elemental fraction C with a weighted mean (𝜌 = ∑𝐶𝑒𝑙 𝜌𝑒𝑙) or 

a harmonic mean (1/𝜌 = ∑𝐶𝑒𝑙 /𝜌𝑒𝑙) or can be estimated from an 

external signal such as the HAADF-STEM tomogram. 

As the absorption correction factors depend on the composition and 

vice versa, an iterative approach is required for both classical and 3D 

absorption correction. The general approach is the same: the iteration is 

initialised by calculating a composition C0 with no absorption 

correction from the X-ray intensity I. In each iteration step, the 

absorption correction factors Ai are calculated from the composition Ci 

and applied to the X-ray intensity (I
*
Ai) to obtain a new composition 

Ci+1. 

For 3D absorption correction, the iterative process needs to include 

reconstruction and projection steps as shown in Fig. 6. The 3D matrix 

of elemental composition, C0, is first approximated without absorption 
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correction: the tilt series of intensities, Itil,0, are reconstructed (rec) and 

the reconstructed intensities, Ivol,0, are quantified (quant). This first 

approximation C0 is used to calculate the absorption correction matrix, 

A1.  

The absorption correction matrix A1 could be applied directly to the 

reconstructed intensity Ivol,0. However, the reconstruction might 

introduce artefacts as absorption effects are likely to break the 

tomographic requirement. The absorption correction matrix (A1) is thus 

applied to the tilt series of recorded intensities Itil,0 and thus required to 

be projected about the tilt axis. A direct projection, rotation of the 

matrix and sum along the beam direction, of A1 is not possible as the 

absorption correction is not a linear operation. A corrected Itil,1 is 

projected instead and compared to the projected Ivol,0 to obtain an 

absorption correction factor Atil,1 for the tilt series: 

 𝐴𝑡𝑖𝑙,𝑖 =
[𝐼𝑣𝑜𝑙,𝑖]𝑡𝑖𝑙
[𝐼𝑣𝑜𝑙,0]𝑡𝑖𝑙

=
[𝐼𝑣𝑜𝑙,0𝐴𝑖]𝑡𝑖𝑙
[𝐼𝑣𝑜𝑙,0]𝑡𝑖𝑙

, (8) 

where i is the number of iterations and the square bracket indicates a 

direct projection. The matrix of intensities Ivol,1, 1 is reconstructed from 

Itil,1, and equal to Itil,0 Atil,1, and quantified to obtain a new C1 for the 

next step of the iteration. The loop is stopped when the result of an 
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iteration is close to the previous iteration, typically less than 0.001 wt% 

difference. 

4. Results 

To prevent beam damage, the electron dose seen by the sample is 

limited by reducing the time spent per spectrum. The raw spectra are 

therefore noisy with a mean number of counts per channel less than 

one. An effective de-noising technique is needed, as illustrated in Fig. 

7. The set of data contains millions of spectra characterising only a 

limited set of chemical phases. This is a favourable case for a 

multivariate statistical approach such as principal component analysis. 

Using PCA, the set of spectra is decomposed and then a model of the 

data is reconstructed leaving out the components characteristic of the 

noise [40]. Prior to the decomposition, the data were scaled to take into 

account Poisson statistics [41]. Masking regions with lower counts, the 

vacuum and the carbon film, improves the separation between the noise 

and the signal components. To prevent any mixing between X-ray maps 

of low and high energy due to covariance, PCA is applied separately on 

the low and high energy part of the data set, as indicated by the split 

spectrum of Fig. 7. By inspection of the scree plot and the noise content 

in the individual components, the first eight and four components were 
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chosen to reconstruct the model for the low and high energy datasets, 

respectively. As seen in Fig. 7, the PCA-adjusted spectrum is relatively 

noise-free and the continuous background is well defined. The noise is 

significantly reduced in the raw intensity map for O Kα. 

After noise filtering, the intensities are extracted and background 

corrected. Alignment of Ag Lα intensity maps is performed by 

automatic feature tracking and subsequently applied to the remaining 

elemental tilt series. 

A general decrease of X-ray intensity due to shadowing is observed for 

maps close to 0° tilt, even when only the two EDX detectors facing the 

sample are employed. To correct for this effect, each intensity map is 

divided by the total intensity in the map. The normalised maps are then 

multiplied by the required factor to conserve the total intensities in the 

tilt series [15].  

The first 3D matrix of absorption correction factors A1 is obtained as 

described in the first line of Fig. 6. The reconstructed intensities are 

smoothed using a TV algorithm and the obtained intensities quantified 

using the CL quantification method. With this approach, the 

composition is normalised to 100% and voxels of vacuum and voids in 

the nanowire are filled with noise. Trial-and-error showed that all 
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voxels in the composition matrix emitting a total X-ray intensity below 

7 counts are masked (30 counts are emitted in average from the voxel 

of the shell). A1 is obtained with Eq. 7 and the correction for O Kα is 

shown in Fig. 8. The detector direction lies in the xz plane with an 

angle of 22° with x axis and goes in the direction of positive x and 

negative z, as indicated by the trail in the vacuum in the xy section of 

Fig. 8. The correction is stronger in the direction opposite to that of the 

detector. A linear structure is observed along this direction. Voids are 

observed inside the core with lower absorption correction. 

After the calculation of the first absorption correction matrix A1, the tilt 

series are corrected as described in Eq. 8 and a new A2 is calculated. 

The effect of absorption correction after one and two iterations are 

considered in Fig. 9. In this figure, the grey scale gives the O Kα 

intensity of x-tilt sections, also known as sonogram, through the tilt 

series (Itil) for map a, map b and map c, and through the corresponding 

projected reconstruction ([Ivol]til as defined in Eq. 8) for map d, map e 

and map f. The x-tilt section is positioned where the shell surrounds the 

core, as modelled by two circles in map g. Map h shows a projection of 

this model, which is only an approximation as the real shell shows a 

faceted aspect. 
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A jump in O Kα intensity is observed at zero tilt in Fig. 9(a) for the raw 

tilt series. This jump can be linked to an absorption effect: X-rays 

generated in the side of the shell opposite to the detectors travel further 

in the nanowire and are thus more likely to be absorbed. The jump 

reveals the change of detectors at 0° tilt (from detectors 3 and 4 to 

detectors 1 and 2, see Fig. 3). With the 3D absorption correction 

calculated after one iteration (map b), the intensity of the more 

absorbed side of the shell is increased: the jump in intensity is greatly 

reduced, but can be still observed with an inverted contrast. With the 

absorption correction calculated after two iterations (map c), the jump 

is hardly noticeable. 

As observed for all the projections (maps d, e, f and h), a corrected tilt 

series (one that conforms to the projection requirement) shows 

smoothly evolving contrast along the tilt direction. The jump observed 

in map a is thus an indication of that the violation of the projection 

requirement. With reconstruction algorithms such as SART, the 

difference between the raw data Itil and the projected reconstruction 

[Ivol]til is minimised during the reconstruction process, thanks to the so-

called data fidelity constraint. In other words, maps d, e and f are the 

closest approximation of maps a, b and d, respectively. The incoherent 

jump in map a is approximated by a smoothly evolving contrast in map 
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b, resulting in an important difference between map a and map b. After 

absorption correction, Itil and [Ivol]til are more similar, indicating that a 

higher data fidelity is reached. 

The iterative convergence of the absorption correction (see Fig. 6) is 

considered in more detail in Fig. 10. The convergence criterion, the 

root-mean-square (RMS) of the difference of the reconstruction 

corrected after i iterations and i+1 iterations, is plotted as a function of 

the number of iterations. In this logarithmic plot, the same linear 

behaviour is observed after the first iteration for the different X-rays, 

indicating a fast convergence. A higher convergence criterion is 

observed for X-ray lines with the higher absorption correction (O Kα, C 

Kα and Zn Lα). 

The reconstructed intensities of elements present in the shell of the 

nanowire are shown in Fig. 11: the shell is composed of zinc and 

oxygen. For both elements, the reconstructions obtained without or 

with absorption correction are compared. The corrected intensities of 

Zn Kα are not displayed as the absorption correction is small, with 95% 

of the voxels having an absorption correction below 0.5% (compared to 

27% for the Zn Lα intensity). The uncorrected intensities of the Zn Kα 

(map f) are thus used as an absorption-free reference. The effect of 

absorption can be observed comparing O Kα intensity (map a) with Zn 
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Kα intensity (map f). In map a, the shell appears almost absent for low 

values of z in the zy section but appears more even in the xy section. A 

similar but less marked drop in intensity can be observed in map d for 

the Zn Lα intensity. The absorption effect is thus observed primarily 

along the z axis, which is inconsistent with the position of the detectors, 

situated close to the xy plane and not along the beam direction (z axis). 

This inconsistency is an artefact of the reconstruction algorithm due to 

the uncorrected X-ray maps not being true projections. 

This reconstruction artefact is greatly reduced by applying the 

absorption correction as the Zn Lα intensity in map e of Fig. 11 appears 

to match closely the Zn Kα intensity in map c. The O Kα intensity in 

map b now looks similar to the Zn Kα intensity, but an over-correction 

is observed with high intensity at low value of z. For a more accurate 

comparison, a profile along the z axis going through the shell at the 

position indicated by the coloured lines in Fig. 11(a-f) is considered in 

Fig. 11(g). The intensities plotted are smoothed by TV filter and 

normalised with the maximum of the profile in the right part of the 

shell that shows less absorption effect. An absorption effect is clearly 

observed on the left part of the shell for O Kα and Zn Lα intensities. 

After absorption correction, a close match is observed between Zn Lα 

and Zn Kα intensities. The O Kα intensity is closer to Zn Kα intensities, 
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although slightly over-corrected. This can be attributed to the weighted 

mean approach used to estimate the density from the composition.  

Assuming the intensity of HAADF-STEM images is proportional to the 

mass thickness, the density can be estimated by scaling the HAADF-

STEM images to a region with a known density. Using the weighted 

mean approach, both core and shell have similar density but when 

using the HAADF-STEM approach, the density of the core is 

significantly lower that the density of the shell. With a shell expected to 

be composed of ZnO and the weighted mean density in the shell close 

to the density of the ZnO, this density is used to scale the HAADF-

STEM images. The obtained density is used to calculate the absorption 

correction. By calculating the absorption correction with the HAADF-

STEM density, a more accurate result is obtained as observed in the 

profile of Fig. 11(g) with the corrected O Kα intensity now closer to the 

Zn Kα intensities. It is worth noting that the density obtained with 

HAADF-STEM images introduces a different source of inaccuracies; 

for example a contrast variation in the shell due to diffraction. The 

weighted mean density is kept as a method of choice for a direct 

evaluation of the 3D absorption correction, as it does not required any 

a-priori knowledge of the sample. 
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The reconstructed intensities of the elements present in the core are 

shown in Fig. 12: the core is formed of a porous mixture of carbon and 

platinum and contains small particles composed of silver. Platinum and 

silver form a layer around the core and a layer of gold is observed on 

the tip of the nanowire in map f. A schematic picture of the sample is 

shown in Fig. 2(a). A larger void is observed at the tip of the core.  

Reconstructions obtained without and with absorption correction are 

compared. The corrected intensities of Pt Lα and Ag Lα are not 

displayed as the absorption is small. The C Kα intensity has the highest 

value of absorption correction. In map a, the C Kα intensity is present 

in the shell with strong variation in contrast. As the supporting film is 

composed of carbon, a value of C Kα intensity emitted from the film is 

estimated for each tilt from regions that are known to be film only and 

removed from the tilt series before the reconstruction. In map b, the 

resulting C Kα intensity reconstruction is generally lower in the shell 

and the shape of the core observed in the xz section is better defined. In 

some regions with high z value, the intensity of the shell is however 

similar to the one in the core. After absorption correction, the C Kα 

intensity (map c) in the core is clearly above the intensity in the shell. 

A profile along z through the core is plotted in Fig. 12(e). As for the 

shell in Fig. 11, intensities are smoothed by a TV filter and normalised 
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with the maximum of the profile. An important shoulder is observed for 

high values of z on the C Kα profile. The shoulder is significantly 

reduced, first by correcting for the supporting film, then by correcting 

for absorption. These processing steps contribute towards a more 

uniform C Kα intensity inside the core. 

The absorption correction for the two strongest absorbing X-ray lines 

provides an important improvement that can be appreciated in 3D in 

Fig. 13. The green and red isosurfaces indicate a high O Kα and C Kα 

intensity respectively. The threshold values used are indicated by a 

horizontal dashed blue line in the z profiles of Fig. 11(g) and Fig. 12(e). 

The shell formed by the uncorrected O Kα intensity is not complete: a 

hole is observed for low value of z in Fig. 13(a). With a higher value of 

threshold, a complete shell can be obtained. The core formed by the 

uncorrected C Kα intensity shows an appendage towards high values of 

z. With higher values of threshold, the appendage is suppressed, but the 

void at the tip of the core is then not visible. Correcting for absorption 

in Fig. 13(b), the shell is complete for any value of threshold and the 

void at the tip of the core can be observed without any appendage for 

an appreciable range of thresholds. The artefacts and their correction 

can be appreciated with more details in the supplementary animated 

figure (appendix A) varying the view and the thresholds of the 
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isosurfaces. The second video shows a reconstruction of X-ray lines 

from the different elements. 

5. Discussion 

Absorption introduces a contrast mechanism that breaks the “projection 

requirement” if not taken into account. The reconstruction algorithm 

finds the closest estimation that respects the requirement by introducing 

an artefact observed as a gradient of intensity in the unexpected 

direction of the electron beam. By applying the proposed 3D absorption 

correction, this artefact is almost totally removed in the case of the 

moderately absorbed Zn Lα intensity, as observed in Fig. 11(g) with a 

close match with Zn Kα intensity in term of shape. The Zn Kα intensity 

has shown little absorption in the nanowire. Moreover, the risk of 

mixing Zn Lα and Zn Kα signals in the PCA de-noising process is 

prevented by applying PCA separately on low and high energy datasets, 

as proposed in [42]. The Zn Kα intensity is thus considered as an 

absorption-free reference for the Zn Lα intensity. The reference is 

relative as the cross-section of Zn Kα and Zn Lα is different, but as the 

part of the shell facing the detector emits X-rays with low absorption, 

an absolute reference can be deduced. As the shell is expected to be 

composed by a single phase of Zn and O and no experimental evidence 
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shows the opposite, the Zn Kα intensity is also considered as an 

absorption-free reference for O Kα intensity. 

Being more absorbed than the Zn Lα, the O Kα intensity requires a 

higher absorption correction and is thus more sensitive to inaccuracies. 

In Fig. 11, the absorption artefact is greatly reduced with a corrected O 

Kα intensity close to the Zn Kα intensity. The absorption correction 

shows however to be sensitive to the method used to obtain the density. 

Deducing the density from the composition, porosities have to be 

differentiated from the material by using a mask, as compositions are 

normalised to 100%. This approach relies on the accuracy of masking 

porosities, which is limited for instance by sub-pixel voids. If we take 

the HAADF signals as proportional to the mass-thickness, the density 

of the porous core is directly estimated without masking. A lower 

density of the core is obtained with this approach, resulting in an 

improved absorption correction for O Kα intensity as observed in Fig. 

11. However, the accuracy of this approach is limited by the need of a 

reference and by possible diffraction artefact leading to variation in 

intensity. Moreover, an a-priori knowledge of the sample is needed to 

scale the density. 

The C Kα line is the most absorbed lines of the analysed X-rays and an 

important increase of C Kα intensity in the core is observed in Fig. 12 
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with the absorption correction. As the carbon is situated mainly in the 

core, all C Kα X-rays have an approximately similar path through the 

shell to reach the surface. The structure of the core formed by C Kα 

intensity is thus less affected by absorption than the shell formed by O 

Kα intensity. The accuracy of the absorption correction for this line is 

difficult to evaluate, having no reference for the carbon composition. 

The C Kα intensity emitted from the supporting film is observed to 

lower the quality of the core reconstruction in Fig. 12(a). A simple 

correction by intensity subtraction is shown to improve the core 

reconstruction. The accuracy of this approach is however limited by the 

high noise level of the C Kα intensity still present after PCA de-

noising. The best way to prevent the problem of spurious X-rays from 

the film is to use a film free of elements present in the sample. 

An important limitation of the EDX analysis is the low number of 

collected X-ray counts despite the high efficiency EDX system. In our 

case, the electron dose is limited to prevent significant beam damage 

and thus individual spectra have a low number of X-ray counts. The 

dataset is however formed of a high number of spectra measured on 

similar phases: a favourable case for statistical methods such as PCA. 

Using PCA to de-noise, each spectrum is significantly improved as 
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shown in the Fig. 7. As the background is significantly smoothed, the 

accuracy of the background correction by fitting is greatly improved. 

Two detectors are used for each tilt and the collected signal cannot be 

unmixed. In the proposed approach for 3D absorption correction, the 

absorption that takes place along the two paths is approximated by one 

single mean path. This approximation is reasonable for the core/shell 

nanowire, as the structure is coarsely symmetric along the “single” 

path. The “one-path” approximation is however likely to be less 

appropriate when samples with more complex structures or to be 

inappropriate when all four detectors are used. It is our hope that, with 

future microscopes, the signal of the four detectors will be recorded and 

processed separately. The 3D absorption correction can then be applied 

to the X-ray intensities of each detector, providing a 3D absorption 

correction applicable for all nanostructures. 

For the absorption correction to be accurate, all X-ray intensities need 

to be accurately reconstructed. Reconstruction techniques, such as the 

SART algorithm used here, are known to suffer from artefacts when the 

tilt series have a low number of projections and/or a limited tilt range 

forming the so-called “missing wedge” [43]. Due to the low number of 

projections, the reconstructed intensity is correlated to the size of the 

object. This is observed with the reconstructed shell from the model in 
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Fig. 9(g) and from the measured X-ray intensity in Fig. 11(g): the 

smaller part of the shell has a lower intensity. Due to the missing 

wedge, other variations in contrast depending on the angular position 

are observed in the reconstructed model of the shell. These two 

artefacts are not expected to have a major influence on the accuracy of 

the absorption correction: the composition variation is limited as the 

composition is normalised to 100% and as the X-ray lines are expected 

to suffer proportionally with these artefacts. The composition of Zn in 

the large and small part of the shell are indeed observed to be much 

closer to that expected from the Zn Kα intensity. Another artefact 

linked to the low number of projections is the loss of contrast between 

internal voids and the material: some remaining Zn Kα and O Kα 

intensity is observed in the core in Fig. 11(g), when the core is expected 

to be free of these elements. Albeit in small quantity, these mis-placed 

intensities increase the calculated absorption of the core, contributing to 

the over-correction of O Kα intensity. A more recent reconstruction 

algorithm based on compressed sensing (CS) has shown to be more 

robust to low number of projections and the missing wedge [43]. The 

mentioned artefacts are expected to be reduced with such a method, 

resulting in an improved absorption correction. Although not present in 

the case of a nanowire, another artefact could have an important impact 
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on the absorption correction: if the sample is slab-like, the 

reconstruction of the slab using emitted the X-ray intensities is likely to 

suffer of truncation artefacts. The best way to prevent this is to use a 

needle sample extracted with a focused ion beam (FIB). 

Finally, a major source of uncertainty for any EDX quantification 

procedure is the k-factors. The used k-factors, provided by the 

manufacturer, are derived from first principle, an approach likely to 

suffer significant systematic error [44]. To reduce this error, k-factors 

should be experimentally determined, requiring standards with multiple 

elements of known composition and thickness. With the more recent ζ-

factor quantification method, these constraints are reduced as single 

element standards or a universal thin film standard can be used. Such 

approach has shown to reduce significantly the systematic error [38]. 

Moreover, this method provides, alongside the measurement of the 

composition, a measurement of the mass-thickness, from which a 

density can be derived and used in the proposed 3D absorption 

correction. Such a density is expected to be more sensitive to porosity 

as it is obtained directly from the X-ray intensity with no normalisation, 

see Eq. 2(b). This promising technique cannot however be used for the 

present dataset because of two unmet requirements: an accurate 

measurement of the current and a constant detector efficiency over the 
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full tilt range are needed. A finer control of the detector shadowing is 

also required, for example by improving the acquisition using different 

grid geometries and sample holder, or by using a FIB-needle sample. 

Overcoming these experimental limitations is crucial for making EDX-

STEM technique fully quantitative and applicable to a wide range of 

nanomaterials. 

6. Conclusions 

A novel 3D absorption correction method is proposed for 3D EDX-

STEM tomography. The assumptions of the classical absorption 

correction methods, constant X-ray generation and homogeneous 

absorption along the path to the surface, are refined by considering X-

ray generation and absorption voxel by voxel. The approach is applied 

on the three highly absorbed X-ray lines, Zn Lα, O Kα and C Kα, 

measured on a core/shell nanowire. The accuracy of the approach is 

assessed comparing X-ray lines with high absorption (Zn Lα, O Kα) 

and low absorption (Zn Kα). The absorption is the cause of an 

important artefact in the reconstruction, observed as X-ray intensity 

variation in the unexpected direction of the beam and resulting in a 

discrepancy of the shell and an appendage of the core.  Applying the 

3D absorption correction, this artefact is greatly reduced: the shell 
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morphology formed by the O Kα intensity projection is near complete 

and the appendage of the core formed by the C Kα intensity projection 

is removed. Thanks to the 3D absorption correction, 3D EDX/TEM 

tomography can be extended to highly  
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Figure 

 

Figure 1: X-ray absorption in a core/shell nanowire. The X-rays are 

generated in a nanowire supported by a film. The arrows show two X-

ray paths through the sample towards an EDX detector. A typical take-

off angle (TOA) is given. 

 

345



 
 

Figure 2: Tip of a core/shell nanowire. (a) High angular dark field 

(HADF) micrograph. (b) Schematic pictures of the sample. The 

elements composing the different phases are indicated. 

 

Figure 3: Geometry for 3D TEM-EDX acquisition. The grey box 

represents the sample holder. The electron beam direction is vertical 

and defines the z axis. The elevation angle is the take-off angle for a 

surface tilted 0°. The azimuth is the angle between x axis and the 

projection of the detector direction on a surface tilted 0°. The y axis is 

the rotation axis of the tilt. 
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Figure 4: X-ray lines emitted from a core/shell nanowire and 

corresponding absorption coefficient. The EDX spectrum, a sum over 

all spectra of the tilt series, is plotted with a plain curve (left scale). The 

mass absorption coefficients μ/ρ of X-rays absorbed in PtC25and ZnO, 

composition approximating the core and the shell respectively, are 

plotted as a function of energy with dashed curves (right scale). The 

centre of the main X-ray peaks are indicated by vertical dashed lines. 

Minor lines are not labelled. 

 

Figure 5: Calculation of the absorption correction matrix, A from the 

the matrix of elemental fraction Cvol. The arrows indicate the path of 

the X-ray towards the detector. The array of square represent the voxel. 

The grey scale represents the elemental fraction of one element in the 

voxel. The same elemental map is represented in the two different 

referentials. In (a), z axis is parallel to the electron beam. In (b), x axis 

is parallel to the detector direction. 
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Figure 6: Details of the iterative process for 3D absorption correction. 

Composition C are quantified (quant) from X-ray intensities I that are 

corrected by absorption correction factors A. The 3D intensities matrix 

Ivol are reconstructed (rec) from tilt series of intensities Itil at each i step 

of the iteration. 

 

Figure 7: Noise reduction using PCA. A spectrum is plotted before 

(grey) and after PCA decomposition/reconstruction (black). The 

spectrum is extracted from the data set at the position of an Ag particle. 

The raw intensity map for O Kα (acquired at tilt 0°) is plotted before 
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(left hand side) and after PCA decomposition/reconstruction (right 

hand side). 

 

Figure 8: Details of the 3D absorption correction factors. The maps 

give the absorption correction matrix A1, first iteration, for the O Kα 

intensity as orthogonal sections of the 3D volume. The white lines 

show the position of the orthogonal sections. The red dashed line shows 

the limit outside which the total X-rays intensity is below 7 counts. 
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Figure 9: 3D Absorption correction effect on tilt series after one and 

two iterations. The maps give the O Kα intensity as x-tilt sections: the 

tilt series (Itil for map a, map b and map c) and the direct projection of 

Ivol ([Ivol]til for map d, map e and map f). Map a and d are not corrected 

for absorption. Map b and e are corrected after one iteration. Map c and 

f are corrected after two iterations. Map h is the direct projection of a 

model of the shell shown in map g. 
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Figure 10: Convergence of the iterative process for the 3D absorption 

correction calculation. The convergence criterion is the RMS over the 

difference of the reconstruction corrected after i iterations and i+1 

iterations (Ii- Ii+1). The X-ray lines are sorted by increasing energy. 

351



 
 

 

352



 
 

Figure 11: Details of the reconstruction of the shell. Comparison of 

intensities without (maps a, d, f), with 3D absorption correction after 10 

iterations. The density is estimated from weighted mean (Abs corr) in 

maps b and e and from HAADF images (Abs corr ρ HAADF) in map c. 

The grey scale maps give the orthogonal sections of the reconstructed 

volume of the intensity of O Kα (maps a, b, c), Zn Lα (maps d, e) and 

Zn Kα (map f). The white lines show the position of the orthogonal 

sections. In (g), profiles along z are plotted for O Kα, Zn Lα and Zn Kα 

intensities. The position of profiles is indicated with coloured lines in 

the orthogonal sections. Intensities are normalised with the maximum 

of the profile in the right part of the shell that shows less absorption 

effect. The horizontal dashed blue lines show the values used for the 

isosurfaces in Fig. 13. All intensities are smoothed by TV filter. 
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Figure 12: Details of the reconstruction of the core. Comparison of 

intensities without (maps a, b, d, e) or with 3D absorption correction 
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after 10 iterations (“Abs corr” in map c). The grey scale maps give the 

orthogonal sections of the reconstructed volume of the intensity of C 

Kα (maps a, b, c), Pt Lα (map d), Ag Lα (map e) and Au Lα (map f). 

Map b and c are corrected for the carbon supporting film (film corr). 

The white lines show the position of the orthogonal sections. In (f), 

profiles along z are plotted for C Kα, Pt Lα and Ag Lα intensities. The 

position of profiles is indicated with coloured lines in the orthogonal 

sections. Intensities are normalised with the maximum of the profile. 

The horizontal dashed blue lines show the values used for the 

isosurfaces in Fig. 13. All intensities are smoothed by TV filter. 

 

Figure 13: Details of measured core and shell. The isosurfaces are 

reconstructed from the volume of O Kα and C Kα intensity without and 

with 3D absorption correction calculated after 10 iterations for figure 

(a) and (b), respectively. The thresholds used to generate the 
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isosurfaces are indicated in Fig. 11(g) and in Fig. 12(e) by a dashed 

blue line. 
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