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Abstract. In this paper, a topological approach for gait-based gender
recognition is presented. First, a stack of human silhouettes, extracted
by background subtraction and thresholding, were glued through their
gravity centers, forming a 3D digital image I . Second, different filters
(i.e. particular orders of the simplices) are applied on ∂K(I) (a simplicial
complex obtained from I) which capture relations among the parts of the
human body when walking. Finally, a topological signature is extracted
from the persistence diagram according to each filter. The measure cosine
is used to give a similarity value between topological signatures. The nov-
elty of the paper is a notion of robustness of the provided method (which
is also valid for gait recognition). Three experiments are performed us-
ing all human-camera view angles provided in CASIA-B database 1. The
first one evaluates the named topological signature obtaining 98.3% (lat-
eral view) of correct classification rates, for gender identification. The
second one shows results for different human-camera distances accord-
ing to training and test (i.e. training with a human-camera distance and
test with a different one). The third one shows that upper body is more
discriminative than lower body.

Keywords: gait-based recognition, topology, persistent homology,
gender classification.

1 Introduction

Gender human classification can be obtained based on face [1], voice [2] or gait
[3, 4]. Dynamic features when the people walk give the possibility to identify
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persons and their gender at a distance, without any interaction from the subjects
[5–7]. This fact can improve the performance of surveillance system intelligent,
the analysis of customer information in trade centers, and it can reduce the false
positive rate during reidentification of an individual on a wide network cameras.
People not only observe the global motion properties while human walk, but
they detect motion patterns of local body parts. For instance, females tent to
swing their hips more than their shoulders. On the contrary, males tent to swing
their shoulders more than their hips [8]. Moreover, males have in general wider
shoulders than females [9]. An experiment for human observers to analyze the
contributions of different parts of the human body (lower body, upper body and
whole body) and to study their discriminative power appears in [3]. According
to that experiment, upper body contributes more than lower body to gender
classification. In fact, 94.35% and 67.86% of correct classification rates, for upper
and lower body, respectively, were obtained. In this paper, a modified version
of the topological gait signature given in [10, 11] is presented, which is valid
for gait and also for gender classification. Besides, an important contribution
of the paper are arguments for the robustness of the signature with respect to
small input-data perturbations (i.e., perturbations on the stack of silhouettes)
are presented. We test this topological signature on the CASIA-B database and
compare our method with existing ones for gender recognition.

The rest of the paper is organized as follows. Section 2 is devoted to describe
the method for obtaining the topological signature and arguments for its ro-
bustness. Experimental results are then reported in Section 3. We conclude this
paper and discuss some future work in Section 4.

2 Topological Signature for Gender Classification

In this section, we briefly explain how the topological signature for gait and
gender classification is obtained. As we will see below, the filters (ordering of
simplices) are given by using functions defined on the simplicial complex ∂K(I)
and associated to the given view directions. These functions will be used later for
sketching robustness of the topological signature for gait and gender recognition
with respect to “small” input-data perturbations. Persistent homology obtained
from these filters are represented here in persistence diagram format [12].

2.1 The Simplicial Complex ∂K(I)

First, the foreground (person) is segmented from the background by applying
background modeling and subtraction. The sequence of resulting silhouettes is
analyzed to extract one subsequence of representation, which include at least a
gait cycle [5].

The 3D binary digital picture I = (Z3, B) (where B ⊂ Z
3 is the foreground), is

built by stacking silhouettes of a subsequence of representation, aligned by their
gravity centers (gc). See Fig. 1.a and Fig. 1.b. The 3D cubical complex Q(I)
associated to I is constructed as follow: Visit all the points v = (i, j, k) ∈ B
from down to up and from left to right.
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Fig. 1. (a) Silhouettes aligned by their gc. (b) I = (Z3, B) obtained from the silhouettes
(GC is the gravity center of I). (c) The border simplicial complex ∂K(I).

If the 7 neighbors of v, {(i + 1, j, k), (i, j + 1, k), (i, j, k + 1), (i + 1, j + 1, k),
(i+ 1, j, k+ 1), (i, j + 1, k+ 1), (i+ 1, j + 1, k+ 1)}, are also in B then, the unit
cube formed by these 8 vertices together with all its faces (vertices, edges and
squares) are added to Q(I). The simplicial complex ∂K(I) is constructed by
selecting all the squares of Q(I) that are faces of exactly one cube in Q(I) and
subdividing such squares in two triangles. The faces of each triangle (vertices
and edges) are also added to ∂K(I) (see Fig. 1.c). Finally, coordinates of the
vertices of ∂K(I) are normalized to coordinates (x, y, t), where 0 ≤ x, y ≤ 1 and
t is the number of silhouette of the subsequence of representation.

2.2 Filters for ∂K(I)

The topology of ∂K(I) is, in general, very poor. However, in this subsection
we present how, using persistence diagrams, it is possible to get a topological
signature from ∂K(I) that captures relations among the parts of the human
body when walking, and is robust against small input-data perturbations.

When a view direction d is chosen, two filters for ∂K(I) are obtained as fol-
lows. All vertices belonging to ∂K(I) are associated with two filtering functions
f+ and f−. For each vertex v ∈ ∂K(I), f+(v) is the distance between v and the
plane normal to d and passing through the origin of the reference frame, while
f−(v) = −f+(v). Edges and triangles are associated to the smallest value that
f+ (resp. f−) assumes on their vertices. Being the simplices of ∂K(I) finite in
number, we can determine a minimum value for f+, say fmin, and a maximum
one, fmax. It is now possible to induce two filters on ∂K(I) by ordering its sim-
plices according to increasing values of f+ and f−, respectively. Denote these
filters by K[fmin,fmax] = {σ1, . . . , σk} and K[−fmax,−fmin] = {σ′

1, . . . , σ
′
k}.

2.3 Persistence Diagrams and Topological Signatures

Given a simplicial complex K, a filtering function f , and a filter {σ1, . . . , σk}
for K, if σi completes a p−cycle (p is the dimension of σi) when σi is added to
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Ki−1 = {σ1, . . . , σi−1}, then a p−homology class γ is born at time i; otherwise,
a (p − 1)−homology class dies at time i. The difference between the birth and
death time of a homology class is called its index persistence, which quantifies
the significance of a topological attribute. If γ never dies, we set its persistence
as well as its index persistence to infinity. Drawing a point (i, j) for a homology
class that is born at time i and dies at time j, we get the p−persistence diagram
of the filtration, denoted asDgm(f). It represents a p−homology class by a point
whose vertical distance to the diagonal is the persistence. Since always i < j, all
points lie above the diagonal (see [12]).

In this paper, persistence diagrams are first computed for K[fmin,fmax] and
K[−fmax,−fmin]. Then, the diagrams are explored according to a uniform sam-

pling. More precisely, given a positive integer n, compute the integer h = � k
n�

representing the width of the “window” we use to analyze the persistence dia-
gram. Indeed, for i = 1, . . . , n, the i−reduced persistence diagram of K[fmin,fmax]

(resp. K[−fmax,−fmin]) show

(a) Homology classes that are born after (i− 1) · h and before i · h. Let � be the
time when such homology class is born. Its reduced life-length is i · h− �.

Having the reduced persistence diagrams on hand, we can now compute two
n−dimensional vectors for K[fmin,fmax] (resp. for K[−fmax,−fmin]) whose i−entry
corresponds to:

1. the sum of the reduced life-lengths for the 0−homology classes sumH0

2. the sum of the reduced life-lengths for the 1−homology classes sumH1.

These two collections of two n−dimensional vectors, represent the topological
signature for a gait subsequence associated with a fixed view direction.

∂K(I)

0 27295 54590 81885 109180 136475
Birth

27295

54590

81885

109180

136475

Death

KA

numH0 = 10
sumH0 = 232575

    reduced
 life-lengths

P 1    2   
P     4   P 5

P  
 3

P  

Fig. 2. An example of computation of the first element of a topological signature

For example, consider KA given in Fig. 2 which consists in 136475 triangles.
We perform n = 5 uniform cuts on the 0−persistence diagram. The sum of the
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reduced life-lengths for the 0−homology classes (numH0 = 10) that were born in
time 54560 ≤ t < 81885 are sumH0 = 232575 (blue lines in Fig. 2). The first ele-
ment of the topological signature: V1 is, {473625, 813786, 232575, 10039, 203958}.

2.4 Comparing Topological Signatures

The topological signatures for two gait subsequences associated with a fixed
view direction, say V = {V1, . . . , V4} and W = {W1, . . . ,W4}, can be compared
according to the following procedure: for every i = {1, . . . , 4} compute:

Si =
Vi ·Wi

‖Vi‖ · ‖Wi‖ . (1)

which is the cosine of the angle between the vectors Vi and Wi. Observe that
0 ≤ Si ≤ 1 since the entries of both vectors are always non-negative. Then, the
total similarity value for two gait subsequences, O1 and O2, considering a fixed
view direction, is the sum of the 4 similarity measures computed before:

S(O1, O2) = S1 + S2 + S3 + S4. (2)

2.5 Robustness

In this subsection, we briefly sketch a notion of robustness for our topological
signature with respect to small input-data perturbations. Fix a view direction
d and an associated filtering function f . The assumption here is that the input-
data perturbations can be modeled as perturbations of the function f . We could
think, for example, of small perturbations in fixing d, as well as noise in the
computation of f . More precisely, consider two functions f, g : ∂K(I) → R such
that

max
σ∈∂K(I)

|f(σ)− g(σ)| ≤ ε,

with ε being a small positive real number. Let Kf = {σ1, . . . , σk} and Kg =
{σ′

1, . . . , σ
′
k} be the filters associated with the increasing values of f and g,

respectively2. Assume also that all homology classes fulfill either condition (a):
Such an assumption is actually mild, and can be achieved quite easily in practice
(e.g., by slightly perturbing the values of f). Then, the stability of persistence
diagrams [13] implies that the birth- and the death-times, with respect to g, of
each homology class, cannot differ more than ε from those with respect to f .
Therefore, if ε is sufficiently small, it follows that

– If a homology class fulfills condition (a) for Kf , the same occurs for Kg.

Moreover, the same stability result in [13] implies that new homology classes,
living no longer than 2ε, could appear, as well as old classes living shorter than
2ε may vanish. These events could sensibly change the number of homology
classes satisfying condition (a). Nevertheless, considering such classes according
to their reduced life-length, as specified above, guarantees the robustness of our
topological signatures.

2 Similar arguments hold if considering filters associated with the decreasing values of
f and g.
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3 Experimental Results

In this section, we show the performance of the proposed method on gait se-
quences from the CASIA-B database, which contains 124 subjects, 91 males and
31 females. There are 6 walking sequences for each person. CASIA-B database
provides image sequences with background subtraction for each person.

To avoid bias, 31 males were randomly selected. The 62 subjects were then
divided in 31 disjoint sets, each containing 2 subjects (a male and a female).
Only one of these 31 sets was sued to test. The remaining 30 sets were used for
training. The correct classification rate (CCR) is the average of the 31 possible
combinations.

The experimental protocol was made according to [3, 4]. In this experiment,
a subsequence of representation corresponds to the whole sequence, which has
two gait cycle as average. We have fixed n = 24 and used 3 view directions. The
first one is vertical (i.e. parallel to axis y). The second one forms 45 degrees with
axes x and y and 90 degrees with axis t. The third one is parallel to axis t. See
Fig. 3. In each experiment, the results of our method are compared with the
methods presented in [3, 4].

PxtKB

KA

K B

KA

KB

KA
(a) (c)(b)

Pob1 Pob2

Fig. 3. View directions used in the experiments

3.1 Experiment 1

The aim of this experiment is to evaluate the topological signature for gender
classification. Table 1 shows the 31−fold-cross-validation of CCR for the whole
body using the 11 view directions provided by the CASIA-B database. The first
line of the table refers to the camera view angle. This way, 0 degrees means that
the person is in front to the camera and walking to the camera, 90 degrees means
that the person is walking lateral to the camera (lateral view), and 180 degrees
means that the person is back to the camera and walking away the camera. We
can see that the topological signature provides better results for the lateral view.
This agrees with [7].

3.2 Experiment 2

In this experiment we show that our topological signature is robust with re-
spect to scaling. Images form CASIA-B database of size 320× 240 are scaled to
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Table 1. Correct classification rates (CCR in %) for the whole body

Method 0 18 36 54 72 90 108 126 144 162 180 Avg

Avg computer [3] 95.97
Avg human observers [3] 95.45

Gabor + MMI [14] 96.8
MCRF [4] 98.3
Our method 83.6 92.3 92.6 93.0 95.6 98.3 94.3 94.0 92.4 92.5 94.1 93.0

160 × 120. Table 2 shows results considering different scales for training and
test. For example, if images of size 320 × 240 are used for training and images
of size 160× 120 are using for test, then we obtain 98.0% of CCR. Nevertheless,
if images of size 160× 120 are used for training and images of size 320× 240 are
using for test, then we obtain 95.6% of CCR.

Table 2. Correct classification rates (CCR in %) using different sizes of the images for
training and test

Test

320 × 240 images 160 × 120 images
Training 320 × 240 images 98.3 98.00

160 × 120 images 95.6 97.5

3.3 Experiment 3

The aim of this experiment is to compare gender classifications using only upper
or lower body. According to Table 3, our results confirm that upper body con-
tributes more than lower body to gender classification for both original (320x240)
and scaled (160x120) images. This agrees with the results obtained by human
observers in [3].

Table 3. Correct classification rates (CCR in %) for lower and upper body from lateral
view for original (320× 240) and scaled (160 × 120) images

Method CCR (lateral view)

Human observers (lower body) (320 × 240 images) [3] 67.86
Our method (lower body)(320× 240 images) 88.1
Our method (lower body) (160× 120 images) 87.0

Human observers (upper body) (320× 240 images) [3] 94.35
Our method (upper body)(320× 240 images) 96.0
Our method (upper body) (160× 120 images) 95.5
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4 Conclusion and Future Work

In this paper, a representation based on topological invariants, previously used
for gait based human identification at a distance, is used for a gender classifi-
cation task. Arguments for the robustness of the method with respect to small
input-data perturbations are given. It should be noticed that the view direction
should be selected according to the camera view angle to improve the results.
The method has been implemented in C++ and has been tested in real-time
real-life scenery in [11]. Our future work consists in trying to improve our results
for camera view angles different to lateral view selecting the appropriate view
direction, and to adapt our method to occlusions.
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