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Abstract. In this paper, algorithms for computing integer (co)homology
of a simplicial complex of any dimension are designed, extending the work
done in [1, 2, 3]. For doing this, the homology of the object is encoded
in an algebraic-topological format (that we call AM-model). Moreover,
in the case of 3D binary digital images, having as input AM-models for
the images I and J , we design fast algorithms for computing the integer
homology of I ∪ J , I ∩ J and I \ J .

1 Introduction

Efficient algorithms for computing topological information are powerful tools in
the fields of Data Mining, Pattern Recognition, Geometric Modeling and nD
Digital Image Processing. Nevertheless, topological notions (such as the cup
product on cohomology, cohomology operations, fundamental group, homotopy
groups, etc) are hard to adapt into an n-dimensional discrete framework; and
the number of available computational tools are limited. It is a fact that the cup
product on cohomology is a topological invariant which contains more informa-
tion than homology groups when we deal with an object of dimension greater
than or equal to 3. Since cohomology is essentially an algebraic notion, it seems
reasonable to encode it using a classical algebraic-topological cover: chain homo-
topy equivalences. In the setting of Simplicial Topology, we use here this extra
algebraic-topological information (that we will define as an AM-model for a sim-
plicial complex) to compute the cup product on integer cohomology as well as
cohomological numbers derived from it, extending the work developed in [1, 2].
Our computational approach follows the philosophy of the Effective Homology
Theory developed by F. Sergeraert in [4, 5]. In particular, we prove that all
the algorithms for computing integer homology based in the matrix reduction
method to Smith normal form (for example [6, 7, 8, 9]) can be translated to our
setting with no extra computational cost in time. Finally, we successfully apply
this computational algebraic topological approach to 3D binary digital images
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and we prove that a suitable extended notion of AM-model for binary 3D dig-
ital images can be reused under voxel-set operations (union, intersection and
difference).

2 Integer Homology, Chain Contractions and AM-Models

In [9], an algorithm improving the efficiency of the classical integer reduction
homology algorithm is described. Their technique is mainly based on the re-
sults of [8], in which a matrix reduction to integer Smith normal form is deter-
mined in an efficient way. There is no problem for translating this method to our
framework since it consists in constructing a chain homotopy equivalence from
the previously calculated Smith normal form, without additional computational
cost. Moreover, our strategy of saving more algebraic information outperforms
the previous algorithms for computing integer homology in several points such
as: 1) cohomological features can be computed; 2) we can efficiently control the
topological changes after addition or deletion of simplices.

First, we give a brief summary of concepts and notations. The terminology
follows Munkres book [6]. We will consider that the ground ring is Z.

Simplicial Complexes. Considering an ordering on a vertex set V , a q–simplex
with q + 1 affinely independent vertices v0 < · · · < vq of V is the convex hull
of these points, denoted by 〈v0, . . . , vq〉. If i < q, an i–face of σ is an i–simplex
whose vertices are in the set {v0, . . . , vq}. A simplex is maximal if it does not
belong to any higher dimensional simplex. A simplicial complex K is a collection
of simplices such that every face of a simplex of K is in K and the intersection
of any two simplices of K is a face of each of them or empty. The set of all the
q–simplices of K is denoted by K(q). The dimension of K is the dimension of
the highest dimensional simplex in K.

Chains and Homology. Let K be a simplicial complex. A q–chain a is a
formal sum of simplices of K(q). The q–chains form the qth chain group of K,
denoted by Cq(K). The boundary of a q–simplex σ = 〈v0, . . . , vq〉 is the (q − 1)–
chain: ∂q(σ) =

∑q
i=0(−1)i〈v0, . . . , v̂i, . . . , vq〉, where the hat means that vi is

omitted. By linearity, ∂q can be extended to q–chains. The collection of boundary

operators connect the chain groups Cq(K) into the chain complex C(K): · · · ∂2→
C1(K) ∂1→ C0(K) ∂0→ 0. An essential property is that ∂q∂q+1 = 0. In a more

general setting, a chain complex C is a sequence · · · d2−→ C1
d1−→ C0

d0−→ 0 of
abelian groups Cq and homomorphisms dq, such that for all q, dqdq+1 = 0 . The
set of all the homomorphisms dq is called the differential of C. A q–chain a ∈ Cq

is called a q–cycle if dq(a) = 0. If a = dq+1(a′) for some a′ ∈ Cq+1 then a is
called a q–boundary. Denote the groups of q–cycles and q–boundaries by Zq and
Bq respectively. Define the qth homology group to be the quotient group Zq/Bq,
denoted by Hq(C). We say that a is a representative q–cycle of a homology
generator α if α = a + Bq. We denote α = [a]. The qth betti number βq is the
rank of the free part of Hq(C). Intuitively, β0 is the number of components of
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connected pieces, β1 is the number of independent “holes” and β2 is the number
of “cavities”.

Chain Contractions. A chain contraction [10] of a chain complex C to a chain
complex C′ is a set of three homomorphisms (f, g, φ) such that: f : C → C′ and
g : C′ → C are chain maps; fg is the identity map of C′; and φ : C → C is a chain
homotopy of the identity map id of C to gf , that is, φ∂ + ∂φ = id − gf . In this
case, C and C′ have isomorphic homology groups [6, p. 73].

AM-Models. An AM-model for a simplicial complex K is the set (C, M, f, g, φ)
where C is a basis of C(K), M is a subset of generators of C(K) and (f, g, φ)
is a chain contraction from C(K) to M(K) where M(K) is the chain complex
generated by M with differential ∂|M(K) such that in each dimension q, the matrix
A of the differential ∂q|M(K) coincides with its Smith normal form and satisfies
that any non-null entry of A is greater than 1. Moreover, if the homology is free
or the ground ring is a field, then M(K) is isomorphic to the homology of K.
It is necessary to emphasize that given a simplicial complex K, it is possible
to define different AM-models for K since the chain complex M(K) and the
morphisms f , g and φ can admit different formulae.

A translation of the integer reduction homology algorithm in terms of chain
contractions has been made in [11]. Here we rewrite this work using a more al-
gorithmic language. This algorithm consists in reducing the matrix Aq of the
boundary operator in each dimension q, to its Smith normal form A′

q, rela-
tive to some basis {a1, . . . ar} of Cq(K) and {e1, . . . , es} of Cq−1(K) such that
{a�+1, . . . , ar} is a basis of Zq(K), and {λ1e1, . . . , λ�e�} is a basis of Bq−1(K) [6,
pp. 56-61].

Algorithm 1. Computing an AM-model for a Finite Simplicial Complex.

Input: A simplicial complex K of dimension d.
Initially: Cq := K(q), Mq := K(q) and C′

q = { } for 0 ≤ q ≤ d,
f(σ) := σ, g(σ) := σ, φ(σ) := 0 for every σ ∈ K.

For q = 1 to q = d do
Reduce the matrix Aq of the boundary operator ∂q relative to
the basis Cq and Mq−1 to its Smith normal form A′

q relative
to some basis {a1, . . . , ar} of Cq and {e1, . . . , es} of Mq−1 where:
∂q(ai) = ei, for 1 ≤ i ≤ t ≤ min (r, s);
∂q(ai) = λiei, λi ∈ R, for t < i ≤ � ≤ min (r, s);
and ∂q(ai) = 0 for � < i ≤ r.
Define Cq−1 := C′

q−1 ∪ {e1, . . . , es}, Mq−1 := {et+1, . . . , es},
Cq := {a1, . . . , ar}, C′

q := {a1, . . . , at}, Mq := {at+1, . . . , ar},
f(ai) := 0, f(ei) := 0 and φ(ei) := ai for 1 ≤ i ≤ t.

Output: The set (C0 ∪ · · · ∪ Cd, M0 ∪ · · · ∪ Md, f, g, φ).

The following result shows that although M(K) is not isomorphic to the
homology of K, we can directly obtain the integer homology from it.

Theorem 2. Let K be a finite simplicial complex of any dimension. The set
(C0 ∪ · · · ∪ Cd, M0 ∪ · · · ∪ Md, f, g, φ) defines an AM-model for K, being C =
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C0 ∪ · · · ∪ Cd a basis of C(K), M(K) the chain complex generated by M =
M0∪· · ·∪Md and with differential ∂|M(K), and (f, g, φ) a chain contraction from
C(K) to M(K). Moreover, the integer homology of K and integer homology
generators can be directly obtained from M and ∂|M(K).

If K has m simplices, an AM-model for K can be computed in time and
storage O(m3).

Fig. 1. The Klein bottle and a triangulation of it

Example 1. Consider the simplicial complex K in Figure 1 whose underlying
space is the Klein bottle [6, p. 283]. Running the algorithm above, we obtain
that the vertex 〈a〉 belongs to C0 and M0(K), the cycles α1 := 〈a, b〉+〈b, c〉−〈a, c〉
and α2 := 〈a, d〉+ 〈d, e〉− 〈a, e〉 belong to C1 and M1; and the 2-chain consisting
in the sum of all the triangles in K, β := −〈a, b, f〉−〈b, c, f〉+〈a, c, g〉−〈a, e, g〉+
〈e, g, i〉 − 〈e, d, i〉 + 〈c, d, i〉 − 〈a, c, d〉 + 〈b, c, i〉 + 〈a, b, h〉 − 〈a, e, h〉 − 〈e, d, f〉 +
〈a, d, f〉 + 〈c, f, g〉 − 〈f, g, h〉 − 〈h, g, i〉 − 〈b, h, i〉, is an element of C2 and M2.
The rest of the elements of C0 are the boundaries of the 1-simplices marked in
blue in Figure 1. These 1-simplices are also elements of C1. Denote by x one of
these 1-simplices. The rest of the elements of C1 are the boundaries of all the
2-simplices except for 〈f, g, h〉. These 2-simplices belong to C2. Denote by y one
of these 2-simplices. The images of the maps (f, g, φ) on the generators of C(K)
and M(K) are described in the table below:

C M f g φ
〈a〉 〈a〉 〈a〉 〈a〉 0
α1 α1 α1 α1 0
α2 α2 α2 α2 0
β β β β 0
x 0 0
∂x 0 x
y 0 0
∂y 0 y

Summing up, M0 = {〈a〉}, M1 = {α1, α2} and M2 = {β}. Moreover, ∂(〈a〉) = 0,
∂(α1) = 0, ∂(α2) = 0 and ∂(β) = 2α2. Therefore we obtain that H0(K) � Z,
H1(K) � Z ⊕ Z/Z2 and representative cycles of the homology generators are
〈a〉 for H0(K), α1 for the free part of H1(K) and α2 for the torsion part.

3 Cohomology Computations with Integer Coefficients

In this section, we extend the work done in [11,1,2] (with coefficients in a field)
for computing cohomology features over the coefficient domain Z. The interest
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for computing cohomology (the dual notion of homology) is that cohomology has
an additional multiplicative structure, the cup product, from which we can derive
finer invariants than homology. Observe that working with coefficients in a field,
homology groups are free and isomorphic to cohomology groups. Nevertheless,
working with coefficients in Z, homology and cohomology of simplicial complexes
can have torsion part and, in this case, they are not isomorphic.

Cochains and Cohomology. Let C be a chain complex. The cochain complex
C∗ in each dimension q is the group of q–cochains with coefficients in Z, Cq =
{c : Cq → Z such that c is a homomorphism}. If {a1, . . . , an} is a basis of Cq

then a basis of Cq is {a∗
1, . . . , a

∗
n}, where a∗

i : Cq → Z is given by a∗
i (ai) = 1 and

a∗
i (aj) = 0 for 1 ≤ i, j ≤ n and j 
= i. For each q, the differential dq+1 on Cq+1

induces the codifferential δq : Cq → Cq+1 via δq(c) = cdq+1, so that δq raises
dimension by one. Define Zq to be the kernel of δq and Bq+1 to be its image.
These groups are called the group of q–cocycles and q–coboundaries, respectively.
Define the qth cohomology group, Hq(C) = Zq/Bq for q ≥ 0.

The following result shows that we can directly obtain the integer cohomology
of K from an AM-model for it. This assertion is not given in [11, 1, 2].

Theorem 3. Let K be a finite simplicial complex of any dimension. Given an
AM-model (C, M, f, g, φ) for K, the integer cohomology of K and integer coho-
mology generators can be directly obtained from M and ∂|M(K).

Example 2. Consider the AM-model (C, M, f, g, φ) obtained in Example 1 for
the simplicial complex K whose underlying space is the Klein bottle. Start-
ing from the chain complex M(K) whose basis is {〈a〉, α1, α2, β} and dif-
ferential ∂|M(K), we construct in an straightforward way the cochain com-
plex M∗(K) whose basis is {〈a〉∗, α∗

1, α
∗
2, β

∗} and codifferential δ given by:
δ(〈a〉∗) = 〈a〉∗∂|M(K) = 0, δ(α∗

1) = α∗
1∂|M(K) = 0, δ(α∗

1) = α∗
2∂|M(K) = 2β∗,

δ(β∗) = β∗∂|M(K) = 0. Therefore we obtain that H0(K) � Z, H1(K) � Z and
H2(K) � Z/Z2; and the generators are: 〈a〉∗ for H0(K), α∗

1 for H1(K) and β∗

for H2(K).

Cup Product. The cochain complex C∗(K) is a ring with the cup product 
:
Cp(K)×Cq(K) → Cp+q(K) given by: (c 
 c′)(〈v0, . . . , vp+q〉) = c(〈v0, . . . , vp〉)·
c′(〈vp, . . . , vp+q〉). It induces an operation 
: Hp(K)×Hq(K) → Hp+q(K), via
[c] 
 [c′] = [c 
 c′], that is bilinear, associative, commutative up to a sign,
independent of the ordering of the vertices of K and homotopy-type invariant [6,
p. 289].

Working with coefficients in Z/Z2, a new cohomology invariant called HB1
is obtained in [1, 2]. The idea is to put into a matrix form the multiplication
table of the cup product of cohomology generators of dimension 1. The following
algorithm compute HB1 working with integer coefficients. Assuming that K has
m simplices, the complexity of this algorithm is O(m6). This algorithm is an
straightforward extension of that given in [1, 2].

Algorithm 4. Algorithm for computing HB1 with integer coefficients.
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Input: An AM-model (C, M, f, g, φ) for a simplicial complex K.
Let {α1, . . . , αp} and {β1, . . . , βm} be the set of 1 and 2-cycles in M.
For i = 1 to p do

For j = i to p do
For k = 1 to m do

b((i,j),k) := (α∗
i f 
 α∗

jf)(g(βk)).
HB1:= the rank of the 2D matrix of integers B(p(p+1)/2)×m = (b((i,j),k)).
Output: The integer HB1.

The implementation of the algorithms described above working with coefficients
in Z/Z2 has been made by J. Sánchez-Peláez and P. Real. We have tested
it on several 3D objects. We give here an example of the computation of the
cohomology, cohomology generators and the invariant HB1.

Example 3. Consider the simplicial complex T whose underlying space is showed
in Figure 2 (on the left). It consists in 11847 simplices. The running time for
computing an AM-model for T and the homology of T using a Pentium 4, 3.2
GHz, 1Gb RAM was 2 seconds. We obtain that β0 = 1, β1 = 4 and β2 = 3.
The running time for computing the cup product was 1.5 seconds. In Figure 2
(on the center), the 1 and 2-simplices on which the representative cocycles are
non-null are drawing. The table on the right of Figure 2 shows the results of the
cup product of any two cohomology generators of dimension 1. Finally, HB1= 2.

Fig. 2. The simplicial complex T , representative cocycles of the generators of H1(T )
and H2(T ) and the multiplication table of the cup product

4 AM-Models for 3D Digital Images

Three dimensional digital images are usually captured into the cubic grid or
computed from 2D projections. There are, however, capturing techniques such
as CT or MRI to produce images into other grids, such as the face-centered cubic
(fcc) and the body-centered cubic (bcc) grids [12]. An important issue in Digital
Volume Processing is to design efficient algorithms for analysis and processing
in these grids, since it is very easy to obtain data structures for the fcc and bcc
grids. On the other hand, the only Voronoi adjacency relation on the bcc grid
is the 14–adjacency. Using this adjacency, it is straightforward to associate to a
digital image I, a unique simplicial complex K(I) (up to isomorphism) with the
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same topological information as I. The i–simplices of K(I) (i ∈ {0, 1, 2, 3}) are
constituted by the different sets of i mutually 14–neighbor black points in I.

Definition 1. Let I be a 3D binary digital image. An AM-model for I is defined
as an AM-model for its simplicial representation K(I).

Since simplicial complexes considered in this section are embedded in R3, their
homology groups vanishes for dimensions greater than 3 and they are torsion–
free for dimensions 0, 1 and 2 (see [13, ch.10]). Therefore the chain complex
M(K(I)) is isomorphic to the homology of I.

In the following table we present the running time for computing integer
homology generators of the 3D digital images showed in figure 3. We have to
say that these images have been created in a cubic grid. For these reason, we
consider a special 14-adjacency in the cubic grid in the way that it is isomorphic
to the bcc grid.

Image I Number of voxels in I Time for computing β0 β1 β2

A 26308 50 seconds 2 9 3
B 31012 38 seconds 138 419 13
C 18842 27 seconds 1 277 5

Fig. 3. The 3D digital images A, B and C

Fig. 4. Representative cycles of the homology generators of the images A, B and C
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4.1 Computing “Good” Homology Generators

In [14], algorithms for obtaining “optimal” generators of the first homology group
are developed using Dijkstra’s shortest path algorithm for any oriented 2-mani-
folds. Here, in the context of digital volumes we sketch some techniques for
drawing “good” representative cycles of homology generators.

Given an AM-model (K(I), MI , fI , gI , φI) for a 3D digital image I, we say
that x is the representative cycle of the generator h ∈ MI obtained by gI if
gI(h) = x. Our interest now is to get a new AM-model (K(I), M ′

I
, f ′

I
, g′

I
, φ′

I
)

with “good” representative cycles of homology generators obtained by g′
I
. This

means that each representative cycle obtained by g′I belongs to the boundary of
the image ∂I (it is constituted by the set of black voxels in I with a 14-neighbor
white voxel). Moreover, it is required that in dimension 0, it must be a vertex;
in dimension 1, an elementary cycle (it is connected, each vertex is shared by
exactly two edges and two consecutive edges can not belong to the same triangle
in K(I)) and in dimension 2, an elementary cavity (it is a connected 2-cycle
with exactly one white connected component inside and three triangles can not
belong to the same tetrahedra).

Now, for obtaining good representative cycles of homology generators we can
use the following new result.
Lemma 1. Let (K, M, f, g, φ) be an AM-model for a simplicial complex K. Let h
be a generator of M and x a chain in C(K) such that x = g(h). Let x′ be a chain
in C(K) such that ∂(x′) = 0 and f(x′) = h. Then, it is possible to define a new
AM-model (K, M, f ′, g′, φ′)) for K such that g′(h) := x′ as follows: g′(h) := x′

and g′(z) := z if z 
= h; φ′(x) := φ(x′), φ′(x′) := φ(x) and φ′(z) := φ(z) for all
z 
= x′, x.

If we change the basis of M(K) and/or the basis of C(K), it is straightforward
to obtain a new AM-model for K.
Now, suppose we have an AM-model (K(I), MI , fI , gI, φI) for I at hand. First of
all, we compute an AM-model for ∂I, (K(∂I), M∂I, f∂I , g∂I , φ∂I). If the elements
of M∂I are denoted by {α1, . . . , αn} then the set of representative cycles obtained
by g∂I is S∂I = {g∂I(α1), . . . , g∂I(αn)}. Since all the homology generators of I
are homology generators of ∂I, find a subset M ′

I
of {fIg∂I(α1), . . . , fIg∂I(αn)},

which is a basis of M(K(I)). Obtain the new AM-model (K(I), M ′
I , f

′
I , g

′
I , φ

′
I)

for I using Lemma 1. Now, denote by SI = {c1, . . . , cm} the set of all the repre-
sentative cycles obtained by g′I which is a subset of S∂I . Decompose and replace
each 0-cycles in SI by its constitutive vertices, each 1-cycle by its elementary
cycles and each 2-cycle by its elementary cavities. Let M ′′

I
:= { }. For each cycle

s in SI , if {f ′
I(s)}

⋃
M ′′

I is a linearly-independent set then M ′′
I := {fI(s)}

⋃
M ′′

I ;
otherwise, M ′′

I
:= M ′′

I
. Obtain the new AM-model (K(I), M ′′

I
, f ′′

I
, g′′

I
, φ′′

I
) us-

ing Lemma 1. Then, (K(I), M ′′
I
, f ′′

I
, g′′

I
, φ′′

I
) is an AM-model for I with “good”

representative cycles of homology generators of I.

4.2 AM-Models After Adding or Deleting a Voxel

Now, we study the problem of topologically controlling a digital image using
AM-models when it suffers local changes (addition or deletion of one voxel).
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More concretely, we show how to compute an AM-model for a digital image
when a voxel is added or deleted using the algebraic-topological information
computed before. Assuming that I has m voxels, the complexity of the algorithms
in this subsection is O(m2). The key idea for both algorithms is that when a
q-simplex is added to or deleted from an AM-model of K, we only have to put
into a Smith normal form the matrix of ∂q for obtaining the new AM-model.
Moreover, take into account that adding or deleting a voxel v of I means to
add or delete a set of simplices of K(I ∪ {v}) having v as a vertex. Since we
work with simplicial complexes representing 3D digital images considering the
14-adjacency, the maximum number of simplices having v as a vertex is 74.

Let (K, M, f, g, φ) be an AM-model for a simplicial complex K. The differen-
tial of M(K) is null since the homology is torsion free. Moreover, the value of
all the possible non-null entries of the Smith normal form of the matrix of the
differential of C(K) in each dimension only can only be 1.

AM-Models After Adding a Voxel. As we have mentioned before, the ad-
dition of a voxel v to I means the addition to K(I) of all the simplices of
K(I ∪ {v}) \ K(I). In each step of the process, one simplex is added. Assuming
that I has m voxels, the following algorithm computes an AM-model for the
image I ∪ {v} with integer coefficients in O(m2).

Algorithm 5. Incremental Algorithm for computing an AM-model for a 3D
Binary Digital Image.

Input: An AM-model AMMI = (K(I), M, f, g, φ) for I and a voxel v 
∈ I.
Let {σ1, . . . , σn} (n ≤ 74) be the ordered-by-increasing-dimension set
of all the simplices of K(I ∪ {v}) \ K(I).
K0 := K(I).
For i = 1 to i = n do:

Let q be the dimension of σi; let Cq = {a1, . . . , ar},
Mq = {at+1, . . . , ar}, Cq−1 = {e1, . . . , es} and Mq−1 = {et+1, . . . , es+1};
let ∂q(aj) = ej for 1 ≤ j ≤ t and ∂q(aj) = 0 for t < j ≤ min (r, s);
let ∂q(σi) =

∑s
�=1 λ�e� where λ� ∈ R.

Define a := σi −
∑t

�=1 λ�a� and Cq := {a1, . . . , ar, a}.
If λ� = 0 for � > t then

f(a) := a, g(a) := a, φ(a) := 0 and Mq := {at+1, . . . , ar, a}.
Else obtain the Smith normal form of the matrix of ∂q

relative to some base {e1, . . . , et, e
′
t+1, . . . , e

′
s} of Cq−1(K).

Define f(a) := 0, φ(a) := 0, φ(e′t+1) := a, f(e′t+1) := 0,
Cq−1 := {e1, . . . , et, e

′
t+1, . . . , e

′
s} and Mq−1 := {e′t+2, . . . , e

′
s}.

Ki := Ki−1 ∪ {σi}.
Output: An AM-model (Kn, M, f, g, φ) for I ∪ {v}.

AM-Models After Deleting a Voxel from a 3D Digital Image. The
deletion of a voxel v from I means the deletion from K(I) of all the simplices
having v as a vertex. In each step of the process one simplex is deleted. Suppose
that an AM-model for a digital image I with m voxeles has been computed and
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after this a voxel is deleted. The following algorithm computes an AM-model for
the image I \ {v} with integer coefficients in O(m2).

Algorithm 6. Decremental Algorithm for computing an AM-model for a 3D
Digital Image I.

Input: An AM-model (K(I), M, f, g, φ) for I and a voxel v ∈ I.
Let {μ1, . . . , μn} (n ≤ 72) be the ordered-by-decreasing-dimension set
of all the simplices of K(I) having v as a vertex.
K0 := K(I).
For i = 1 to i = n do

Let q be the dimension of σi; let Cq = {a1, . . . , ar},
Mq = {at+1, . . . , ar}, Cq−1 = {e1, . . . , es} and Mq−1 = {et+1, . . . , e�+1};
let ∂q(aj) = ej for 1 ≤ j ≤ t and ∂q(aj) = 0 for t < j ≤ min (r, s)
Find the element ak ∈ Cq such that
Cq := {a1, . . . , âk, . . . , ar} is a base of Cq(Ki−1 \ {σi}).
If 1 ≤ k ≤ t then

Mq−1 := {ek, et+1, . . . , e�+1}, f(ek) := ek, g(ek) := ek and φ(ek) := 0.
Else Mq := {at+1, . . . , âk, . . . , ar}.
Ki := Ki−1 \ {σi}.

Output: An AM-model (Km, M, f, g, φ) for I \ {v}.

4.3 AM-Models Under Voxel-Set Operations on 3D Digital Images

In this subsection, we efficiently reuse the AM-model information for digital
images under voxel-set operations (union, intersection and difference).

Let I and J be two digital images. We will not consider these trivial cases:
I = ∅, J = ∅, I ∩ J = ∅, I ⊆ J and J ⊆ I. Let AMMI := (K(I), MI , fI , gI , φI)
and AMMJ := (K(J), MJ , fJ , gJ , φJ) be AM-models for I and J , respectively.

We give now the pseudocode of the algorithms we have developed for com-
puting AM-models for I ∪ J , I ∩ J and I \ J starting from AM-models for I
and J . Denote by FrI(J) = {v1, . . . , vm} the set of all the voxels of I \ J that
are 14-neighbors of a voxel of J . Algorithm 7 is a common preprocessing to the
three voxel-set operations treated here. In this algorithm, an AM-model for the
image I \ FrI(J) is calculated.

Algorithm 7. Preprocessing.

Input: The AM-model AMMI and the set FrI(J) = {v1, . . . , vm}.
Im+1 := I.
For i = m to i = 1 do

apply Algorithm 6 to vi and the AM-model (K(Ii+1), MI , fI , gI , φI).
Ii := Ii+1 \ {vi}.

Output: An AM-model (K(I1), MI , fI , gI , φI) for I \ FrI(J).

For computing an AM-model for I ∪ J , we first compute an AM-model for
(I ∪ J) \ FrI(J) using Algorithm 7 and after that we add the voxels of FrI(J)
using Algorithm 5.
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Algorithm 8. Computing an AM-model for I ∪ J .

Input: The AM-models AMMI for I and AMMJ for J and the set FrI(J).
Apply Algorithm 7 to AMMI and FrI(J) = {v1, . . . , vm}.
Define I0 := (I ∪ J) \ FrI(J);
f(μ) := fJ(μ), φ(μ) := φJ(μ) if μ ∈ K(J);
f(μ) := fI(μ), φ(μ) := φI(μ) if μ ∈ K0 \ K(J); M := Imf;
g(α) := gJ(α) if α ∈ MJ and g(α) := gI(α) if α ∈ M \ MJ.
For i = 1 to i = m do

apply Algorithm 5 to vi and the AM-model (K(Ii−1), M, f, g, φ).
Ii := Ii−1 ∪ {vi}.

Output: an AM-model (K(Im), M, f, g, φ) for I ∪ J.

Algorithm 7 is also the essential step for computing an AM-model for I ∩ J .

Algorithm 9. Computing an AM-model for I ∩ J .

Input: The AM-model AMMI for I and the set FrI(J).
Apply Algorithm 7 to AMI and FrI(J).
Define f(μ) := fI(μ) and φ(μ) := φI(μ) if μ ∈ K(I ∩ J);

M := Imf and g(α) := gI(α) if α ∈ M.
Output: an AM-model (K(I ∩ J), M, f, g, φ) for I ∩ J.

For computing an AM-model for I \ J , we first apply Algorithm 7. Second,
we consider the voxels that are in I \ (J ∪ FrI(J). Finally, we add the voxels of
FrI(J) using Algorithm 5.

Algorithm 10. Computing an AM-model for I \ J .

Input: The AM-model AMMI for I and the set FrI(J).
Apply Algorithm 7 to AMMI and FrI(J) = {v1, . . . , vm}.
Define I0 := I \ (J ∪ FrI(J); f(μ) := fI(μ) and φ(μ) := φI(μ) if μ ∈ K(I0)

M := Imf; g(α) := gI(α) if α ∈ M.
For i = 1 to i = m do

apply Algorithm 5 to vi and the AM-model (K(Ii−1), M, f, g, φ).
Ii := Ii−1 ∪ {vi}.

Output: an AM-model (K(Im), M, f, g, φ) for I \ J.

5 Comments

The algebraic-topological representation of simplicial complexes of any dimen-
sion showed here, allows us to compute topological invariants derived from the
integer cohomology ring. Moreover, we give a positive answer to the problem of
efficiently reusing AM-models for determining homological information of new
3D binary digital images constructed from the previous ones using voxel-set
operations.

There is considerable scope for further research: 1) To compute cohomol-
ogy operations or homotopy groups of simplicial complexes using AM-models.
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2) To suitably extend our method to nD binary digital images in any grid using
simplicial analogous techniques [15, 16, 17, 18].

Potential applications of our particular method in computer vision and dig-
ital image processing involving not only 3D object but also higher dimensional
structures can be encountered in Medical Imaging and Object Modeling. Our
method seems to be especially well adapted to segmentation under topological
constraints and elimination of small topological noise.
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1. González–Dı́az R., Real P.: Towards Digital Cohomology. DGCI 2003, LNCS,
Springer 2886 (2003) 92–101
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