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Abstract. When the ground ring is a field, the notion of algebraic topo-
logical model (AT-model) is a useful tool for computing (co)homology,
representative (co)cycles of (co)homology generators and the cup product
on cohomology of nD digital images as well as for controlling topological
information when the image suffers local changes [6,7,9]. In this paper,
we formalize the notion of λ-AT-model (λ being an integer) which ex-
tends the one of AT-model and allows the computation of homological
information in the integer domain without computing the Smith Normal
Form of the boundary matrices. We present an algorithm for computing
such a model, obtaining Betti numbers, the prime numbers p involved
in the invariant factors (corresponding to the torsion subgroup of the
homology), the amount of invariant factors that are a power of p and
a set of representative cycles of the generators of homology mod p, for
such p.

1 Introduction

There are many tasks in Vision and Image Processing that involve computing
certain topological characteristics of objects in a given image such as, for ex-
ample, connectivity and the number of holes and cavities. We focus here on
homology groups (connectivity and the number of holes and cavities can be
obtained from them), which are known to be computable in finite dimensions.
The classical algorithm for computing integer homology is based on performing
row and column operations on the boundary matrices in order to reduce them
to the Smith Normal Form (SNF). The integer homology groups can be then
determined from this canonical form (see, for example, [13]). However, explicit
examples can be given for which this algorithm has a worst-case computational
complexity which grows exponentially in both space and time [4].

Our aim is the computation of integer homology information avoiding the
computation of the SNF in the integer domain. In fact, our approach allows the
computation of Betti numbers, the prime numbers p involved in the invariant
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factors (corresponding to the torsion subgroup of the homology), the amount
of invariant factors that are a power of p and a set of “moduli” representative
cycles of the generators of homology in polynomial time. Moreover, our method
is not only valid for simplicial complexes but also for other combinatorial objects
such as cubical complexes or simploidal complexes since we deal with the group
structures.

In the first part of the paper, we recall classical definitions from Algebraic
Topology. We also present previous tools for computing topological information:
AT-models and AM-models, and we recall the main properties of these struc-
tures. Furthermore, we define the notion of λ-AT-model, study its properties,
give an algorithm for computing it and study its complexity. Finally, we describe
how to obtain homology information in the integer domain from a λ-AT-model.
The last section is devoted to conclusions and future works.

2 Definitions and Prior Work

This section introduces the background needed throughout the paper which is
essentially extracted from Munkres’ book [13]. We also recall briefly the concepts
of AT-model and AM-model and their properties.

A chain complex C is a sequence {Cq, dq} of abelian groups Cq and homomor-
phisms dq : Cq+1 → Cq,

· · · d3−→ C2
d2−→ C1

d1−→ C0
d0−→ 0 ,

such that, for all q, dqdq+1 = 0. The set of all the homomorphisms dq (q ≥ 0)
is called the differential of C. The chain complex C is free if Cq is a free abelian
group for each q. It is finite if there exists an integer n > 0 such that Cq = 0 for
q > n and each abelian group Cq is finitely generated. In this case, if Cn �= 0,
we say that dim of C is n, and then, C can be encoded as a pair (C, d), where
C =

⋃n
q=0 Bq, being Bq a basis of Cq and d the matrix corresponding to the

differential of C with respect to the basis C. Suppose that Bq = {a1, . . . , amq}.
A q-chain a ∈ C is a formal sum of elements of Bq, a =

∑mq

i=0 λiai, where λi ∈ Z
and ai ∈ Cq. In this case, dim a = q and ca(ai) denotes the coefficient λi.

Since our goal is the computation of homology information of “finite” ob-
jects (for example, objects explicitly represented within a computer), all chain
complexes are finite and free.

Example 1. Shapes are classically modelled with a cellular subdivision. Several
combinatorial structures may represent such subdivision. Simplicial complexes
have proven to be a useful tool to model a geometric object. Roughly speaking,
they are collections of simplices (convex hulls of a set of affinely independent
points) that fit together in a natural way to form the object. For every simplicial
complex K, one can define a chain complex C(K) canonically associated to it.
The homology of K is then defined as the homology of C(K) [13]. Another
way to extract combinatorial information from a geometric structure arising
naturally, for example, from tomography, numerical computations and graphics,



332 R. Gonzalez-Diaz et al.

is by means of cubical grids, which subdivide the space into cubes with vertices
in an integer lattice. This approach, that can be generalized to an arbitrary
dimension, is a cubical complex. The homology of a given cubical complex is the
homology of the cubical chain complex associated to it [11]. Finally, simploidal
sets [1] include simplicial complexes and cubical complexes as particular cases.
They can be used for representing “hybrid” grids coming from finite element
methods. In [15], a free chain complex is associated to a simploidal set and the
homology of the simploidal set is defined as the homology of the associated chain
complex.

We base all formulas and algorithms in this paper on an ordered basis of the chain
complex C where each prefix of the ordering contains the basis of a subcomplex.
We call such an ordering a filter. In other words, given a chain complex C,
C = {a1, . . . , am} is a filter if it is a basis of the chain complex C and for each
j (where 1 ≤ j ≤ m), C = {a1, . . . , aj} is a basis of a subcomplex of C. For
instance, given a chain complex D = (D, d), a reordering D′ = {c′1, . . . , c′m} of
D such that dim c′i ≤ dim c′j when i < j, is always a filter of D.

Example 2. Consider the simplicial complex S derived from the triangulation of
the Klein bottle given in Figure 1 and the chain complex C(S) associated to S.
Then,

C(S) = { a, d, ad, f, af, df, adf, b, ab, bf, abf, c, bc, cf, bcf, g, cg, fg, cfg,
ac, ag, acg, e, ae, eg, aeg, de, ef, def, h, fh, eh, efh, gh, fgh, i,
gi, hi, ghi, ei, egi, di, dei, ah, aeh, bh, abh, bi, bhi, ci, bci, ai, aci, adi },

where v0 · · · vn denotes the simplex spanned by the vertices v0, . . . , vn, is a filter
of C(S).

The chain a is a q-cycle if a ∈ Ker dq. If a ∈ Im dq+1 then a is called a q-boundary.
Denote the groups of q–cycles and q–boundaries by Zq and Bq respectively.
Define the integer qth homology group to be the quotient group Zq/Bq, denoted

Fig. 1. The Klein bottle and a triangulation of it
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by Hq(C;Z). We say that a is a representative q–cycle of the homology generator
a + Bq (denoted by [a]). For each q, the integer qth homology group Hq(C;Z) is
a finitely generated abelian group. Then Hq(C;Z) is isomorphic to Fq ⊕Tq where

Fq = Z ⊕ · · · ⊕ Z and Tq = (Z/α(q,1)) ⊕ · · · ⊕ (Z/α(q,s))

are the free subgroup and the torsion subgroup of Hq(C;Z), respectively. The
rank of Fq, denoted by βq, is called the qth Betti number of C. Each α(q,i) is
a power of a prime, α(q,i) = p

t(q,pi)

i . They are called the invariant factors of
Hq(C;Z). The numbers βq and α(q,i) are uniquely determined by Hq(C;Z) (up
to a rearrangement). Therefore, this representation is in some sense a “canonical
form” for Hq(C;Z).

The qth homology group of C with coefficients in Z/p for p a prime, denoted
by Hq(C;Z/p), is a vector space. Its rank, denoted by β(q,p), depends on the
prime p. Universal Coefficient Theorem for Homology [13, p. 332] implies that
for each prime p,

T(0,p) = β(0,p) − β0 and T(q,p) = β(q,p) − βq − T(q−1,p) for q > 0;

where T(i,p) is the number of invariant factors of Hi(C;Z) that are a power of p.
Let C = {Cq, dq} and C′ = {C′

q, d
′
q} be two chain complexes. A chain map f :

C → C′ is a family of homomorphisms {fq : Cq → C′
q} such that d′qfq = fq−1dq

for all q ≥ 0. A chain map f : C → C′ induces a homomorphism f∗ : H(C;Z) →
H(C′;Z) where f∗[a] = [f(a)] for [a] ∈ H(C;Z). If f, g : C → C′ are chain maps,
then a chain homotopy φ : C → C′ of f to g is a family of homomorphisms
{φq : Cq → C′

q+1} such that fq − gq = d′q+1φq + φq−1dq.
A chain contraction of a chain complex C to another chain complex C′ is a

set of three homomorphisms (f, g, φ) such that: f : C → C′ and g : C′ → C are
chain maps; fg is the identity map of C′ and φ : C → C is a chain homotopy of
the identity map of C to gf , that is, φd + dφ = idC − gf . Important properties
of chain contractions are: C′ has fewer or the same number of generators than
C; and C and C′ have isomorphic homology groups.

An AT-model [6,7,9] for a chain complex C = (C, d) is a chain contraction of C
to a chain complex H with null differential. An AT-model can be stored as a set
((C, d), H, f, g, φ), where C and H are basis of C and H, and f , g and φ are the
matrices corresponding to the homomorphisms that defines the chain contraction
of C to H. Observe that the homology of C is isomorphic to H. If the ground
ring is Z/p, being p a prime, the following algorithm computes an AT-model for
a given chain complex. This algorithm is a straightforward modification of that
in [9].

Algorithm 1. Computing an AT-model for a chain complex C over Z/p.

Input: a filter C = {a0, . . . , am} of the chain complex C,
and the matrix of the differential d for the basis C.

H := { }, f := 0, g := 0, φ := 0.
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For i = 0 to m do
If fd(ai) = 0, then

H := H ∪ {ai}, f(ai) := ai, φ(ai) := 0, g(ai) := ai − φd(ai).
If fd(ai) �= 0, then:

μi := min {cfd(ai)(aj), j = 0, .., i − 1},
k := max {j such that cfd(ai)(aj) = μi, j = 0, ..., i − 1},
H := H\{ak}, f(ai) := 0, φ(ai) := 0.
For j = 0 to i − 1 do,

λaj := cf(aj)(ak),
f(aj) := f(aj) − μ−1

i λaj fd(ai),
φ(aj) := φ(aj) + μ−1

i λaj (ai − φd(ai)),
Output: the set ((C, d), H, f, g, φ).

The key idea of this algorithm is the same as in [3]: in the ith step, the element
ai of the filter C is added and then, a homology class is created or destroyed. The
algorithm runs in time at most O(m3), where m is the number of elements of C.
Recall that the notion of AT-model is an useful tool for computing (co)homology,
representative cycles of (co)homology generators and the cup product on coho-
mology of nD digital images as well as for controlling topological information
when the image suffers local changes [6,7,9]. The main problem of the computa-
tion of AT-models over Z/p is that if the object under study contains torsion,
then the Betti numbers β(q,p) can change when p varies.

Example 3. The Betti numbers of the simplicial complex S (see Figure 1) com-
puted over the field Z/p, for p = 2, 3, 29.

β(0,p) β(1,p) β(2,p)
Z/2 1 2 2
Z/3 1 1 0
Z/29 1 1 0

An AM-model [5] for a chain complex C = (C, d) is a chain contraction (f, g, φ)
of C to M = (M, d′) such that the matrix A of the differential d′ coincides with
its Smith normal form and satisfies that any non-null entry of A is greater than
1. Working with coefficients in the integer domain, an AM-model for C can al-
ways be computed. Moreover, the integer (co)homology of C and representative
cycles of (co)homology generators can be directly obtained from M [8].

The algorithm for computing AM-models given in [8] needs to reduce the ma-
trix of the differential to its Smith Normal Form (SNF). Explicit examples can
be given for which the computation of SNF has a worst-case computational com-
plexity which grows exponentially in both space and time [4]. Many algorithms
have been devised to improve this complexity bound [10,17,2,14].

Our aim in this paper is the computation of integer homology information
avoiding the computation of the SNF in the integer domain.
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3 Extending the Notion of Algebraic Topological Model

In this section we will consider that the ground ring is Z. We first define the
notion of λ-AT-model which is a generalization of the one of AT-model. We study
its properties, give an algorithm for computing it and study its complexity.

Definition 1. Let C = (C, d) be a chain complex, λ a non-null integer and
H = (H, d′) a chain complex with null differential (that is, d′ = 0). Let f :
C → H, g : H → C and φ : C → C be three homomorphisms. Then the set
((C, d), H, f, g, φ, λ) is a λ-AT-model if f and g are chain maps, fg = λ · idH

and φ is a chain homotopy of λ · idC to gf , that is, λ · idC − gf = φd + dφ.

Proposition 1. Given a λ-AT-model, a rational AT-model (i.e., an AT-model
over Q) can directly be obtained as well as rational (co)homology and represen-
tative cycles of (co)homology generators. Concretely, if ((C, d), H, f, g, φ, λ) is a
λ-AT-model for a chain complex C, then ((C, d), H, 1

λf, g, 1
λφ) is an AT-model for

C over Q and {g(h) : h ∈ H} is a set of representative cycles of the generators
of H(C;Q).

Corollary 1. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. Then H (the chain
complex generated by H with null differential) is isomorphic to the free sub-
group of H(C;Z). Moreover, the set {g(h) : h ∈ H} is a set of independent
non-boundary cycles of C over Z.

Proposition 2. Given a λ-AT model ((C, d), H, f, g, φ, λ) and a prime p such
that p does not divide λ, then ((C, dp), H, fp, gp, φp), where dp = d mod p, fp =
λ−1f mod p, gp = g mod p and φp = λ−1φ mod p, is an AT-model for C over
Z/p and {gp(h) : h ∈ H} is a set of representative cycles of the generators of
H(C;Z/p).

Proposition 3. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. Let a ∈ C such that
d(a) = 0. If there exists b ∈ C such that d(b) = αa where α ∈ Z and α �= 0, then
f(a) = 0.

Proof. Suppose that b ∈ C such that d(b) = αa where α ∈ Z and α �= 0, and
f(a) �= 0. Then αf(a) �= 0 (since the ground ring is Z). On the other hand,
αf(a) = f(αa) = f(d(b)) = 0, a contradiction. 	


Corollary 2. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. Let a ∈ C such that
d(a) = 0. If there exists b ∈ C such that d(b) = αa where α ∈ Z, α �= 0, and for
each β, where 0 < β < α, βa �∈ Im d. then α divides λ.

Proof. By Proposition 3, we have f(a) = 0. Since λa − gf(a) = φd(a) + dφ(a),
then λa = dφ(a). Suppose that α does not divide λ. There exists c, r ∈ Z, such
that 0 < r < α and λ = cα + r. On one hand, ra �∈ Im d; on the other hand,
ra = (λ − cβ)a = d(φ(a) − cb) ∈ Im d, a contradiction. We conclude that alpha
divides λ. 	
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Corollary 3. Let ((C, d), H, f, g, φ, λ) be a λ-AT-model. If α = pt(q,p) is an
invariant factor of Hq(C;Z), then p divides λ.

Algorithm 2. Algorithm for computing a λ-AT-model for a chain complex C.

Input: a filter C = {a0, . . . , am} of the chain complex C,
and the matrix of the differential d for the basis C.

H := { }, λ := 1, f := 0, g := 0, φ := 0.
For i = 0 to m do

If fd(ai) = 0, then
H := H ∪ {ai}, f(ai) := ai, φ(ai) := 0, g(ai) := λai − φd(ai).

If fd(ai) �= 0, then
μi := min {|cfd(ai)(aj)|, j = 0, .., i − 1},
k := max {j such that |cfd(ai)(aj)| = μi, j = 0, ..., i − 1},
λk := cfd(ai)(ak),
H := H\{ak}, f(ai) := 0, φ(ai) := 0.
For j = 0 to i − 1,

λaj := cf(aj)(ak),
f(aj) := λkf(aj) − λaj fd(ai),
φ(aj) := λkφ(aj) + λaj (λai − φd(ai)),
λ := λλk.

Output: The set ((C, d), H, f, g, φ, λ).

Theorem 3. The set ((C, d), H, f, g, φ, λ) obtained applying Algorithm 2 defines
a λ-AT-model for the chain complex C = (C, d).

Proof. Assume that ((Ci−1, d), Hi−1, fi−1, gi−1, φi−1, λi−1) is the λi−1-AT-model
obtained using the algorithm above for the filter Ci−1 = {a0, . . . , ai−1}. Assume
that the annihilation properties fi−1φi−1 = 0, φi−1gi−1 = 0 and φi−1φi−1 = 0
hold. We will prove that the set (Ci, d), fi, gi, φi, λi) obtained after adding ai to
the filter Ci−1 is a λi-AT-model. More concretely, we will prove that fid =
0, dgi = 0, figi = λi · id, λi · id − gifi = φid + dφi, fiφi = 0, φigi = 0
and φiφi = 0. We deal only with the case fi−1d(ai) �= 0; the other case is
left to the reader. First, fid(ai) = λkfi−1d(ai) − λkfi−1d(ai) = 0. Second,
φid(ai) + dφi(ai) = λkφi−1d(ai) + λk(λi−1ai − φi−1d(ai)) = λiai = λiai −
gifi(ai). Finally, it is clear that fiφi(ai) = 0 and φiφi(ai) = 0. Now, let aj ∈
Ci−1, then fid(aj) = λkfi−1d(aj) which is null by induction; φid(ai) + dφi(ai)
= λkφi−1d(aj) + λd(aj)(λi−1ai − φi−1d(ai)) + λkdφi−1(aj) + λaj (λi−1d(ai) −
dφi−1d(ai)) = λk(λi−1aj − gi−1fi−1(aj)) + λaj gi−1fi−1d(ai) = λiaj − gifi(aj).
Moreover, fiφi(aj) = fi(λkφi−1(aj) +λaj (λi−1ai − φi−1d(ai))) = 0; φiφi(aj) =
φi(λkφi−1(aj) + λaj (λi−1ai − φi−1d(ai))) = 0. If aj ∈ Hi, then dgi(aj) =
dgi−1(aj) = 0, by induction; figi(aj) = λkfi−1gi−1(aj) − λgi−1(aj)fi−1d(aj) =
λkλi−1aj = λiaj . Finally, it is easy to see that φigi(aj) = 0. 	


To study the complexity, fix the dimension of the complex, n, and count the
number of elementary operations involved in the algorithm. In the ith step,
we have to evaluate fi−1d(ai). The numbers of elements of C involved in d(ai)
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and fi−1(aj) for 1 ≤ j < i is at most n and m, respectively. Therefore, the
evaluation of fi−1d(ai) costs O(nm) = O(m). If fi−1d(ai) �= 0, we have to
update fi−1(aj) and φi−1(aj) for 1 ≤ j < i. The total cost of these operations
is O(m2). Therefore, the total algorithm runs in time at most O(m3).

The following proposition shows that AT-models over Z/p, p being any prime,
can also be computed using Algorithm 2.

Proposition 4. If the output of Algorithm 2, working with coefficients in Z/p,
p being any prime, is (C, d), H, f, g, φ, λ), then ((C, d), H, λ−1f, g, λ−1φ) is an
AT-model over Z/p. Furthermore, {g(h) : h ∈ H} is a set of representative
cycles of the generators of H(C;Z/p).

Example 4. Consider the simplicial complex S derived from the triangulation of
the Klein bottle given in Figure 1 and the chain complex C(S) associated to S.
Let C(S) be the filter of C(S) given in Example 1. Running the algorithm above,
we obtain a 2-AT-model of C(S), (C(S), HS, fS, gS, φS, 2), where HS = {a, ac}.
The value of fS on each vertex of S is 2a. The value of fS on each edge marked
in red in Figure 1, is 2ac. The value of fS on the rest of the simplices of S is
zero. For the map gS, we obtain that gS(a) = a and gS(ac) = ac − bc − ab. On
each vertex of S, φS gives a path connecting this vertex with a, multiplied by
2; for example, φS(g) = 2(ab + bc + cg). On the edges of S, the key idea is the
same, that is, on each edge of S, φS gives a “path” connecting this edge with
ac, multiplied by 2; for example, φS(gh) = 2(fgh − cfg + bcf + abf). On each
triangle of S, the value of φS is zero.

Summing up, given a filter C of a chain complex C, it is possible to compute a λ-
AT-model, λAT = (C, d), H, f, g, φ, λ), in O(m3) if C has m elements. The Betti
numbers and a set of independent non-boundary cycles of C over Z can directly
be obtained from λAT . Moreover, the integer λ provides the prime numbers
involved in the invariant factors of the torsion subgroup of H(C;Z). This last
information will be essential in the next section for designing an algorithm for
computing “moduli” representative cycles of the generators of the free and the
torsion subgroups of H(C;Z).

4 Computing Integer Homology Information

As we have said before, a λ-AT-model for a given chain complex C provides
information of the free subgroup of H(C;Z) as well as the prime numbers involved
in the invariant factors of H(C;Z). For obtaining “moduli” representative cycles
of the generators of the free and the torsion subgroups of H(C;Z) we only have
to compute AT-models for C over Z/p, for each prime p dividing λ. Observe
that for this last task, since we work with coefficients in Z/p, we can use either
Algorithm 1 or Algorithm 2.

Algorithm 4. Computing integer homology information and “moduli” repre-
sentative cycles of homology generators of a chain complex C.
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Input: a filter C = {a0, . . . , am} of the chain complex C of dim n,
and the matrix of the differential d for the basis C.

Apply Algorithm 2 with coefficients in Z for computing a
λ-AT-model for (C, d), ((C, d), H, f, g, φ, λ);
βq := number of elements of H of dim q, for q = 0 to n;
G := {g(h) : h ∈ H}.

For each prime p dividing λ do
Apply Algorithm 2 with coefficients in Z/p for computing an

AT-model for C over Z/p, ((C, dp), Hp, fp, gp, φp);
T(0,p) = β(0,p) − β0;
T(q,p) = β(q,p) − βq − T(q−1,p), for q = 1 to n;
Gp = {gp(hp) : hp ∈ Hp}.

Output: The sets G, {Gp : p being a prime dividing λ}, {β1, . . . , βn},
and {T(q,p) : 0 ≤ q ≤ n and p being a prime dividing λ}.

Summing up, after computing a λ-AT-model and an AT-model over Z/p, for
each p dividing λ, for a given chain complex C, we obtain:

– the Betti numbers βq for 0 ≤ q ≤ n, and a set G of independent non-
boundary cycles of C over Z (in fact, G is also a set of generators of H(C;Q));

– the prime numbers p involved in the invariant factors corresponding to the
torsion subgroup of H(C,Z), the amount of invariant factors in each dimen-
sion q that are a power of p, T(q,p), and a set Gp of representative cycles of
the generators of H(C;Z/p) for each prime p dividing λ.

Example 5. In Example 1, we applied the Algorithm 2 and computed a 2-AT-
model for C(S) and the Betti numbers of C; β0 = 1, β1 = 1 and β2 = 0. Now, we
apply Algorithm 2 for compute an AT-model for (C, d) with coefficients in Z/2
to obtain ((C, d)), H2, f2, g2, φ2) where H2 = {a, ac, de, adi}. Then, β(0,2) = 1,
β(1,2) = 2, β(2,2) = 1 and G2 = {a, ac + bc + ab, ad + de + ae, adf + abf + bcf +
cfg+acg+aeg+def+efh+fgh+ghi+egi+dei+aeh+abh+bhi+bci+aci+adi}.
Therefore, t(0,2) = 0, t(1,2) = 1 and t(2,2) = 0. We conclude that H0(S) = Z and
H1(S) = Z ⊕ Z/2.

5 Conclusions and Future Work

A λ-AT-model for a chain complex C can be computed in cubic time. It provides
information of the free subgroup of H(C;Z) and also the primes p that are
candidates to be involved in an invariant factor of H(C;Z). For obtaining the
amount of invariant factors that are a power of p and “moduli” representative
cycles of homology generators, we compute an AT-model with coefficients in Z/p
for such primes p.

A future work is to study if it is possible to obtain generators with inte-
ger coefficients of the torsion subgroup of H(C;Z). Another task is to study if
cohomology features can be computed over Z from a λ-AT-model.

Concerning to the complexity, Algorithm 4 runs in time O(m3ψ(λ)) in the
worst case, ψ being the Euler function. Therefore, one important question is to
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bound the coefficient λ. In order to improve the complexity we might first com-
pute a chain contraction to obtain a smaller chain complex with same homology
in the integer domain and apply Algorithm 4 to a “thinned” complex.
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